1
|
Cao Z, Zuo X, Liu X, Xu G, Yong KT. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv Colloid Interface Sci 2024; 330:103206. [PMID: 38823215 DOI: 10.1016/j.cis.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm. Concluding, we present an insight into the current research landscape, addressing the challenges at hand, and envisioning the future trajectory in this burgeoning domain. Join us as we navigate the exciting confluence of polymer science and nanotechnology in reshaping biomedical solutions.
Collapse
Affiliation(s)
- Zhonglin Cao
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaoling Zuo
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
2
|
Mirzaei S, Khademi Z, Zolfaghari R, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Dual-targeted delivery system using hollow silica nanoparticles with H +-triggered bubble generating characteristic coated with hyaluronic acid and AS1411 for cancer therapy. Drug Dev Ind Pharm 2023; 49:648-657. [PMID: 37772892 DOI: 10.1080/03639045.2023.2265484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023]
Abstract
OBJECTIVE Herein, a dual-targeting delivery system using mesoporous silica nanoparticles with hollow structures (HMSNs) was developed for the specific delivery of epirubicin (EPI) to cancer cells and introducing a H+-triggered bubble generating nanosystem (BGNS). HMSNs containing EPI are covered by hyaluronic acid (HA) shell and AS1411 aptamer to create the BGNS-EPI-HA-Apt complex, which is highly selective against CD44 marker and nucleolin overexpressed on the surface of tumor cells. METHODS MTT assay compared the cytotoxicity of different treatments in CHO (Chinese hamster ovary) cells as well as 4T1 (murine mammary carcinoma) and MCF-7 (human breast adenocarcinoma) cells. The internalization of Epi was assessed by flow cytometry along with fluorescence imaging. In vivo studies were conducted on BALB/c mice bearing a tumor from 4T1 cell line where monitoring included measuring tumor volume, mouse weight changes over time alongside mortality rate; accumulation levels for Epi within organs were also measured during this process. RESULTS The collected data illustrated that BGNS-EPI-HA-Apt complex controlled the release of EPI in a sustained method. Afterward, receptor-mediated internalization via nucleolin and CD44 was verified in 4T1 and MCF-7 cells using fluorescence microscopy assay and flow cytometry analysis. The results of tumor inhibitory effect study exhibited that BGNS-EPI-HA-Apt complex decreased off-target effect and improved on-target effects because of its targeting ability. CONCLUSION The data acquired substantiates that HA-surface modified HMSNs functionalized with aptamers possess significant potential as a focused platform for efficient transportation of anticancer agents to neoplastic tissues.
Collapse
Affiliation(s)
- Salimeh Mirzaei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Zolfaghari
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Tezcan O, Elshafei AS, Benderski K, Rama E, Wagner M, Moeckel D, Pola R, Pechar M, Etrych T, von Stillfried S, Kiessling F, Weiskirchen R, Meurer S, Lammers T. Effect of Cellular and Microenvironmental Multidrug Resistance on Tumor-Targeted Drug Delivery in Triple-Negative Breast cancer. J Control Release 2023; 354:784-793. [PMID: 36599395 PMCID: PMC7614501 DOI: 10.1016/j.jconrel.2022.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Multidrug resistance (MDR) reduces the efficacy of chemotherapy. Besides inducing the expression of drug efflux pumps, chemotherapy treatment alters the composition of the tumor microenvironment (TME), thereby potentially limiting tumor-directed drug delivery. To study the impact of MDR signaling in cancer cells on TME remodeling and nanomedicine delivery, we generated multidrug-resistant 4T1 triple-negative breast cancer (TNBC) cells by exposing sensitive 4T1 cells to gradually increasing doxorubicin concentrations. In 2D and 3D cell cultures, resistant 4T1 cells are presented with a more mesenchymal phenotype and produced increased amounts of collagen. While sensitive and resistant 4T1 cells showed similar tumor growth kinetics in vivo, the TME of resistant tumors was enriched in collagen and fibronectin. Vascular perfusion was also significantly increased. Fluorophore-labeled polymeric (∼10 nm) and liposomal (∼100 nm) drug carriers were administered to mice with resistant and sensitive tumors. Their tumor accumulation and penetration were studied using multimodal and multiscale optical imaging. At the whole tumor level, polymers accumulate more efficiently in resistant than in sensitive tumors. For liposomes, the trend was similar, but the differences in tumor accumulation were insignificant. At the individual blood vessel level, both polymers and liposomes were less able to extravasate out of the vasculature and penetrate the interstitium in resistant tumors. In a final in vivo efficacy study, we observed a stronger inhibitory effect of cellular and microenvironmental MDR on liposomal doxorubicin performance than free doxorubicin. These results exemplify that besides classical cellular MDR, microenvironmental drug resistance features should be considered when aiming to target and treat multidrug-resistant tumors more efficiently.
