1
|
Chung TW, Cheng CL, Liu YH, Huang YC, Chen WP, Panda AK, Chen WL. Dopamine-dependent functions of hyaluronic acid/dopamine/silk fibroin hydrogels that highly enhance N-acetyl-L-cysteine (NAC) delivered from nasal cavity to brain tissue through a near-infrared photothermal effect on the NAC-loaded hydrogels. BIOMATERIALS ADVANCES 2023; 154:213615. [PMID: 37716334 DOI: 10.1016/j.bioadv.2023.213615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Hyaluronic acid/silk fibroin (HA/SF or HS) hydrogels with remarkable mechanical characteristics have been reported as tissue engineering biomaterials. Herein, the addition of dopamine/polydopamine (DA/PDA) to HS hydrogels to develop multifunctional HA/PDA/SF (or HDS) hydrogels for the delivery of drugs such as N-acetyl-L-cysteine (NAC) from nasal to brain tissue is examined. Herein, DA-dependent functions of HDS hydrogels with highly adhesive forces, photothermal response (PTR) effects generated by near infrared (NIR) irradiation, and anti-oxidative effects were demonstrated. An in-vitro study shows that the HDS/NAC hydrogels could open tight junctions in the RPMI 2650 cell line, a model cell of the nasal mucosa, as demonstrated by the decreased values of transepithelial electrical resistance (TEER) and more discrete ZO-1 staining than those for the control group. This effect was markedly enhanced by NIR irradiation of the HDS/NAC-NIR hydrogels. Compared to the results obtained using NAC solution, an in-vivo imaging study (IVIS) in rats showed an approximately nine-fold increase in the quantity of NAC delivered from the nasal cavity to the brain tissue in the span of 2 h through the PTR effect generated by the NIR irradiation of the nasal tissue and administration of the HDS/NAC hydrogels. Herein, dopamine-dependent multifunctional HDS hydrogels were studied, and the nasal administration of HDS/NAC-NIR hydrogels with PTR effects generated by NIR irradiation was found to have significantly enhanced NAC delivery to brain tissues.
Collapse
Affiliation(s)
- Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan.
| | - Ching-Lin Cheng
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| | - Yun-Huan Liu
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist., Keelung City 20224, Taiwan.
| | - Weng-Pin Chen
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Asit Kumar Panda
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Wei-Ling Chen
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| |
Collapse
|
2
|
Agnihotri TG, Jadhav GS, Sahu B, Jain A. Recent trends of bioconjugated nanomedicines through nose-to-brain delivery for neurological disorders. Drug Deliv Transl Res 2022; 12:3104-3120. [PMID: 35570262 DOI: 10.1007/s13346-022-01173-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
The global burden of neurological disorders has been increasing day by day which calls for immediate attention to the solutions. Novel drug delivery systems are one of the alternatives that we count on to counteract these disorders. As the blood-brain barrier creates a significant hindrance to the delivery of drugs across the endothelium lining of the brain, nose-to-brain delivery has been the favorite option to administer such drugs. In recent times, bioconjugation has been viewed as a rapidly growing area in the field of pharmaceuticals. The pharmaceutical industry and academic research are investing significantly in bioconjugated structures as an attractive and advantageous potential aid to nanoparticulate delivery systems, with all of its flexible benefits in terms of tailor grafting and custom design as well as overcoming the majority of their drawbacks. This review discusses drug delivery via the intranasal route and gives insight into bioconjugation systems for drug molecules, their chemistry, and benefits over other systems. Conjugation of drugs/macromolecules with peptides, carbohydrates, ligands, and nucleic acids has also been discussed in detail. The figure represents few types of novel drug delivery systems and molecules that have been attempted by researchers for nose-to-brain delivery through nasal (mucosal) route for the effective management of epilepsy, Alzheimer's disease, brain cancer, and other brain disorders.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Govinda Shivaji Jadhav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
