1
|
Pérez Expósito RE, Ortega Núñez MA, Buján Varela MJ, Vega Rodríguez RM, Ortíz Chércoles AI, De La Torre Escuredo BJ. [Translated article] Efficacy of new active viscosupplements on the behaviour of an experimental model of osteoarthritis. Rev Esp Cir Ortop Traumatol (Engl Ed) 2024:S1888-4415(24)00220-0. [PMID: 39653135 DOI: 10.1016/j.recot.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/14/2024] [Indexed: 01/02/2025] Open
Abstract
OBJECTIVE To evaluate with an animal model of osteoarthritis (New Zealand rabbits) the effectiveness of treatment with active viscosupplements (hyaluronic acid loaded with nanoparticles (NPs) that encapsulate anti-inflammatory compounds or drugs. MATERIAL AND METHODS Experimental study composed of 5 groups of rabbits in which section of the anterior cruciate ligament and resection of the internal meniscus were performed to trigger degenerative changes and use it as a model of osteoarthritis. The groups were divided into osteoarthrosis without treatment (I), treatment with commercial hyaluronic acid (HA) (II), treatment with HA with empty nanoparticles (III), treatment with HA with nanoparticles encapsulating dexamethasone (IV) and treatment with HA with nanoparticles that encapsulate curcumin (V). In groups II-V, the infiltration of the corresponding compound was carried out spaced one week apart. Macroscopic histological analysis was performed using a scale based on the Outerbridge classification for osteoarthritis. RESULTS We observed that this osteoarthritis model is reproducible and degenerative changes similar to those found in humans are observed. The groups that were infiltrated with hyaluronic acid with curcumin-loaded nanoparticles (V), followed by the dexamethasone group (IV) presented macroscopically less fibrillation, exposure of subchondral bone and sclerosis (better score on the scale) than the control groups (I) (osteoarthritis without treatment), group (II) treated with commercial hyaluronic acid and hyaluronic acid with nanoparticles without drug (III). CONCLUSIONS The use of active viscosupplements could have an additional effect to conventional hyaluronic acid treatment due to its antioxidant and anti-inflammatory effect. The most promising group was hyaluronic acid with nanoparticles that encapsulate curcumin and the second group was the one that encapsulates dexamethasone.
Collapse
Affiliation(s)
- R E Pérez Expósito
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | | | | | - R M Vega Rodríguez
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - A I Ortíz Chércoles
- Departamento de Veterinaria U.C. Experimental Animalario Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - B J De La Torre Escuredo
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Universidad de Alcalá de Henares, Madrid, Spain
| |
Collapse
|
2
|
Xiong Z, Peng G, Deng J, Liu M, Ning X, Zhuang Y, Yang H, Sun H. Therapeutic targets and potential delivery systems of melatonin in osteoarthritis. Front Immunol 2024; 15:1331934. [PMID: 38327517 PMCID: PMC10847247 DOI: 10.3389/fimmu.2024.1331934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Osteoarthritis (OA) is a highly prevalent age-related musculoskeletal disorder that typically results in chronic pain and disability. OA is a multifactorial disease, with increased oxidative stress, dysregulated inflammatory response, and impaired matrix metabolism contributing to its onset and progression. The neurohormone melatonin, primarily synthesized by the pineal gland, has emerged as a promising therapeutic agent for OA due to its potential to alleviate inflammation, oxidative stress, and chondrocyte death with minimal adverse effects. The present review provides a comprehensive summary of the current understanding regarding melatonin as a promising pharmaceutical agent for the treatment of OA, along with an exploration of various delivery systems that can be utilized for melatonin administration. These findings may provide novel therapeutic strategies and targets for inhibiting the advancement of OA.