Collapse
Affiliation(s)
- Okan Tezcan
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany.; UT Brown Foundation Institute of Molecular Medicine, UTHealth Houston, Houston, TX, USA.
| | - Asmaa Said Elshafei
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Karina Benderski
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Elena Rama
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Maike Wagner
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Diana Moeckel
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Robert Pola
- Institute of Macromolecular Chemistry, Czech Academy of Science, Prague, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Czech Academy of Science, Prague, Czech Republic
| | - Tomas Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Science, Prague, Czech Republic
| | - Saskia von Stillfried
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), University Hospital RWTH Aachen, Aachen, Germany
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Steffen Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany..
| |
Collapse
|
4
|
Qin Y, Geng X, Sun Y, Zhao Y, Chai W, Wang X, Wang P. Ultrasound nanotheranostics: Toward precision medicine. J Control Release 2023; 353:105-124. [PMID: 36400289 DOI: 10.1016/j.jconrel.2022.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022]
Abstract
Ultrasound (US) is a mechanical wave that can penetrate biological tissues and trigger complex bioeffects. The mechanisms of US in different diagnosis and treatment are different, and the functional application of commercial US is also expanding. In particular, recent developments in nanotechnology have led to a wider use of US in precision medicine. In this review, we focus on US in combination with versatile micro and nanoparticles (NPs)/nanovesicles for tumor theranostics. We first introduce US-assisted drug delivery as a stimulus-responsive approach that spatiotemporally regulates the deposit of nanomedicines in target tissues. Multiple functionalized NPs and their US-regulated drug-release curves are analyzed in detail. Moreover, as a typical representative of US therapy, sonodynamic antitumor strategy is attracting researchers' attention. The collaborative efficiency and mechanisms of US and various nano-sensitizers such as nano-porphyrins and organic/inorganic nanosized sensitizers are outlined in this paper. A series of physicochemical processes during ultrasonic cavitation and NPs activation are also discussed. Finally, the new applications of US and diagnostic NPs in tumor-monitoring and image-guided combined therapy are summarized. Diagnostic NPs contain substances with imaging properties that enhance US contrast and photoacoustic imaging. The development of such high-resolution, low-background US-based imaging methods has contributed to modern precision medicine. It is expected that the integration of non-invasive US and nanotechnology will lead to significant breakthroughs in future clinical applications.
Collapse
Affiliation(s)
- Yang Qin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaorui Geng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yitong Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wenyu Chai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
5
|
Chen Z, Yue Z, Yang K, Li S. Nanomaterials: small particles show huge possibilities for cancer immunotherapy. J Nanobiotechnology 2022; 20:484. [DOI: 10.1186/s12951-022-01692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractWith the economy's globalization and the population's aging, cancer has become the leading cause of death in most countries. While imposing a considerable burden on society, the high morbidity and mortality rates have continuously prompted researchers to develop new oncology treatment options. Anti-tumor regimens have evolved from early single surgical treatment to combined (or not) chemoradiotherapy and then to the current stage of tumor immunotherapy. Tumor immunotherapy has undoubtedly pulled some patients back from the death. However, this strategy of activating or boosting the body's immune system hardly benefits most patients. It is limited by low bioavailability, low response rate and severe side effects. Thankfully, the rapid development of nanotechnology has broken through the bottleneck problem of anti-tumor immunotherapy. Multifunctional nanomaterials can not only kill tumors by combining anti-tumor drugs but also can be designed to enhance the body's immunity and thus achieve a multi-treatment effect. It is worth noting that the variety of nanomaterials, their modifiability, and the diversity of combinations allow them to shine in antitumor immunotherapy. In this paper, several nanobiotics commonly used in tumor immunotherapy at this stage are discussed, and they activate or enhance the body's immunity with their unique advantages. In conclusion, we reviewed recent advances in tumor immunotherapy based on nanomaterials, such as biological cell membrane modification, self-assembly, mesoporous, metal and hydrogels, to explore new directions and strategies for tumor immunotherapy.
Collapse
|
6
|
Zhou HY, Chen Y, Li P, He X, Zhong J, Hu Z, Liu L, Chen Y, Cui G, Sun D, Zheng T. Sonodynamic therapy for breast cancer: A literature review. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Breast cancer (BC) is a malignant tumor with the highest incidence among women. Surgery, radiotherapy, and chemotherapy are currently used as the first-line methods for treating BC. Sonodynamic therapy (SDT) in combination with sonosensitizers exerts a synergistic effect. The therapeutic effects of SDT depend on factors, such as the intensity, frequency, and duration of ultrasound, and the type and the biological model of sonosensitizer. Current reviews have focused on the possibility of using tumor-seeking sonosensitizers, sometimes in combination with different therapies, such as immunotherapy. This study elucidates the therapeutic mechanism of interaction between SDT and tissue as well as the current progress in medical applications of SDT to BC.
Collapse
Affiliation(s)
- Hai-ying Zhou
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Yi Chen
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Ping Li
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Xiaoxin He
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Jieyu Zhong
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Zhengming Hu
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Li Liu
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Yun Chen
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Guanghui Cui
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Desheng Sun
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Tingting Zheng
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| |
Collapse
|
7
|
Khademi Z, Ramezani M, Alibolandi M, Zirak MR, Salmasi Z, Abnous K, Taghdisi SM. A novel dual-targeting delivery system for specific delivery of CRISPR/Cas9 using hyaluronic acid, chitosan and AS1411. Carbohydr Polym 2022; 292:119691. [PMID: 35725215 DOI: 10.1016/j.carbpol.2022.119691] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
A facile method was designed that can specifically deliver CRISPR/Cas9 into target cells nuclei and reduce the off-target effects. A multifunctional delivery vector for FOXM1 knockout was composed by integration of cell targeting polymer (hyaluronic acid) and cell and nuclear targeting group (AS1411 aptamer) on the surface of nanoparticles formed by genome editing plasmid and chitosan (CS) as the core (Apt-HA-CS-CRISPR/Cas9). The data of cytotoxicity experiment and western blot confirmed this issue. The results of flow cytometry analysis and fluorescence imaging demonstrated that Apt-HA-CS-CRISPR/Cas9 was significantly internalized into target cells (MCF-7, SK-MES-1, HeLa) but not into nontarget cells (HEK293). Furthermore, the in vivo studies displayed that the Apt-HA-CS-CRISPR/Cas9 was strongly rendered tumor inhibitory effect and delivered efficiently CRISPR/Cas9 into the tumor with no detectable distribution in other organs compared with naked plasmid. This approach provides an avenue for specific in vivo gene editing therapeutics with the lowest side effect.
