1
|
Zhang L, Zhang H. Recent advances of affibody molecules in biomedical applications. Bioorg Med Chem 2024; 113:117923. [PMID: 39278106 DOI: 10.1016/j.bmc.2024.117923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Affibody molecules are 58-amino-acid peptides with a molecular weight of about 6.5 kDa, derived from the Z domain of Staphylococcal Protein A. Since they have been used as substitutes for antibodies in biomedicine, several therapeutic affibody molecules have been developed for clinical use. Additionally, affibody molecules have been designed for a range of different applications. This review focuses on the progress made in the last five years in the field of affibody molecules and their potential uses in medical imaging, especially in oncology and cancer treatment. It covers areas such as molecular imaging, targeted delivery of toxic drugs, and their use in combination with nanoparticles. We also highlight some current biomedical applications where affibody molecules are commonly used as a "guide." Due to their many advantages, affibody molecules offer significant potential for applications in both biochemical and medical fields.
Collapse
Affiliation(s)
- Liuyanlin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
2
|
Pascouau C, Schweitzer M, Besenius P. Supramolecular Assembly and Thermogelation Strategies Using Peptide-Polymer Conjugates. Biomacromolecules 2024; 25:2659-2678. [PMID: 38663862 PMCID: PMC11095398 DOI: 10.1021/acs.biomac.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024]
Abstract
Peptide-polymer conjugates (PPCs) are of particular interest in the development of responsive, adaptive, and interactive materials due to the benefits offered by combining both building blocks and components. This review presents pioneering work as well as recent advances in the design of peptide-polymer conjugates, with a specific focus on their thermoresponsive behavior. This unique class of materials has shown great promise in the development of supramolecular structures with physicochemical properties that are modulated using soft and biorthogonal external stimuli. The temperature-induced self-assembly of PPCs into various supramolecular architectures, gelation processes, and tuning of accessible processing parameters to biologically relevant temperature windows are described. The discussion covers the chemical design of the conjugates, the supramolecular driving forces involved, and the mutual influence of the polymer and peptide segments. Additionally, some selected examples for potential biomedical applications of thermoresponsive PPCs in tissue engineering, delivery systems, tumor therapy, and biosensing are highlighted, as well as perspectives on future challenges.
Collapse
Affiliation(s)
- Chloé Pascouau
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 1014, D-55128 Mainz, Germany
| | - Maren Schweitzer
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 1014, D-55128 Mainz, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 1014, D-55128 Mainz, Germany
| |
Collapse
|
3
|
Li Z, Xue L, Yang J, Wuttke S, He P, Lei C, Yang H, Zhou L, Cao J, Sinelshchikova A, Zheng G, Guo J, Lin J, Lei Q, Brinker CJ, Liu K, Zhu W. Synthetic Biohybrids of Red Blood Cells and Cascaded-Enzymes@ Metal-Organic Frameworks for Hyperuricemia Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305126. [PMID: 38054350 PMCID: PMC10837374 DOI: 10.1002/advs.202305126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/19/2023] [Indexed: 12/07/2023]
Abstract
Hyperuricemia, caused by an imbalance between the rates of production and excretion of uric acid (UA), may greatly increase the mortality rates in patients with cardiovascular and cerebrovascular diseases. Herein, for fast-acting and long-lasting hyperuricemia treatment, armored red blood cell (RBC) biohybrids, integrated RBCs with proximal, cascaded-enzymes of urate oxidase (UOX) and catalase (CAT) encapsulated within ZIF-8 framework-based nanoparticles, have been fabricated based on a super-assembly approach. Each component is crucial for hyperuricemia treatment: 1) RBCs significantly increase the circulation time of nanoparticles; 2) ZIF-8 nanoparticles-based superstructure greatly enhances RBCs resistance against external stressors while preserving native RBC properties (such as oxygen carrying capability); 3) the ZIF-8 scaffold protects the encapsulated enzymes from enzymatic degradation; 4) no physical barrier exists for urate diffusion, and thus allow fast degradation of UA in blood and neutralizes the toxic by-product H2 O2 . In vivo results demonstrate that the biohybrids can effectively normalize the UA level of an acute hyperuricemia mouse model within 2 h and possess a longer elimination half-life (49.7 ± 4.9 h). They anticipate that their simple and general method that combines functional nanomaterials with living cell carriers will be a starting point for the development of innovative drug delivery systems.