Collapse
Affiliation(s)
- Zhilin Xiong
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoxuan Peng
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Deng
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Miao Liu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Zhuang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Zhang Y, Hou M, Liu Y, Liu T, Chen X, Shi Q, Geng D, Yang H, He F, Zhu X. Recharge of chondrocyte mitochondria by sustained release of melatonin protects cartilage matrix homeostasis in osteoarthritis. J Pineal Res 2022; 73:e12815. [PMID: 35726138 DOI: 10.1111/jpi.12815] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Recent evidence indicates that the mitochondrial functions of chondrocytes are impaired in the pathogenesis of osteoarthritis (OA). Melatonin can attenuate cartilage degradation through its antioxidant functions. This study aims to investigate whether melatonin could rescue the impaired mitochondrial functions of OA chondrocytes and protect cartilage metabolism. OA chondrocytes showed a compromised matrix synthesis capacity associated with mitochondrial dysfunction and aberrant oxidative stress. In vitro treatments with melatonin promoted the expression of cartilage extracellular matrix (ECM) components, improved adenosine triphosphate production, and attenuated mitochondrial oxidative stress. Mechanistically, either silencing of SOD2 or inhibition of SIRT1 abolished the protective effects of melatonin on mitochondrial functions and ECM synthesis. To achieve a sustained release effect, a melatonin-laden drug delivery system (DDS) was developed and intra-articular injection with DDS successfully improved cartilage matrix degeneration in a posttraumatic rat OA model. These findings demonstrate that melatonin-mediated recharge of mitochondria to rescue the mitochondrial functions of chondrocytes represents a promising therapeutic strategy to protect cartilage from OA.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Velasco-Salgado C, Pontes-Quero GM, García-Fernández L, Aguilar MR, de Wit K, Vázquez-Lasa B, Rojo L, Abradelo C. The Role of Polymeric Biomaterials in the Treatment of Articular Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14081644. [PMID: 36015270 PMCID: PMC9413163 DOI: 10.3390/pharmaceutics14081644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis is a high-prevalence joint disease characterized by the degradation of cartilage, subchondral bone thickening, and synovitis. Due to the inability of cartilage to self-repair, regenerative medicine strategies have become highly relevant in the management of osteoarthritis. Despite the great advances in medical and pharmaceutical sciences, current therapies stay unfulfilled, due to the inability of cartilage to repair itself. Additionally, the multifactorial etiology of the disease, including endogenous genetic dysfunctions and exogenous factors in many cases, also limits the formation of new cartilage extracellular matrix or impairs the regular recruiting of chondroprogenitor cells. Hence, current strategies for osteoarthritis management involve not only analgesics, anti-inflammatory drugs, and/or viscosupplementation but also polymeric biomaterials that are able to drive native cells to heal and repair the damaged cartilage. This review updates the most relevant research on osteoarthritis management that employs polymeric biomaterials capable of restoring the viscoelastic properties of cartilage, reducing the symptomatology, and favoring adequate cartilage regeneration properties.
Collapse
Affiliation(s)
- Carmen Velasco-Salgado
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
| | - Gloria María Pontes-Quero
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis García-Fernández
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Kyra de Wit
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
- Correspondence: (L.R.); (C.A.)
| | - Cristina Abradelo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
- Correspondence: (L.R.); (C.A.)
| |
Collapse
|
5
|
Dogan AB, Dabkowski KE, von Recum HA. Leveraging Affinity Interactions to Prolong Drug Delivery of Protein Therapeutics. Pharmaceutics 2022; 14:1088. [PMID: 35631672 PMCID: PMC9144912 DOI: 10.3390/pharmaceutics14051088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
While peptide and protein therapeutics have made tremendous advances in clinical treatments over the past few decades, they have been largely hindered by their ability to be effectively delivered to patients. While bolus parenteral injections have become standard clinical practice, they are insufficient to treat diseases that require sustained, local release of therapeutics. Cyclodextrin-based polymers (pCD) have been utilized as a platform to extend the local delivery of small-molecule hydrophobic drugs by leveraging hydrophobic-driven thermodynamic interactions between pCD and payload to extend its release, which has seen success both in vitro and in vivo. Herein, we proposed the novel synthesis of protein-polymer conjugates that are capped with a "high affinity" adamantane. Using bovine serum albumin as a model protein, and anti-interleukin 10 monoclonal antibodies as a functional example, we outline the synthesis of novel protein-polymer conjugates that, when coupled with cyclodextrin delivery platforms, can maintain a sustained release of up to 65 days without largely sacrificing protein structure/function which has significant clinical applications in local antibody-based treatments for immune diseases, cancers, and diabetes.