Collapse
Affiliation(s)
- Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Luo J, Cao J, Ma G, Wang X, Sun Y, Zhang C, Shi Z, Zeng Y, Zhang T, Huang P. Collagenase-Loaded H-TiO 2 Nanoparticles Enhance Ultrasound Imaging-Guided Sonodynamic Therapy in a Pancreatic Carcinoma Xenograft Model via Digesting Stromal Barriers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40535-40545. [PMID: 36043358 DOI: 10.1021/acsami.2c08951] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sonodynamic therapy (SDT), a noninvasive therapy that relies on sonosensitizers and generates reactive oxygen species (ROS), has attracted considerable attention in the treatment of pancreatic cancer. However, being surrounded by dense stromal barriers, pancreatic cancer exhibits high interstitial fluid pressure (IFP) and hypoxia in the tumor microenvironment (TME), resulting in poor SDT efficacy. Collagenase-loaded hollow TiO2 (Col-H-TiO2) nanoparticles (NPs) capable of degrading stromal barriers and producing sufficient ROS production were synthesized in this study. After administration of NPs in the patient-derived xenograft (PDX) model, ultrasonic irradiation-released collagenase degraded tumor matrix fibers, decreased intratumoral IFP, and enhanced the penetration and retention of NPs within tumor tissues. Moreover, the NPs accumulated within the tumor not only generate abundant ROS under the influence of ultrasound irradiation but also improve intratumoral ultrasound signal, providing ultrasonic imaging-guided highly effective SDT for pancreatic cancer. In conclusion, this research improves the SDT technique and enhances the visualization of pancreatic cancer by remodeling the TME and is a promising strategy for further clinical applications.
Collapse
Affiliation(s)
- Jiali Luo
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Jing Cao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Guangrong Ma
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Xue Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Yu Sun
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Cong Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Yiqing Zeng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, P. R. China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, P. R. China
| |
Collapse
|
9
|
Zhang Y, Lin J, Zhuo Y, Zou Z, Li Y, Yang H, Xie W, Zeng J, Deng Y, Cai S, Ye J, Zou F, Zhong W. Untargeted metabolomics reveals alterations in the metabolic reprogramming of prostate cancer cells by double-stranded DNA-modified gold nanoparticles. BIOMATERIALS ADVANCES 2022; 135:212745. [PMID: 35929217 DOI: 10.1016/j.bioadv.2022.212745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 06/15/2023]
Abstract
Metabolic reprogramming plays an important role in the development of prostate cancer (PCa). However, there are few reports on the effects of nanomaterials as vectors on cancer metabolic reprogramming. Herein, a type of nanoparticle with good biocompatibility was synthesized by modifying the double-stranded of DNA containing a sulfhydryl group on the surface of gold nanoparticles (AuNPs-dsDNA) through salt-aging conjugation methods. The resultant AuNPs-dsDNA complexes possessed low toxicity to PC3 and DU145 cells in vitro. There was also no obvious hepatorenal toxicity after intravenous injection of AuNPs-dsDNA complexes in vivo, which indicated that these nanoparticles had good biological compatibilities. We investigated their biological functions using prostate cancer cells. Seahorse assay showed that AuNPs-dsDNA complexes could increase glycolysis and glycolysis capacity both in PC3 and DU145 cells. We further detected the expression of glycolysis-related genes by qPCR assay, and found that PKM2, PDHA, and LDHA were significantly upregulated. Furthermore, untargeted metabolomics revealed that PC (18:2(9Z,12Z)/18:2(9Z,12Z)) and PC (18:0/18:2 (9Z,12Z)) levels were decreased and inosinic acid level was increased in PC3 cells. Whereas (3S,6E,10E)-1,6,10,14-Phytatetraen-3-ol, Plasmenyl-PE 36:5 and Cer (d18:2/18:2) were decreased, PE 21:3 and 1-pyrrolidinecarboxaldehyde were increased in DU145 cells after co-culturing with AuNPs-dsDNA. In summary, we found that AuNPs and AuNPs-dsDNA complexes possibly regulate the metabolic reprogramming of cancer cells mainly through the lipid metabolic pathways, which could compensate for the previously mentioned phenomenon of enhanced glycolysis and glycolysis capacity. This will provide an important theoretical basis for our future research on the characteristic targeted design of nanomaterials for cancer metabolism.