3
|
Formulation and evaluation of nasal insert for nose-to-brain drug delivery of rivastigmine tartrate. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Sastri KT, Gupta NV, M S, Chakraborty S, Kumar H, Chand P, Balamuralidhara V, Gowda D. Nanocarrier facilitated drug delivery to the brain through intranasal route: A promising approach to transcend bio-obstacles and alleviate neurodegenerative conditions. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Chung TW, Wu TY, Siah ZY, Liu DZ. Antioxidative NAC-Loaded Silk Nanoparticles with Opening Mucosal Tight Junctions for Nasal Drug Delivery: An In Vitro and In Vivo Study. Pharmaceutics 2022; 14:pharmaceutics14061288. [PMID: 35745861 PMCID: PMC9229699 DOI: 10.3390/pharmaceutics14061288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
Using nasal routes to deliver drugs to the brain using multifunctional nanoparticles (NPs) to bypass the blood–brain barrier (BBB) might enhance the delivery efficacy. Anti-oxidative N-Acetyl-L-cysteine (NAC)-loaded silk fibroin (SF/NAC) NPs are produced, characterized and studied as a potential delivery vehicle for NAC delivered to the brain via nasal for both in vitro and in vivo studies. The NPs are not cytotoxic to RPMI 2650 cells, mucosal model cells, at a concentration of 6000 μg/mL. The anti-oxidative activities of SF/NAC NPs are demonstrated by high H2O2 scavenge capacities of the NPs and shown by mitochondrial superoxide (MitoSOX) immunostaining of human mesenchymal stem cells. Tight junctions in RPMI 2650 cells are opened after 30 min of incubation with SF/NAC NPs, which are demonstrated by measuring the decrease in trans-epithelial electrical resistance (TEER) values and discreteness in ZO-1 stains. The cellular uptake of SF/NAC NPs by RPMI 2650 cells is significantly greater than that for SF NPs and increased with increasing incubation time. In an in vivo imaging study (IVIS) using rats shows that the amount of NAC that is delivered to the brain by SF/NAC NPs increased by 1.40–2.60 times and NAC is retained longer in the nasal cavity than NAC solutions in a 2-h study.
Collapse
Affiliation(s)
- Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
- Correspondence:
| | - Ting-Ya Wu
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
| | - Zheng-Yu Siah
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
| | - Der-Zen Liu
- Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan;
| |
Collapse
|
6
|
Borrajo ML, Alonso MJ. Using nanotechnology to deliver biomolecules from nose to brain - peptides, proteins, monoclonal antibodies and RNA. Drug Deliv Transl Res 2022; 12:862-880. [PMID: 34731414 PMCID: PMC8888512 DOI: 10.1007/s13346-021-01086-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
There is a growing number of biomolecules, including peptides, proteins, monoclonal antibodies and RNA, that could be potentially used for the treatment of central nervous system (CNS) diseases. However, the realization of their potential is being hampered by the extraordinary difficulties these complex biomolecules have to reach the brain in therapeutically meaningful amounts. Nose-to-brain (N-to-B) delivery is now being investigated as a potential option for the direct transport of biomolecules from the nasal cavity to different brain areas. Here, we discuss how different technological approaches enhance this N-to-B transport, with emphasis on those that have shown a potential for clinical translation. We also analyse how the physicochemical properties of nanocarriers and their modification with cell-penetrating peptides (CPPs) and targeting ligands affect their efficacy as N-to-B carriers for biomolecules.