Collapse
Affiliation(s)
| | | | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.B.D.); (K.E.D.)
| |
Collapse
|
6
|
Huang H, Lou Z, Zheng S, Wu J, Yao Q, Chen R, Kou L, Chen D. Intra-articular drug delivery systems for osteoarthritis therapy: shifting from sustained release to enhancing penetration into cartilage. Drug Deliv 2022; 29:767-791. [PMID: 35261301 PMCID: PMC8920370 DOI: 10.1080/10717544.2022.2048130] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a progressive chronic inflammation that leads to cartilage degeneration. OA Patients are commonly given pharmacological treatment, but the available treatments are not sufficiently effective. The development of sustained-release drug delivery systems (DDSs) for OA may be an attractive strategy to prevent rapid drug clearance and improve the half-life of a drug at the joint cavity. Such delivery systems will improve the therapeutic effects of anti-inflammatory effects in the joint cavity. Whereas, for disease-modifying OA drugs (DMOADs) which target chondrocytes or act on mesenchymal stem cells (MSCs), the cartilage-permeable DDSs are required to maximize their efficacy. This review provides an overview of joint structure in healthy and pathological conditions, introduces the advances of the sustained-release DDSs and the permeable DDSs, and discusses the rational design of the permeable DDSs for OA treatment. We hope that the ideas generated in this review will promote the development of effective OA drugs in the future.
Collapse
Affiliation(s)
- Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zijian Lou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shimin Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianing Wu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daosen Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Saeedi T, Prokopovich P. Poly beta amino ester coated emulsions of NSAIDs for cartilage treatment. J Mater Chem B 2021; 9:5837-5847. [PMID: 34254088 PMCID: PMC8317778 DOI: 10.1039/d1tb01024g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
Delivering drugs directly into cartilage is still the major challenge in the management and treatment of osteoarthritis (OA) resulting from the aneural, avascular and alymphatic nature of an articular cartilage structure. Progress has been made in the design of drug delivery systems that enhance corticosteroid uptake and retention in cartilage; however also non-steroidal anti-inflammatory drugs (NSAIDs) are prescribed for patients affected by OA and a drug delivery system specifically designed for this drug category is currently unavailable. We developed an approach based on the preparation of NSAID oil-in-water emulsions coated with poly-beta-amino-esters (PBAEs) to exploit the cartilage penetrating ability of such polymers and the high solubility of drugs in oil. These emulsions containing different NSAIDs (indomethacin, ketorolac, diclofenac and naproxen) exhibited enhanced and prolonged drug localisation not only in healthy cartilage tissues but also in early-stage OA samples. The critical role of the PBAE layer on oil droplets was established along with the retained biological activity of the drug as glycosaminoglycan (GAG) and collagen degradation induced by interleukin-1 (IL-1) was prevented by the novel technology. Oil-in-water coated emulsions are very flexible and cost-effective drug delivery systems and such an approach presented here could provide a substantial improvement in the therapeutic treatments of OA and thus patients' outcomes.
Collapse
Affiliation(s)
- Tahani Saeedi
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Polina Prokopovich
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| |
Collapse
|
8
|
Soni SS, Alsasa A, Rodell CB. Applications of Macrocyclic Host Molecules in Immune Modulation and Therapeutic Delivery. Front Chem 2021; 9:658548. [PMID: 33889565 PMCID: PMC8055865 DOI: 10.3389/fchem.2021.658548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
The immune system plays a central role in the development and progression of human disease. Modulation of the immune response is therefore a critical therapeutic target that enables us to approach some of the most vexing problems in medicine today such as obesity, cancer, viral infection, and autoimmunity. Methods of manipulating the immune system through therapeutic delivery centralize around two common themes: the local delivery of biomaterials to affect the surrounding tissue or the systemic delivery of soluble material systems, often aided by context-specific cell or tissue targeting strategies. In either case, supramolecular interactions enable control of biomaterial composition, structure, and behavior at the molecular-scale; through rational biomaterial design, the realization of next-generation immunotherapeutics and immunotheranostics is therefore made possible. This brief review highlights methods of harnessing macromolecular interaction for immunotherapeutic applications, with an emphasis on modes of drug delivery.
Collapse
Affiliation(s)
| | | | - Christopher B. Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Affinity-Based Polymers Provide Long-Term Immunotherapeutic Drug Delivery Across Particle Size Ranges Optimal for Macrophage Targeting. J Pharm Sci 2020; 110:1693-1700. [PMID: 33127427 DOI: 10.1016/j.xphs.2020.10.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/19/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022]
Abstract
Drug delivery to specific arms of the immune system can be technically challenging to provide prolonged drug release while limiting off-target toxicity given the limitations of current drug delivery systems. In this work, we test the design of a cyclodextrin (CD) polymer platform to extend immunomodulatory drug delivery via affinity interactions for sustained release at multiple size scales. The parameter space of synthesis variables influencing particle nucleation and growth (pre-incubation time and stirring speed) and post-synthesis grinding effects on resulting particle diameter were characterized. We demonstrate that polymerized CD forms exhibit size-independent release profiles of the small molecule drug lenalidomide (LND) and can provide improved drug delivery profiles versus macro-scale CD polymer disks in part due to increased loading efficiency. CD polymer microparticles and smaller, ground particles demonstrated no significant cytotoxicity as compared to the base CD monomer when co-incubated with fibroblasts. Uptake of ground CD particles was significantly higher following incubation with RAW 264.7 macrophages in culture over standard CD microparticles. Thus, the affinity/structure properties afforded by polymerized CD allow particle size to be modified to affect cellular uptake profiles independently of drug release rate for applications in cell-targeted drug delivery.