Collapse
Affiliation(s)
- Yixun Zhang
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jundong Lin
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yangjia Zhuo
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Zhihao Zou
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yuejiao Li
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Huikang Yang
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Wenjie Xie
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jie Zeng
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yulin Deng
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Shanghua Cai
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jianheng Ye
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Fen Zou
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| | - Weide Zhong
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| |
Collapse
|
10
|
Alphandéry E. Ultrasound and nanomaterial: an efficient pair to fight cancer. J Nanobiotechnology 2022; 20:139. [PMID: 35300712 PMCID: PMC8930287 DOI: 10.1186/s12951-022-01243-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/02/2022] [Indexed: 01/12/2023] Open
Abstract
Ultrasounds are often used in cancer treatment protocols, e.g. to collect tumor tissues in the right location using ultrasound-guided biopsy, to image the region of the tumor using more affordable and easier to use apparatus than MRI and CT, or to ablate tumor tissues using HIFU. The efficacy of these methods can be further improved by combining them with various nano-systems, thus enabling: (i) a better resolution of ultrasound imaging, allowing for example the visualization of angiogenic blood vessels, (ii) the specific tumor targeting of anti-tumor chemotherapeutic drugs or gases attached to or encapsulated in nano-systems and released in a controlled manner in the tumor under ultrasound application, (iii) tumor treatment at tumor site using more moderate heating temperatures than with HIFU. Furthermore, some nano-systems display adjustable sizes, i.e. nanobubbles can grow into micro-bubbles. Such dual size is advantageous since it enables gathering within the same unit the targeting properties of nano bubbles via EPR effect and the enhanced ultrasound contrasting properties of micro bubbles. Interestingly, the way in which nano-systems act against a tumor could in principle also be adjusted by accurately selecting the nano-system among a large choice and by tuning the values of the ultrasound parameters, which can lead, due to their mechanical nature, to specific effects such as cavitation that are usually not observed with purely electromagnetic waves and can potentially help destroying the tumor. This review highlights the clinical potential of these combined treatments that can improve the benefit/risk ratio of current cancer treatments.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS, 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de. Cosmochimie, IMPMC, 75005, Paris, France. .,Nanobacterie SARL, 36 boulevard Flandrin, 75116, Paris, France. .,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
11
|
Zhang Y, Jiang Q, Liu X, Peng L, Tang X, Li L, Ling X, Yang X, He C, Tao X, Hou D. A Study of Hydrophobically Modified Pullulan Nanoparticles with Different Hydrophobic Densities on the Effect of Anti-Colon Cancer Cell Efficiency. J Biomed Nanotechnol 2021; 17:1972-1983. [PMID: 34706797 DOI: 10.1166/jbn.2021.3173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To discuss the effect of hydrophobic groups of a polymer on the structural properties and function of polymer nanoparticles (NPs), we grafted chenodeoxycholic acid (CDCA) with pullulan (PU) to form hydrophobically modified PU (PUC). Three PUC polymers, namely, PUC-1, PUC-2, and PUC-3, with different degrees of substitution were designed by changing the feed ratio of CDCA and PU. 1H-NMR spectra showed that the PUC polymer was successfully synthesized, and the degrees of hydrophobic substitution for PUC-1, PUC-2, and PUC-3 were calculated to be 10.66%, 13.92%, and 16.94%, respectively. The PUC NPs were prepared by the dialysis method and were shown to be uniformly spherical by transmission electron microscopy (TEM). The average sizes were about (220±10) nm, (203±7) nm, and (163±6) nm under dynamic light scattering (DLS) for PUC-1 NPs, PUC-2 NPs, and PUC-3 NPs, respectively. Drug release experiments showed that the three PUC/DOX NPs exhibited good sustained release. At 48 h, the IC50 of doxorubicin in inhibiting colon cancer HCT116 cells was 0.0904 μg/mL. A cell study showed that PUC-3/DOX NPs had the highest uptake efficiency by HCT116 cells with the most cytotoxicity and inhibited the migration of HCT116 cells with the highest efficiency. The structural properties and function of polymer NPs were closely related to the hydrophobic groups in the polymer, and NPs with higher hydrophobicity showed a smaller size, higher drug capacity, and greater cell efficiency.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410013, PR China
| | - Qing Jiang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410013, PR China
| | - Xinyi Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410013, PR China
| | - Liping Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410013, PR China
| | - Xinyi Tang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410013, PR China
| | - Ling Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410013, PR China
| | - Xiao Ling
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410013, PR China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410013, PR China
| | - Chunlian He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410013, PR China
| | - Xiaojun Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410013, PR China
| | - Defu Hou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410013, PR China
| |
Collapse
|
12
|
Li R, Chen Z, Dai Z, Yu Y. Nanotechnology assisted photo- and sonodynamic therapy for overcoming drug resistance. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0328. [PMID: 33755377 PMCID: PMC8185853 DOI: 10.20892/j.issn.2095-3941.2020.0328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022] Open
Abstract
Drug resistance is considered the most important reason for the clinical failure of cancer chemotherapy. Circumventing drug resistance and improving the efficacy of anticancer agents remains a major challenge. Over the past several decades, photodynamic therapy (PDT) and sonodynamic therapy (SDT) have attracted substantial attention for their efficacy in cancer treatment, and have been combined with chemotherapy to overcome drug resistance. However, simultaneously delivering sensitizers and chemotherapy drugs to same tumor cell remains challenging, thus greatly limiting this combinational therapy. The rapid development of nanotechnology provides a new approach to solve this problem. Nano-based drug delivery systems can not only improve the targeted delivery of agents but also co-deliver multiple drug components in single nanoparticles to achieve optimal synergistic effects. In this review, we briefly summarize the mechanisms of drug resistance, discuss the advantages and disadvantages of PDT and SDT in reversing drug resistance, and describe state-of-the-art research using nano-mediated PDT and SDT to solve these refractory problems. This review also highlights the clinical translational potential for this combinational therapy.
Collapse
Affiliation(s)
- Rui Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhimin Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yingjie Yu
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518039, China
| |
Collapse
|
13
|
Cheng X, Lv X, Xu J, Zheng Y, Wang X, Tang R. Pluronic micelles with suppressing doxorubicin efflux and detoxification for efficiently reversing breast cancer resistance. Eur J Pharm Sci 2020; 146:105275. [PMID: 32087259 DOI: 10.1016/j.ejps.2020.105275] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022]
Abstract
The antitumor activity of doxorubicin (DOX) is often limited owing to the occurrence of multidrug resistance (MDR) during treatment. Herein, we developed hybrid polymeric micelles, which consisted of pluronic F127 as long-circulating helper in blood, and phenylboronic ester-grafted pluronic P123 (PHE) as efflux and detoxification regulator to efficiently deliver DOX and reverse MDR in vivo. Hybrid F127/PHE micelles exhibited higher stability and drug encapsulation (~80%) than simple F127/P123 micelles due to its lower CMC, and displayed in vitro drug release in a hydrogen peroxide (H2O2)-sensitive manner. Besides, DOX-loaded hybrid micelles (F127/PHE-DOX) possessed higher cell-killing ability and induce more apoptotic in MDR-cells than other groups, which was probably because it not only could greatly increase intracellular drug concentration by inhibiting P-gp mediated drug efflux, but also promote reactive oxygen species (ROS) generation by decreasing glutathione (GSH) levels. Besides, in vivo evaluation indicated that F127/PHE-DOX could well accumulate at tumor regions and exhibit the strongest tumor growth inhibition (TGI 87.87%) accompanied with low side effects. As a result, F127/PHE micelles had great potentials as a platform for anticancer drugs delivery and tumor MDR reversal in clinical application.