Collapse
Affiliation(s)
- Mireya L Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, 15782, Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, 15782, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Goel H, Kalra V, Verma SK, Dubey SK, Tiwary AK. Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies. J Control Release 2021; 341:782-811. [PMID: 34906605 DOI: 10.1016/j.jconrel.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Brain, a subtle organ of multifarious nature presents plethora of physiological, metabolic and bio-chemical convolutions that impede the delivery of biomolecules and thereby resulting in truncated therapeutic outcome in pathological conditions of central nervous system (CNS). The absolute bottleneck in the therapeutic management of such devastating CNS ailments is the BBB. Another pitfall is the lack of efficient technological platforms (due to high cost and low approval rates) as well as limited clinical trials (due to failures of neuro‑leads in late-stage pipelines) for CNS disorders which has become a literal brain drain with poorest success rates compared to other therapeutic areas, owing to time consuming processes, tremendous convolutions and conceivable adverse effects. With the advent of intranasal delivery (via direct N2B or indirect nose to blood to brain), several novel drug delivery carriers viz. unmodified or surface modified nanoparticle based carriers, lipid based colloidal nanocarriers and drysolid/liquid/semisolid nanoformulations or delivery platforms have been designed as a means to deliver therapeutic agents (small and large molecules, peptides and proteins, genes) to brain, bypassing BBB for disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, schizophrenia and CNS malignancies primarily glioblastomas. Intranasal application offers drug delivery through both direct and indirect pathways for the peripherally administered psychopharmacological agents to CNS. This route could also be exploited for the repurposing of conventional drugs for new therapeutic uses. The limited clinical translation of intranasal formulations has been primarily due to existence of barriers of mucociliary clearance in the nasal cavity, enzyme degradation and low permeability of the nasal epithelium. The present review literature aims to decipher the new paradigms of nano therapeutic systems employed for specific N2B drug delivery of CNS drugs through in silico complexation studies using rationally chosen mucoadhesive polymers (exhibiting unique physicochemical properties of nanocarrier's i.e. surface modification, prolonging retention time in the nasal cavity, improving penetration ability, and promoting brain specific delivery with biorecognitive ligands) via molecular docking simulations. Further, the review intends to delineate the feats and fallacies associated with N2B delivery approaches by understanding the physiological/anatomical considerations via decoding the intranasal drug delivery pathways or critical factors such as rationale and mechanism of excipients, affecting the permeability of CNS drugs through nasal mucosa as well as better efficacy in terms of brain targeting, brain bioavailability and time to reach the brain. Additionally, extensive emphasis has also been laid on the innovative formulations under preclinical investigation along with their assessment by means of in vitro /ex vivo/in vivo N2B models and current characterization techniques predisposing an efficient intranasal delivery of therapeutics. A critical appraisal of novel technologies, intranasal products or medical devices available commercially has also been presented. Finally, it could be warranted that more reminiscent pharmacokinetic/pharmacodynamic relationships or validated computational models are mandated to obtain effective screening of molecular architecture of drug-polymer-mucin complexes for clinical translation of N2B therapeutic systems from bench to bedside.
Collapse
Affiliation(s)
- Honey Goel
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India.
| | - Vinni Kalra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | | | - Ashok Kumar Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
8
|
Sequential Release of Paclitaxel and Imatinib from Core-Shell Microparticles Prepared by Coaxial Electrospray for Vaginal Therapy of Cervical Cancer. Int J Mol Sci 2021; 22:ijms22168760. [PMID: 34445466 PMCID: PMC8395827 DOI: 10.3390/ijms22168760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
To optimize the anti-tumor efficacy of combination therapy with paclitaxel (PTX) and imatinib (IMN), we used coaxial electrospray to prepare sequential-release core–shell microparticles composed of a PTX-loaded sodium hyaluronate outer layer and an IMN-loaded PLGA core. The morphology, size distribution, drug loading, differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), in vitro release, PLGA degradation, cellular growth inhibition, in vivo vaginal retention, anti-tumor efficacy, and local irritation in a murine orthotopic cervicovaginal tumor model after vaginal administration were characterized. The results show that such core–shell microparticles were of spherical appearance, with an average size of 14.65 μm and a significant drug-loading ratio (2.36% for PTX, 19.5% for IMN, w/w), which might benefit cytotoxicity against cervical-cancer-related TC-1 cells. The DSC curves indicate changes in the phase state of PTX and IMN after encapsulation in microparticles. The FTIR spectra show that drug and excipients are compatible with each other. The release profiles show sequential characteristics in that PTX was almost completely released in 1 h and IMN was continuously released for 7 days. These core–shell microparticles showed synergistic inhibition in the growth of TC-1 cells. Such microparticles exhibited prolonged intravaginal residence, a >90% tumor inhibitory rate, and minimal mucosal irritation after intravaginal administration. All results suggest that such microparticles potentially provide a non-invasive local chemotherapeutic delivery system for the treatment of cervical cancer by the sequential release of PTX and IMN.