Collapse
|
10
|
Cordaro A, Zagami R, Malanga M, Venkatesan JK, Alvarez-Lorenzo C, Cucchiarini M, Piperno A, Mazzaglia A. Cyclodextrin Cationic Polymer-Based Nanoassemblies to Manage Inflammation by Intra-Articular Delivery Strategies. NANOMATERIALS 2020; 10:nano10091712. [PMID: 32872542 PMCID: PMC7558260 DOI: 10.3390/nano10091712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Injectable nanobioplatforms capable of locally fighting the inflammation in osteoarticular diseases, by reducing the number of administrations and prolonging the therapeutic effect is highly challenging. β-Cyclodextrin cationic polymers are promising cartilage-penetrating candidates by intra-articular injection due to the high biocompatibility and ability to entrap multiple therapeutic and diagnostic agents, thus monitoring and mitigating inflammation. In this study, nanoassemblies based on poly-β-amino-cyclodextrin (PolyCD) loaded with the non-steroidal anti-inflammatory drug diclofenac (DCF) and linked by supramolecular interactions with a fluorescent probe (adamantanyl-Rhodamine conjugate, Ada-Rhod) were developed to manage inflammation in osteoarticular diseases. PolyCD@Ada-Rhod/DCF supramolecular nanoassemblies were characterized by complementary spectroscopic techniques including UV-Vis, steady-state and time-resolved fluorescence, DLS and ζ-potential measurement. Stability and DCF release kinetics were investigated in medium mimicking the physiological conditions to ensure control over time and efficacy. Biological experiments evidenced the efficient cellular internalization of PolyCD@Ada-Rhod/DCF (within two hours) without significant cytotoxicity in primary human bone marrow-derived mesenchymal stromal cells (hMSCs). Finally, polyCD@Ada-Rhod/DCF significantly suppressed IL-1β production in hMSCs, revealing the anti-inflammatory properties of these nanoassemblies. With these premises, this study might open novel routes to exploit original CD-based nanobiomaterials for the treatment of osteoarticular diseases.
Collapse
Affiliation(s)
- Annalaura Cordaro
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, V. le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (R.Z.)
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V. le F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Roberto Zagami
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, V. le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (R.Z.)
| | - Milo Malanga
- CycloLab, Illatos út 7, H-1097 Budapest, Hungary;
| | - Jagadeesh Kumar Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg/Saar, Germany; (J.K.V.); (M.C.)
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg/Saar, Germany; (J.K.V.); (M.C.)
| | - Anna Piperno
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V. le F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (A.P.); (A.M.)
| | - Antonino Mazzaglia
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, V. le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (R.Z.)
- Correspondence: (A.P.); (A.M.)
| |
Collapse
|
11
|
Westin CB, Nagahara MH, Decarli MC, Kelly DJ, Moraes ÂM. Development and characterization of carbohydrate-based thermosensitive hydrogels for cartilage tissue engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Vancomycin hydrochloride-loaded stearic acid/lauric acid in situ forming matrix for antimicrobial inhibition in patients with joint infection after total knee arthroplasty. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:110761. [PMID: 32600673 DOI: 10.1016/j.msec.2020.110761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
Knee joint infection following total knee arthroplasty (TKA) is a serious condition and the treatments are complicated. The intra-articular solvent exchange-induced in situ forming matrix is of interest for modulating the release of antibiotics with a high drug concentration and a long period of exposed time at the target site. Stearic acid (S) and lauric acid (L) at various ratios were used as matrix formers by dissolving them in biocompatible solvents such as N-methyl pyrrolidone (NMP) and dimethyl sulfoxide (DMSO). Their matrix formation behaviors in phosphate buffer (pH7.4) and hyaluronic acid (HA) solution were evaluated. Also, the density, viscosity, injectability, solvent diffusion, in vitro degradability and drug release using the dialysis tube method were investigated. The L:S ratio of 1:1 in DMSO exhibited rapid matrix formation and a remarkably low viscosity (7.67±0.03 cp) with acceptable injectability (0.608±0.027N and 0.867±0.010N through 18-G and 27-G, respectively). Vancomycin HCl (V)-loaded L/S in situ forming matrix still provided ease of injection (1.079±0.215N and 1.230±0.145N through 18-G and 27-G needle, respectively) with fatty acid matrix formation after solvent exchange within 1min, whilst V sustainably released over 6days. It also presented effective antimicrobial activities against standard Staphylococcus aureus and methicillin-resistant Staphylococcus aureus strains. Therefore, V-loaded solvent exchange-induced in situ forming matrix using L and S as the matrix formers may be a potential local delivery system for treating knee joint infections occurring after TKA in the future.