Collapse
Affiliation(s)
- Xu Cheng
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui Province 230601, China
| | - Xiaodong Lv
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui Province 230601, China
| | - Jiaxi Xu
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui Province 230601, China
| | - Yan Zheng
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui Province 230601, China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui Province 230601, China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui Province 230601, China.
| |
Collapse
|
14
|
Liu J, Liu W, Zhang K, Shi J, Zhang Z. A Magnetic Drug Delivery System with "OFF-ON" State via Specific Molecular Recognition and Conformational Changes for Precise Tumor Therapy. Adv Healthc Mater 2020; 9:e1901316. [PMID: 31858730 DOI: 10.1002/adhm.201901316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/22/2019] [Indexed: 11/07/2022]
Abstract
To enhance the tumor-targeting and tumor cell-specific drug-release capacity of nano drug delivery systems, a magnetic resonance imaging-traceable, magnetic-targeted nanoplatform is developed, and the nanoplatform is prepared by capping mesoporous silica (MSN)-coated iron oxide nanoparticles (IONPs) with programmable DNA hairpin sensor "gates." In normal cells (HL-7702, human liver cells), the nanoplatform is able to entrap the loaded drugs, showing an "OFF" state; the nanoplatform is activated by endogenous miRNA-21 overexpressed in tumor cells (HepG2, human liver tumor cells), which serve as an exclusive key to unlock the nanoplatform through hybridization with programmable DNA hairpin, leading to a rapid drug release, showing an "ON" state. The nanoplatform exhibits high antitumor efficacy and low toxicity in in vitro and in vivo studies owing to its magnetic targeting and tumor cell-activated properties, paving the way for targeted and personalized tumor treatment and showing potential for clinical applications.
Collapse
Affiliation(s)
- Junjie Liu
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| | - Wei Liu
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| | - Jinjin Shi
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| |
Collapse
|
15
|
US-triggered ultra-sensitive “thrombus constructor” for precise tumor therapy. J Control Release 2020; 318:136-144. [DOI: 10.1016/j.jconrel.2019.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
|
16
|
Si P, Shi J, Zhang P, Wang C, Chen H, Mi X, Chu W, Zhai B, Li W. MUC-1 recognition-based activated drug nanoplatform improves doxorubicin chemotherapy in breast cancer. Cancer Lett 2019; 472:165-174. [PMID: 31857156 DOI: 10.1016/j.canlet.2019.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 12/24/2022]
Abstract
Tumor-targeted drug delivery systems with stimuli-response drug release have been increasingly used to improve the therapeutic efficacy of antitumor drugs. Here, we report a specific molecular recognition activation drug nanoplatform based on specially designed DNA sensor-capped doxorubicin (DOX)-loaded mesoporous silica nanoparticles (MSNs), designated as specific molecular recognition-activated nanoparticle (SMRAN). DNA sensors on the targeted nanoparticles can trigger DOX release through a conformational switch induced by MUC-1. This causes a significant difference in cell viability between breast cancer MCF-7 and normal breast Hs578bst cells (24.8% and 86.0%). In vivo experiments showed that the tumor volume was reduced 1.5-times in the SMRAN treatment group. Compared with that in the DOX group, due to significantly improved tumor accumulation and retention of DOX. The strategy of the MUC-1 activated drug delivery system is expected to provide a new perspective for clinical application.
Collapse
Affiliation(s)
- Pilei Si
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou, 450003, China; Department of Breast Surgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, China; Department of Breast Surgery, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Pei Zhang
- Henan Provincial Food and Drug Evaluation and Inspection Center, Henan Food and Drug Administration, Zhengzhou, 450008, China
| | - Cao Wang
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou, 450003, China; Department of Breast Surgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Haijun Chen
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou, 450003, China; Department of Breast Surgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Xuefang Mi
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou, 450003, China; Department of Breast Surgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Wenling Chu
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou, 450003, China; Department of Breast Surgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Baoping Zhai
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou, 450003, China; Department of Breast Surgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, China; Department of Breast Surgery, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Wentao Li
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou, 450003, China; Department of Breast Surgery, Zhengzhou University People's Hospital, Zhengzhou, 450003, China; Department of Breast Surgery, Henan University People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
17
|
Yan Y, Zhang K, Wang H, Liu W, Zhang Z, Liu J, Shi J. A fullerene based hybrid nanoparticle facilitates enhanced photodynamic therapy via changing light source and oxygen consumption. Colloids Surf B Biointerfaces 2019; 186:110700. [PMID: 31821968 DOI: 10.1016/j.colsurfb.2019.110700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 01/10/2023]
Abstract
Recently, fullerene (C60) has been widely used as a nano photosensitizer (PS) for tumor related photodynamic therapy (PDT). However, current PDT based on C60 is severely restricted by the visible light source (shallow tissue penetrating depth) and oxygen dependent (tumor hypoxia). Therefore, taking advantages of the surface plasmon resonance (SPR) effect of gold nanoparticles (GNPs) and "electronic sponge" property of C60, a C60 based hybrid nanostructured photosensitizer (C60@GNPs) with high light stability, near infrared light (NIR) excitation, and oxygen non-dependent properties was rational designed according to the mechanism of PDT. Compared with C60, after GNPs in-situ synthesis, the PDT mechanism of C60@GNPs changed from type II to type I, and the main product of PDT changed from singlet oxygen to hydroxyl radicals. Furthermore, C60@GNPs hybrid could efficiently generate hydroxyl radicals under NIR light excitation even in the hypoxia condition. These results suggest that C60@GNPs hybrid has a great potential for in vivo PDT applications.