Collapse
|
9
|
Deruyver L, Rigaut C, Lambert P, Haut B, Goole J. The importance of pre-formulation studies and of 3D-printed nasal casts in the success of a pharmaceutical product intended for nose-to-brain delivery. Adv Drug Deliv Rev 2021; 175:113826. [PMID: 34119575 DOI: 10.1016/j.addr.2021.113826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
This review aims to cement three hot topics in drug delivery: (a) the pre-formulation of new products intended for nose-to-brain delivery; (b) the development of nasal casts for studying the efficacy of potential new nose-to-brain delivery systems at the early of their development (pre-formulation); (c) the use of 3D printing based on a wide variety of materials (transparent, biocompatible, flexible) providing an unprecedented fabrication tool towards personalized medicine by printing nasal cast on-demand based on CT scans of patients. This review intends to show the links between these three subjects. Indeed, the pathway selected to administrate the drug to the brain not only influence the formulation strategies to implement but also the design of the cast, to get the most convincing measures from it. Moreover, the design of the cast himself influences the choice of the 3D-printing technology, which, in its turn, bring more constraints to the nasal replica design. Consequently, the formulation of the drug, the cast preparation and its realisation should be thought of as a whole and not separately.
Collapse
Affiliation(s)
- Laura Deruyver
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Clément Rigaut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Pierre Lambert
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Benoît Haut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
10
|
In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13071079. [PMID: 34371770 PMCID: PMC8309016 DOI: 10.3390/pharmaceutics13071079] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
The nasal cavity is an attractive route for both local and systemic drug delivery and holds great potential for access to the brain via the olfactory region, an area where the blood–brain barrier (BBB) is effectively absent. However, the olfactory region is located at the roof of the nasal cavity and only represents ~5–7% of the epithelial surface area, presenting significant challenges for the deposition of drug molecules for nose to brain drug delivery (NTBDD). Aerosolized particles have the potential to be directed to the olfactory region, but their specific deposition within this area is confounded by a complex combination of factors, which include the properties of the formulation, the delivery device and how it is used, and differences in inter-patient physiology. In this review, an in-depth examination of these different factors is provided in relation to both in vitro and in vivo studies and how advances in the fabrication of nasal cast models and analysis of aerosol deposition can be utilized to predict in vivo outcomes more accurately. The challenges faced in assessing the nasal deposition of aerosolized particles within the paediatric population are specifically considered, representing an unmet need for nasal and NTBDD to treat CNS disorders.
Collapse
|
11
|
Kim J, Lee JY, Park HY, Kim H, Kang JH, Kim HJ, Jeong W. Combination of peptides with biological, organic, and inorganic materials for synergistically enhanced diagnostics and therapeutics. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joo‐Young Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| | - Jae Yun Lee
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Ha Yeon Park
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Hyunji Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Jeon Hyeong Kang
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| | - Woo‐Jin Jeong
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| |
Collapse
|
12
|
Rhea EM, Logsdon AF, Banks WA, Erickson ME. Intranasal Delivery: Effects on the Neuroimmune Axes and Treatment of Neuroinflammation. Pharmaceutics 2020; 12:pharmaceutics12111120. [PMID: 33233734 PMCID: PMC7699866 DOI: 10.3390/pharmaceutics12111120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023] Open
Abstract
This review highlights the pre-clinical and clinical work performed to use intranasal delivery of various compounds from growth factors to stem cells to reduce neuroimmune interactions. We introduce the concept of intranasal (IN) delivery and the variations of this delivery method based on the model used (i.e., rodents, non-human primates, and humans). We summarize the literature available on IN delivery of growth factors, vitamins and metabolites, cytokines, immunosuppressants, exosomes, and lastly stem cells. We focus on the improvement of neuroimmune interactions, such as the activation of resident central nervous system (CNS) immune cells, expression or release of cytokines, and detrimental effects of signaling processes. We highlight common diseases that are linked to dysregulations in neuroimmune interactions, such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, and traumatic brain injury.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-764-2938