Collapse
|
13
|
Inflammation-Modulating Hydrogels for Osteoarthritis Cartilage Tissue Engineering. Cells 2020; 9:cells9020419. [PMID: 32059502 PMCID: PMC7072320 DOI: 10.3390/cells9020419] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of the joint disease associated with age, obesity, and traumatic injury. It is a disabling degenerative disease that affects synovial joints and leads to cartilage deterioration. Despite the prevalence of this disease, the understanding of OA pathophysiology is still incomplete. However, the onset and progression of OA are heavily associated with the inflammation of the joint. Therefore, studies on OA treatment have sought to intra-articularly deliver anti-inflammatory drugs, proteins, genes, or cells to locally control inflammation in OA joints. These therapeutics have been delivered alone or increasingly, in delivery vehicles for sustained release. The use of hydrogels in OA treatment can extend beyond the delivery of anti-inflammatory components to have inherent immunomodulatory function via regulating immune cell polarization and activity. Currently, such immunomodulatory biomaterials are being developed for other applications, which can be translated into OA therapy. Moreover, anabolic and proliferative levels of OA chondrocytes are low, except initially, when chondrocytes temporarily increase anabolism and proliferation in response to structural changes in their extracellular environment. Therefore, treatments need to restore matrix protein synthesis and proliferation to healthy levels to reverse OA-induced damage. In conjugation with injectable and/or adhesive hydrogels that promote cartilage tissue regeneration, immunomodulatory tissue engineering solutions will have robust potential in OA treatment. This review describes the disease, its current and future immunomodulatory therapies as well as cartilage-regenerative injectable and adhesive hydrogels.
Collapse
|
14
|
A Potential Polymeric Nanogel System for Effective Delivery of Chlorogenic Acid to Target Collagen-Induced Arthritis. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01421-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
He T, Zhang C, Vedadghavami A, Mehta S, Clark HA, Porter RM, Bajpayee AG. Multi-arm Avidin nano-construct for intra-cartilage delivery of small molecule drugs. J Control Release 2019; 318:109-123. [PMID: 31843642 DOI: 10.1016/j.jconrel.2019.12.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 01/15/2023]
Abstract
Targeted drug delivery to joint tissues like cartilage remains a challenge that has prevented clinical translation of promising osteoarthritis (OA) drugs. Local intra-articular (IA) injections of drugs suffer from rapid clearance from the joint space and slow diffusive transport through the dense, avascular cartilage matrix comprised of negatively charged glycosaminoglycans (GAGs). Here we apply drug carriers that leverage electrostatic interactions with the tissue's high negative fixed charge density (FCD) for delivering small molecule drugs to cartilage cell and matrix sites. We demonstrate that a multi-arm cationic nano-construct of Avidin (mAv) with 28 sites for covalent drug conjugation can rapidly penetrate through the full thickness of cartilage in high concentration and have long intra-cartilage residence time in both healthy and arthritic cartilage via weak-reversible binding with negatively charged aggrecans. mAv's intra-cartilage mean uptake was found to be 112× and 33× the equilibration bath concentration in healthy and arthritic (50% GAG depleted) cartilage, respectively. mAv was conjugated with Dexamethasone (mAv-Dex), a broad-spectrum glucocorticoid, using a combination of hydrolysable ester linkers derived from succinic anhydride (SA), 3,3-dimethylglutaric anhydride (GA) and phthalic anhydride (PA) in 2:1:1 M ratio that enabled 50% drug release within 38.5 h followed by sustained release in therapeutic doses over 2 weeks. A single 10 μM low dose of controlled release mAv-Dex (2:1:1) effectively suppressed IL-1α-induced GAG loss, cell death and inflammatory response significantly better than unmodified Dex over 2 weeks in cartilage explant culture models of OA. With this multi-arm design, <1 μM Avidin was needed - a concentration which has been shown to be safe, preventing further GAG loss and cytotoxicity. A charge-based cartilage homing drug delivery platform like this can elicit disease modifying effects as well as facilitate long-term symptomatic pain and inflammation relief by enhancing tissue specificity and prolonging intra-cartilage residence time of OA drugs. This nano-construct thus has high translational potential for enabling intra-cartilage delivery of a broad array of small molecule OA drugs and their combinations to chondrocytes, enabling OA treatment with a single injection of low drug doses and eliminating toxicity issues associated with multiple high dose injections.