Collapse
Affiliation(s)
- Yunwei Yan
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Kaixiang Zhang
- College of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Huiling Wang
- College of Pharmaceutical Sciences, Zhengzhou Railway Vocational and Technical College, Zhengzhou, People's Republic of China
| | - Wei Liu
- College of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhenzhong Zhang
- College of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Junjie Liu
- College of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.
| | - Jinjin Shi
- College of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
18
|
Li Y, Zhai Y, Liu W, Zhang K, Liu J, Shi J, Zhang Z. Ultrasmall nanostructured drug based pH-sensitive liposome for effective treatment of drug-resistant tumor. J Nanobiotechnology 2019; 17:117. [PMID: 31783863 PMCID: PMC6884872 DOI: 10.1186/s12951-019-0550-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/18/2019] [Indexed: 02/04/2023] Open
Abstract
Background Cancer cells always develop ways to resist and evade chemotherapy. To overcome this obstacle, herein, we introduce a programmatic release drug delivery system that imparts avoiding drug efflux and nuclear transport in synchrony via a simple nanostructured drug strategy. Results The programmatic liposome-based nanostructured drugs (LNSD) contained two modules: doxorubicin (DOX) loaded into tetrahedral DNA (TD, ~ 10 nm) to form small nanostructured DOX, and the nanostructured DOX was encapsulated into the pH-sensitive liposomes. In the in vitro and in vivo studies, LNSD shows multiple benefits for drug resistance tumor treatment: (1) not only enhanced the cellular DOX uptake, but also maintained DOX concentration in an optimum level in resistant tumor cells via nanostructure induced anti-efflux effect; (2) small nanostructured DOX efficiently entered into cell nuclear via size depended nuclear-transport for enhanced treatment; (3) improved the pharmacokinetics and biodistribution via reducing DOX leakage during circulation. Conclusions The system developed in this study has the potential to provide new therapies for drug-resistant tumor.
Collapse
Affiliation(s)
- Yanyan Li
- The Fifth Affiliated Hospital of Zhengzhou University, Kangfu Road, Zhengzhou, 450052, China
| | - Yongxia Zhai
- The Fifth Affiliated Hospital of Zhengzhou University, Kangfu Road, Zhengzhou, 450052, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. .,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China. .,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China.
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. .,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China. .,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China.
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. .,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China. .,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan, China
| |
Collapse
|
19
|
Liu W, Zhang K, Zhuang L, Liu J, Zeng W, Shi J, Zhang Z. Aptamer/photosensitizer hybridized mesoporous MnO 2 based tumor cell activated ROS regulator for precise photodynamic therapy of breast cancer. Colloids Surf B Biointerfaces 2019; 184:110536. [PMID: 31639567 DOI: 10.1016/j.colsurfb.2019.110536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/10/2019] [Accepted: 09/29/2019] [Indexed: 11/19/2022]
Abstract
Herein, we report a turn-on strategy for selectively killing the tumor cell via combining the singlet-oxygen quenching MnO2 and tumor cell-targeting aptamer. The photosensitizers were in the quenching state when loaded in the mesoporous MnO2 (mMnO2) nanoparticles and sealed by the aptamer on the particle surface. The aptamer can selectively recognize the specific membrane protein on the tumor cell and release the photosensitizers, activating the photosensitizer and killing the tumor cells. The specific binding-induced "off-on" switching of singlet oxygen generation reduced the damage to the nearby healthy cells to a large extent. The high loading ability for photosensitizer and the GSH consumption property of mMnO2 endow the system with high local concentration of singlet-oxygen for killing the target tumor cell. The high selectivity and efficiency of the constructed singlet oxygen regulating system will pave a new way for utilizing PDT in cancer precise treatment.
Collapse
Affiliation(s)
- Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, PR China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, PR China
| | - Luyang Zhuang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, PR China
| | - Wu Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, PR China.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China; Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, PR China.
| |
Collapse
|
20
|
Bombo AB, Pereira AES, Lusa MG, de Medeiros Oliveira E, de Oliveira JL, Campos EVR, de Jesus MB, Oliveira HC, Fraceto LF, Mayer JLS. A Mechanistic View of Interactions of a Nanoherbicide with Target Organism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4453-4462. [PMID: 30933503 DOI: 10.1021/acs.jafc.9b00806] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Atrazine is one of the most used herbicides and has been associated with persistent surface and groundwater contamination, and novel formulations derived from nanotechnology can be a potential solution. We used poly(ε-caprolactone) nanoencapsulation of atrazine (NC+ATZ) to develop a highly effective herbicidal formulation. Detailed structural study of interaction between the formulation and Brassica juncea plants was carried out with evaluation of the foliar uptake of nanoatrazine and structural alterations induced in the leaves. Following postemergent treatment, NC+ATZ adhered to the leaf and penetrated mesophyll tissue mainly through the hydathode regions. NC+ATZ was transported directly through the vascular tissue of the leaves and into the cells where it degraded the chloroplasts resulting in herbicidal activity. Nanocarrier systems, such as the one used in this study, have great potential for agricultural applications in terms of maintenance of herbicidal activity at low concentrations and a substantial increase in the herbicidal efficacy.