| | - Aric F. Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William A. Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Michelle E. Erickson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Kopeček J, Yang J. Polymer nanomedicines. Adv Drug Deliv Rev 2020; 156:40-64. [PMID: 32735811 PMCID: PMC7736172 DOI: 10.1016/j.addr.2020.07.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Polymer nanomedicines (macromolecular therapeutics, polymer-drug conjugates, drug-free macromolecular therapeutics) are a group of biologically active compounds that are characterized by their large molecular weight. This review focuses on bioconjugates of water-soluble macromolecules with low molecular weight drugs and selected proteins. After analyzing the design principles, different structures of polymer carriers are discussed followed by the examination of the efficacy of the conjugates in animal models and challenges for their translation into the clinic. Two innovative directions in macromolecular therapeutics that depend on receptor crosslinking are highlighted: a) Combination chemotherapy of backbone degradable polymer-drug conjugates with immune checkpoint blockade by multivalent polymer peptide antagonists; and b) Drug-free macromolecular therapeutics, a new paradigm in drug delivery.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Zhang L, Pang L, Zhu S, Ma J, Li R, Liu Y, Zhu L, Zhuang X, Zhi W, Yu X, Du L, Zuo H, Jin Y. Intranasal tetrandrine temperature-sensitive in situ hydrogels for the treatment of microwave-induced brain injury. Int J Pharm 2020; 583:119384. [PMID: 32371003 DOI: 10.1016/j.ijpharm.2020.119384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
The brain is the most sensitive organ to microwave radiation. However, few effective drugs are available for the treatment of microwave-induced brain injury due to the poor drug permeation into the brain. Here, intranasal tetrandrine (TET) temperature-sensitive in situ hydrogels (ISGs) were prepared with poloxamers 407 and 188. Its characteristics were evaluated, including rheological properties, drug release in vitro, and mucosal irritation. The pharmacodynamics and brain-targeting effects were also studied. The highly viscous ISGs remained in the nasal cavity for a long time with the sustained release of TET and no obvious ciliary toxicity. Intranasal temperature-sensitive TET ISGs markedly improved the spatial memory and spontaneous exploratory behavior induced by microwave with the Morris water maze (MWM) and the open field test (OFT) compared to the model. The ISGs alleviated the microwave-induced brain damage and inhibited the certain mRNA expressions of calcium channels in the brain. Intranasal temperature-sensitive TET ISGs was rapidly absorbed with a shorter Tmax (4.8 h) compared to that of oral TET (8.4 h). The brain targeting index of intranasal temperature-sensitive TET ISGs was as 2.26 times as that of the oral TET. Intranasal temperature-sensitive TET ISGs are a promising brain-targeted medication for the treatment of microwave-induced brain injury.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lulu Pang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Siqing Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Anhui Medical University, Hefei 230032, China
| | - Jinqiu Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruiteng Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yijing Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaomei Zhuang
- Beijing Institute of Toxicology and Pharmacology, No. 27, Taiping Road, Beijing 100850, China
| | - Weijia Zhi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiang Yu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Anhui Medical University, Hefei 230032, China.
| | - Hongyan Zuo
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Anhui Medical University, Hefei 230032, China; Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
15
|
Zhu Y, Liu C, Pang Z. Dendrimer-Based Drug Delivery Systems for Brain Targeting. Biomolecules 2019; 9:E790. [PMID: 31783573 PMCID: PMC6995517 DOI: 10.3390/biom9120790] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Human neuroscience has made remarkable progress in understanding basic aspects of functional organization; it is a renowned fact that the blood-brain barrier (BBB) impedes the permeation and access of most drugs to central nervous system (CNS) and that many neurological diseases remain undertreated. Therefore, a number of nanocarriers have been designed over the past few decades to deliver drugs to the brain. Among these nanomaterials, dendrimers have procured an enormous attention from scholars because of their nanoscale uniform size, ease of multi-functionalization, and available internal cavities. As hyper-branched 3D macromolecules, dendrimers can be maneuvered to transport diverse therapeutic agents, incorporating small molecules, peptides, and genes; diminishing their cytotoxicity; and improving their efficacy. Herein, the present review will give exhaustive details of extensive researches in the field of dendrimer-based vehicles to deliver drugs through the BBB in a secure and effectual manner. It is also a souvenir in commemorating Donald A. Tomalia on his 80th birthday.
Collapse
Affiliation(s)
- Yuefei Zhu
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
- Department of Biomedical Engineering, Columbia University Medical Center, 3960 Broadway, New York, NY 10032, USA
| | - Chunying Liu
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
| |
Collapse
|