Collapse
Affiliation(s)
- Tengfei He
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Chenzhen Zhang
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Armin Vedadghavami
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Shikhar Mehta
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Heather A Clark
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA; Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Ryan M Porter
- Departments of Internal Medicine and Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Ambika G Bajpayee
- Departments of Bioengineering, Northeastern University, Boston, MA 02115, USA; Mechanical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Gao Z, Golland B, Tronci G, Thornton PD. A redox-responsive hyaluronic acid-based hydrogel for chronic wound management. J Mater Chem B 2019; 7:7494-7501. [PMID: 31710328 DOI: 10.1039/c9tb01683j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymer-based hydrogels have been widely applied for chronic wound therapeutics, due to their well-acclaimed wound exudate management capability. At the same time, there is still an unmet clinical need for simple wound diagnostic tools to assist clinical decision-making at the point of care and deliver on the vision of patient-personalised wound management. To explore this challenge, we present a one-step synthetic strategy to realise a redox-responsive, hyaluronic acid (HA)-based hydrogel that is sensitive to wound environment-related variations in glutathione (GSH) concentration. By selecting aminoethyl disulfide (AED) as a GSH-sensitive crosslinker and considering GSH concentration variations in active and non-self-healing wounds, we investigated the impact of GSH-induced AED cleavage on hydrogel dimensions, aiming to build GSH-size relationships for potential point-of-care wound diagnosis. The hydrogel was also found to be non-cytotoxic and aided L929 fibroblast growth and proliferation over seven days in vitro. Such a material offers a very low-cost tool for the visual detection of a target analyte that varies dependent on the status of the cells and tissues (wound detection), and may be further exploited as an implant for fibroblast growth and tissue regeneration (wound repair).
Collapse
Affiliation(s)
- Ziyu Gao
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. and Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, UK.
| | - Ben Golland
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, UK.
| | - Giuseppe Tronci
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, UK. and Clothworkers' Centre for Textile Materials Innovation for Healthcare, School of Design, University of Leeds, UK
| | - Paul D Thornton
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
17
|
Rohner NA, Dogan AB, Robida OA, von Recum HA. Serum biomolecules unable to compete with drug refilling into cyclodextrin polymers regardless of the form. J Mater Chem B 2019; 7:5320-5327. [PMID: 31384862 PMCID: PMC6739132 DOI: 10.1039/c9tb00622b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polymers that are refillable and sustain local release will have a great impact in both preventing and treating local cancer recurrence as well as addressing non-resectable diseases. Polymerized cyclodextrin (pCD) disks, which reload drugs into molecular "pockets" in vivo through affinity interactions, have been previously shown to localize doxorubicin (Dox) to treat glioblastoma multiforme. However, one concern is whether drug refilling is influenced by competition from local biomolecules. In addition the impact of the polymer form on drug refilling is unknown. Herein, different pCD formulations were synthesized from γ-cyclodextrin (γ-CD) and were compared in vitro using competitive drug filling/refilling assays. Data reveal that affinity-based drug refilling occurs as a function of both the polymer form and the sustained release polymeric liquid (SRPL) dilution factor, pointing to the surface/volume ratio, as well as the CD pocket density, and the effects of the distance between pocket. In vitro refilling experiments with cholesterol demonstrated no interference with Dox filling of the CD polymer, while the presence of albumin only slightly reduced Dox filling of pCD-γ-MP (microparticle) and pCD-γ-SRPL forms, but not pCD-γ-disks. Moreover, whole serum competition did not inhibit filling or refilling of pCD-γ-MP with Dox at multiple concentrations and filling times, which indicates that this polymer (re)filling is primarily driven by affinity-based interactions that can overcome the physiological conditions which may limit other drug delivery approaches. This was supplemented by isolating variables through docking simulations and affinity measurements. These results attest to the efficiency of in vivo or in situ polymer filling/refilling in the presence of competitive biological molecules achieved partially through high affinity drug to polymer interactions.