Collapse
Affiliation(s)
- Aline Bertolosi Bombo
- Department of Plant Biology, Institute of Biology , University of Campinas-Unicamp , P.O. Box 6109, Campinas , SP 13083-970 , Brazil
| | - Anderson Espírito Santo Pereira
- Laboratory of Environmental Nanotechnology, Institute of Science and Technology , São Paulo State University-UNESP , Sorocaba , SP 18087-180 , Brazil
| | - Makeli Garibotti Lusa
- Department of Botany , Federal University of Santa Catarina-UFSC , Florianópolis , SC 88040-900 , Brazil
| | - Eliana de Medeiros Oliveira
- LCME, Central Laboratory of Eletron Microscopy, Pro-rectory of Research , Federal University of Santa Catarina-UFSC , Florianópolis , SC 88040-900 , Brazil
| | - Jhones Luis de Oliveira
- Laboratory of Environmental Nanotechnology, Institute of Science and Technology , São Paulo State University-UNESP , Sorocaba , SP 18087-180 , Brazil
| | - Estefânia Vangelie Ramos Campos
- Laboratory of Environmental Nanotechnology, Institute of Science and Technology , São Paulo State University-UNESP , Sorocaba , SP 18087-180 , Brazil
| | - Marcelo Bispo de Jesus
- Department of Biochemistry and Tissue Biology, Nano-Cell Interactions Lab, Institute of Biology , University of Campinas-UNICAMP , P.O. Box 6109, Campinas , SP 13083-970 , Brazil
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology , State University of Londrina , PR 445, km 380, Londrina , PR 86047-970 , Brazil
| | - Leonardo Fernandes Fraceto
- Department of Biochemistry and Tissue Biology, Nano-Cell Interactions Lab, Institute of Biology , University of Campinas-UNICAMP , P.O. Box 6109, Campinas , SP 13083-970 , Brazil
| | - Juliana Lischka Sampaio Mayer
- Department of Plant Biology, Institute of Biology , University of Campinas-Unicamp , P.O. Box 6109, Campinas , SP 13083-970 , Brazil
| |
Collapse
|
21
|
Zhang R, Yan F, Chen Y. Exogenous Physical Irradiation on Titania Semiconductors: Materials Chemistry and Tumor-Specific Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1801175. [PMID: 30581710 PMCID: PMC6299725 DOI: 10.1002/advs.201801175] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/26/2018] [Indexed: 05/04/2023]
Abstract
Titania semiconductors can be activated by external physical triggers to produce electrons (e-) and holes (h+) pairs from the energy-band structure and subsequently induce the generation of reactive oxygen species for killing cancer cells, but the traditional ultraviolet light with potential phototoxicity and low-tissue-penetrating depth as the irradiation source significantly hinders the further in vivo broad biomedical applications. Here, the very-recent development of novel exogenous physical irradiation of titania semiconductors for tumor-specific therapies based on their unique physiochemical properties, including near infrared (NIR)-triggered photothermal hyperthermia and photodynamic therapy, X-ray/Cerenkov radiation-activated deep-seated photodynamic therapy, ultrasound-triggered sonodynamic therapy, and the intriguing synergistic therapeutic paradigms by combined exogenous physical irradiations are in focus. Most of these promising therapeutic modalities are based on the semiconductor nature of titania nanoplatforms, together with their defect modulation for photothermal hyperthermia. The biocompatibility and biosafety of these titania semiconductors are also highlighted for guaranteeing their further clinical translation. Challenges and future developments of titania-based therapeutic nanoplatforms and the corresponding developed therapeutic modalities for potential clinical translation of tumor-specific therapy are also discussed and outlooked.
Collapse
Affiliation(s)
- Ruifang Zhang
- Department of UltrasoundThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan Province450052P. R. China
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| |
Collapse
|
22
|
Abnous K, Danesh NM, Ramezani M, Charbgoo F, Bahreyni A, Taghdisi SM. Targeted delivery of doxorubicin to cancer cells by a cruciform DNA nanostructure composed of AS1411 and FOXM1 aptamers. Expert Opin Drug Deliv 2018; 15:1045-1052. [PMID: 30269603 DOI: 10.1080/17425247.2018.1530656] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Here, a novel cruciform DNA nanostructure was developed for targeted delivery of doxorubicin (Dox), as an anticancer agent, to lung (A549 cells) and breast (4T1 cells) cancer cells. The cruciform DNA nanostructure consisted of AS1411 aptamer as targeting agent and Forkhead Box Protein M1(FOXM1) aptamer as therapeutic agent. METHODS MTT assay, fluorescence imaging, flow cytometry analysis, and in vivoantitumor efficacy were performed to evaluate the function of the Dox-DNA nanostructure complex. RESULTS The presented delivery system benefited from tumor targeting, high stability in serum and simple construction. The Dox-DNA nanostructure complex showed a noticeable higher internalization degree into A549 and 4T1 cells (target), overexpressing nucleolin on their cell membranes, compared to CHO cells (nontarget, nucleolin negative). Moreover, the results of MTT assay exhibited that Dox-DNA nanostructure complex significantly decreased cell viability in A549 and 4T1 cells compared to CHO cells, which significantly preserved their viability. Besides, Dox-DNA nanostructure complex significantly reduced tumor growth in tumor-bearing mice in comparison with Dox and DNA nanostructure treatments. CONCLUSION These findings confirmed that synergistic combination of FOXM1 aptamer and Dox into Dox-DNA nanostructure complex enhanced antitumor effectiveness and reduced toxicity toward nontarget cells, opening up new insights in cancer treatment.
Collapse
Affiliation(s)
- Khalil Abnous
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
- b Department of Medicinal Chemistry, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | | | - Mohammad Ramezani
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Fahimeh Charbgoo
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amirhossein Bahreyni
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Seyed Mohammad Taghdisi
- d Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
- e Department of Pharmaceutical Biotechnology, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
23
|
Xu L, Tong G, Song Q, Zhu C, Zhang H, Shi J, Zhang Z. Enhanced Intracellular Ca 2+ Nanogenerator for Tumor-Specific Synergistic Therapy via Disruption of Mitochondrial Ca 2+ Homeostasis and Photothermal Therapy. ACS NANO 2018; 12:6806-6818. [PMID: 29966081 DOI: 10.1021/acsnano.8b02034] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Breast cancer therapy has always been a hard but urgent issue. Disruption of mitochondrial Ca2+ homeostasis has been reported as an effective antitumor strategy, while how to contribute to mitochondrial Ca2+ overload effectively is a critical issue. To solve this issue, we designed and engineered a dual enhanced Ca2+ nanogenerator (DECaNG), which can induce elevation of intracellular Ca2+ through the following three ways: Calcium phosphate (CaP)-doped hollow mesoporous copper sulfide was the basic Ca2+ nanogenerator to generate Ca2+ directly and persistently in the lysosomes (low pH). Near-infrared light radiation (NIR, such as 808 nm laser) can accelerate Ca2+ generation from the basic Ca2+ nanogenerator by disturbing the crystal lattice of hollow mesoporous copper sulfide via NIR-induced heat. Curcumin can facilitate Ca2+ release from the endoplasmic reticulum to cytoplasm and inhibit expelling of Ca2+ in cytoplasm through the cytoplasmic membrane. The in vitro study showed that DECaNG could produce a large amount of Ca2+ directly and persistently to flow to mitochondria, leading to upregulation of Caspase-3, cytochrome c, and downregulation of Bcl-2 and ATP followed by cell apoptosis. In addition, DECaNG had an outstanding photothermal effect. Interestingly, it was found that DECaNG exerted a stronger photothermal effect at lower pH due to the super small nanoparticles effect, thus enhancing photothermal therapy. In the in vivo study, the nanoplatform had good tumor targeting and treatment efficacy via a combination of disruption of mitochondrial Ca2+ homeostasis and photothermal therapy. The metabolism of CaNG was sped up through disintegration of CaNG into smaller nanoparticles, reducing the retention time of the nanoplatform in vivo. Therefore, DECaNG can be a promising drug delivery system for breast cancer therapy.
Collapse
Affiliation(s)
- Lihua Xu
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province , People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province , Zhengzhou , China
| | - Guihua Tong
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , People's Republic of China
| | - Qiaoli Song
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , People's Republic of China
| | - Chunyu Zhu
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , People's Republic of China
| | - Hongling Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province , People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province , Zhengzhou , China
| | - Jinjin Shi
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province , People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province , Zhengzhou , China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province , People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province , Zhengzhou , China
| |
Collapse
|
24
|
Mani G, Kim S, Kim K. Development of Folate-Thioglycolate-Gold Nanoconjugates by Using Citric Acid-PEG Branched Polymer for Inhibition of MCF-7 Cancer Cell Proliferation. Biomacromolecules 2018; 19:3257-3267. [PMID: 29979877 DOI: 10.1021/acs.biomac.8b00543] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of folate (FA)-functionalized gold nanoparticles (AuNPs) has greatly increased in recent years due to their potential in cancer treatment. As surface functionalization of polymer-free AuNPs with thiol groups could result in agglomeration and precipitation, AuNPs should be stabilized with an efficient polymer. In this study, citric acid-PEG branched polymer (CPEG) acted as a reducing as well as stabilizing agent in the synthesis of AuNPs. The thiol group of thioglycolic acid (TGA) attached to CPEG-stabilized AuNPs and interacted with the free carboxylic acid group on the surface of TGA-AuNP nanoconjugates. Stable TGA-AuNP nanoconjugates were obtained only with CPEG-stabilized AuNPs and not with citrate-stabilized AuNPs. The carboxylic acid group on the surface of AuNPs was used to attach FA via an EDC/NHS coupling reaction to obtain FA-TGA-AuNP nanoconjugates. In vitro cytotoxicity studies indicated that FA-TGA-AuNPs were not toxic to normal cells up to a concentration of 200 μg/mL. However, FA-TGA-AuNP nanoconjugates effectively inhibited proliferation of MCF-7 cancer cells at a low concentration of 25 μg/mL after 3 days of incubation. The anticancer activity of FA-TGA-AuNPs was enhanced by incorporating the anticancer drug 5-fluorouracil into the nanoconjugates, which exhibited sustained drug release up to 5 days. Hence, the developed biocompatible FA-TGA-AuNPs could be used for specific killing of breast cancer cells.
Collapse
Affiliation(s)
- Gajendiran Mani
- Division of Bioengineering, School of Life Sciences and Bioengineering , Incheon National University , Incheon , Korea 22012
| | - Sungjun Kim
- Division of Bioengineering, School of Life Sciences and Bioengineering , Incheon National University , Incheon , Korea 22012
| | - Kyobum Kim
- Division of Bioengineering, School of Life Sciences and Bioengineering , Incheon National University , Incheon , Korea 22012
| |
Collapse
|