Collapse
Affiliation(s)
- Nathan A Rohner
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | - Alan B Dogan
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | - Olivia A Robida
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
18
|
García-Couce J, Almirall A, Fuentes G, Kaijzel E, Chan A, Cruz LJ. Targeting Polymeric Nanobiomaterials as a Platform for Cartilage Tissue Engineering. Curr Pharm Des 2019; 25:1915-1932. [DOI: 10.2174/1381612825666190708184745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023]
Abstract
Articular cartilage is a connective tissue structure that is found in anatomical areas that are important for the movement of the human body. Osteoarthritis is the ailment that most often affects the articular cartilage. Due to its poor intrinsic healing capacity, damage to the articular cartilage is highly detrimental and at present the reconstructive options for its repair are limited. Tissue engineering and the science of nanobiomaterials are two lines of research that together can contribute to the restoration of damaged tissue. The science of nanobiomaterials focuses on the development of different nanoscale structures that can be used as carriers of drugs / cells to treat and repair damaged tissues such as articular cartilage. This review article is an overview of the composition of articular cartilage, the causes and treatments of osteoarthritis, with a special emphasis on nanomaterials as carriers of drugs and cells, which reduce inflammation, promote the activation of biochemical factors and ultimately contribute to the total restoration of articular cartilage.
Collapse
Affiliation(s)
- Jomarien García-Couce
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Amisel Almirall
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Gastón Fuentes
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Eric Kaijzel
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Alan Chan
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| |
Collapse
|
19
|
Spitters TW, Stamatialis D, Petit A, Leeuw MGD, Karperien M. In Vitro Evaluation of Small Molecule Delivery into Articular Cartilage: Effect of Synovial Clearance and Compressive Load. Assay Drug Dev Technol 2019; 17:191-200. [DOI: 10.1089/adt.2018.907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Tim W.G.M. Spitters
- Department of Developmental BioEngineering, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Dimitrios Stamatialis
- Biomaterials Science and Technology Group, MIRA Institute, University of Twente, Enschede, The Netherlands
| | | | | | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute, University of Twente, Enschede, The Netherlands
| |
Collapse
|
20
|
Li J, Wang H, Guo Q, Zhu C, Zhu X, Han F, Yang H, Li B. Multifunctional Coating to Simultaneously Encapsulate Drug and Prevent Infection of Radiopaque Agent. Int J Mol Sci 2019; 20:E2055. [PMID: 31027323 PMCID: PMC6539451 DOI: 10.3390/ijms20092055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Poly(methyl methacrylate) (PMMA) bone cements have been widely used in clinical practices. In order to enhance PMMA's imaging performance to facilitate surgical procedures, a supplementation of radiopaque agent is needed. However, PMMA bone cements are still facing problems of loosening and bacterial infection. In this study, a multifunctional coating to simultaneously encapsulate drug and prevent the infection of radiopaque agent has been developed. Barium sulfate (BaSO4), a common radiopaque agent, is used as a substrate material. We successfully fabricated porous BaSO4 microparticles, then modified with hexakis-(6-iodo-6-deoxy)-alpha-cyclodextrin (I-CD) and silver (Ag) to obtain porous BaSO4@PDA/I-CD/Ag microparticles. The porous nature and presence of PDA coating and I-CD on the surface of microparticles result in efficient loading and release of drugs such as protein. Meanwhile, the radiopacity of BaSO4@PDA/I-CD/Ag microparticles is enhanced by this multifunctional coating containing Ba, I and Ag. PMMA bone cements containing BaSO4@PDA/I-CD/Ag microparticles show 99% antibacterial rate against both Staphylococcus aureus (S. aureus) and Escherichia Coli (E. coli), yet without apparently affecting its biocompatibility. Together, this multifunctional coating possessing enhanced radiopacity, controlled drug delivery capability and exceptional antibacterial performance, may be a new way to modify radiopaque agents for bone cements.
Collapse
Affiliation(s)
- Jiaying Li
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Huan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Qianping Guo
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Caihong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Xuesong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Fengxuan Han
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Huilin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Bin Li
- College of Chemistry, Chemical Engineering and Materials Science, Orthopaedic Institute, Soochow University, Suzhou 215000, Jiangsu, China.
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
21
|
Rohner NA, Schomisch SJ, Marks JM, von Recum HA. Cyclodextrin Polymer Preserves Sirolimus Activity and Local Persistence for Antifibrotic Delivery over the Time Course of Wound Healing. Mol Pharm 2019; 16:1766-1774. [PMID: 30807185 DOI: 10.1021/acs.molpharmaceut.9b00144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibrosis and dysphagic stricture of the esophagus is a major unaddressed problem often accompanying endoscopic removal of esophageal cancers and precancerous lesions. While weekly injections of antiproliferative agents show potential for improved healing, repeated injections are unlikely clinically and may alternatively be replaced by creating an esophageal drug delivery system. Affinity-based polymers have previously shown success for continuous delivery of small molecules for weeks to months. Herein, we explored the potential of an affinity-based microparticle to provide long-term release of an antiproliferative drug, sirolimus. In molecular docking simulations and surface plasmon resonance experiments, sirolimus was found to have suitable affinity for beta-cyclodextrin, while dextran, as a low affinity control, was validated. Polymerized beta-cyclodextrin microparticles exhibited 30 consecutive days of delivery of sirolimus during in vitro release studies. In total, the polymerized beta-cyclodextrin microparticles released 36.9 mg of sirolimus per milligram of polymer after one month of incubation in vitro. Taking daily drug release aliquots and applying them to PT-K75 porcine mucosal fibroblasts, we observed that cyclodextrin microparticle delivery preserved bioactivity of sirolimus inhibiting proliferation by 27-67% and migration of fibroblasts by 28-100% of buffer treated controls in vitro. Testing for esophageal injection site losses, no significant loss was incurred under simulated saliva flow for 10 min, and 16.7% of fluorescently labeled polymerized cyclodextrin microparticle signal was retained at 28 days after submucosal injection in esophageal tissue ex vivo versus only 4% of the initial amount remaining for free dye molecules injected alone. By combining affinity-based drug delivery for continuous long-term release with a microparticle platform that is injectable yet remains localized in tissue interstitium, this combination platform demonstrates promise for preventing esophageal fibrosis and stricture.
Collapse
Affiliation(s)
- Nathan A Rohner
- Department of Biomedical Engineering , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Steve J Schomisch
- Department of Surgery , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Jeffrey M Marks
- Department of Surgery , University Hospitals Cleveland Medical Center , 11100 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Horst A von Recum
- Department of Biomedical Engineering , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
22
|
Ahmed MS, Rodell CB, Hulsmans M, Kohler RH, Aguirre AD, Nahrendorf M, Weissleder R. A Supramolecular Nanocarrier for Delivery of Amiodarone Anti-Arrhythmic Therapy to the Heart. Bioconjug Chem 2019; 30:733-740. [PMID: 30615425 DOI: 10.1021/acs.bioconjchem.8b00882] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Amiodarone is an effective antiarrhythmic drug used to treat and prevent different types of cardiac arrhythmias. However, amiodarone can have considerable side effects resulting from accumulation in off-target tissues. Cardiac macrophages are highly prevalent tissue-resident immune cells with importance in homeostatic functions, including immune response and modulation of cardiac conduction. We hypothesized that amiodarone could be more efficiently delivered to the heart via cardiac macrophages, an important step toward reducing overall dose and off-target tissue accumulation. Toward this goal, we synthesized a nanoparticle drug carrier composed of l-lysine cross-linked succinyl-β-cyclodextrin that demonstrates amiodarone binding through supramolecular host-guest interaction as well as a high macrophage affinity. Biodistribution analyses at the organ and single-cell level demonstrate accumulation of nanoparticles in the heart resulting from rapid uptake by cardiac macrophages. Nanoparticle assisted delivery of amiodarone resulted in a 250% enhancement in the selective delivery of the drug to cardiac tissue in part due to a concomitant decrease of pulmonary accumulation, the main source of off-target toxicity.
Collapse
Affiliation(s)
- Maaz S Ahmed
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States
| | - Christopher B Rodell
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States
| | - Maarten Hulsmans
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States
| | - Rainer H Kohler
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States
| | - Aaron D Aguirre
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States.,Cardiology Division , Massachusetts General Hospital , 55 Fruit St , Boston , Massachusetts 02114 , United States
| | - Matthias Nahrendorf
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States.,Department of Radiology , Massachusetts General Hospital , 55 Fruit St , Boston , Massachusetts 02114 , United States
| | - Ralph Weissleder
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States.,Department of Radiology , Massachusetts General Hospital , 55 Fruit St , Boston , Massachusetts 02114 , United States.,Department of Systems Biology , Harvard Medical School , 200 Longwood Ave , Boston , Massachusetts 02115 , United States
| |
Collapse
|