Collapse
Affiliation(s)
- Zeyu Li
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Liecong Xue
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Junxian Yang
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510000P. R. China
| | - Stefan Wuttke
- BCMaterialsBasque Center for MaterialsUPV/EHU Science ParkLeioa48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - Peiying He
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Chuanyi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Haowei Yang
- China National Tobacco CorporationNo.55 South Yuetan Boulevard Xicheng DistrictBeijing100045P. R. China
| | - Liang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | | | - Guansheng Zheng
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Jimin Guo
- College of Materials Sciences and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Jiangguo Lin
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510000P. R. China
| | - Qi Lei
- The Second Affiliated HospitalState Key Laboratory of Respiratory DiseaseGuangdong Provincial Key Laboratory of Allergy and Clinical ImmunologyGuangzhou Medical UniversityGuangzhou510260P.R. China
| | - C. Jeffrey Brinker
- Center for Micro‐Engineered Materials and the Department of Chemical and Biological EngineeringThe University of New MexicoAlbuquerqueNM87131USA
| | - Kaisheng Liu
- Guangdong Provincial Clinical Research Center for GeriatricsShenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)Shenzhen518020P. R. China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| |
Collapse
|
4
|
Karantas ID, Miliotou AN, Siafaka PI. An Updated Review For Hyperuricemia and Gout Management; Special Focus on the Available Drug Delivery Systems and Clinical Trials. Curr Med Chem 2024; 31:5856-5883. [PMID: 37559248 DOI: 10.2174/0929867331666230809143758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Hyperuricemia belongs to metabolic syndromes where increased uric acid levels are identified in the blood serum. Such a syndrome could be responsible for kidney stone formation, gout, hypertension, and chronic kidney diseases. It has been reported that cardiovascular risks have been linked with hyperuricemia. Gout is of the most frequent manifestations due to hyperuricemia; its management involves various pharmacological available options and dietary changes. Throughout the literature, various dosage forms are studied as alternative options to the present drug delivery systems. OBJECTIVE To update and summarize the current information for gout and hyperuricemia management. METHODS Authors have performed a thorough literature research from 2010-2023 using keywords such as hyperuricemia, gout, diagnosis, guidelines, drug delivery and clinical trials. The databases used were PubMed, ScienceDirect. According to our inclusion criteria, all studies which include the previous terms, as well as drugs or other molecules that can be applied for gout and/or hyperuricemia management, were added. RESULTS In this article, authors have summarized the pathogenesis, diagnosis and updated guidelines for gout and hyperuricemia management. Moreover, the authors have reviewed and discussed current drug delivery systems found in the literature, including drugs targeting the above disorders. Finally, the available clinical trials assessing the efficacy of newer drugs or combinations of the past ones, are being discussed. CONCLUSION The available drugs and dosage forms are limited, and therefore, scientific society should focus on the development of more efficient drug delivery systems for hyperuricemia and gout management.
Collapse
Affiliation(s)
| | - Androulla N Miliotou
- Department of Health Sciences, KES College, Nicosia, Cyprus
- Department of Life and Health Sciences, Faculty of Pharmacy, University of Nicosia, Nicosia, Cyprus
| | - Panoraia I Siafaka
- Department of Life Sciences, Faculty of Pharmacy, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
5
|
Wei J, Zhu L, Lu Q, Li G, Zhou Y, Yang Y, Zhang L. Recent progress and applications of poly(beta amino esters)-based biomaterials. J Control Release 2023; 354:337-353. [PMID: 36623697 DOI: 10.1016/j.jconrel.2023.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Poly(beta-amino esters, PBAEs) are a promising class of cationic polymers synthesized from diacrylates and amines via Michael addition. Recently, PBAEs have been widely developed for drug delivery, immunotherapy, gene therapy, antibacterial, tissue engineering and other applications due to their convenient synthesis, good bio-compatibility and degradation properties. Herein, we mainly summarize the recent progress in the PBAEs synthesis and their applications. The amine groups of PBAEs could be protonated in low pH environment, exhibiting proton sponge and pH-sensitive abilities. Furthermore, the positive PBAEs can interact with negative genes via electrostatic interactions for efficient delivery of nucleic acids. Moreover, positive PBAEs could also directly kill bacteria by disrupting their membranes at high doses. Finally, PBAEs can augment the immune responses, and improve the bioactivity of hydrogels in tissue engineering.
Collapse
Affiliation(s)
- Jingjing Wei
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Linglin Zhu
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Qiuyun Lu
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Guicai Li
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Youlang Zhou
- Hand Surgery Research Center, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, PR China
| | - Yumin Yang
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.
| | - Luzhong Zhang
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, PR China.
| |
Collapse
|
6
|
Jiao Y, Zhu Y, Zeng S, Wang S, Chen J, Zhou X, Ma G. Characterization of a novel marine microbial uricase from Priestia flexa and evaluation of the effects of CMCS conjugation on its enzymatic properties. Prep Biochem Biotechnol 2022:1-11. [PMID: 36398928 DOI: 10.1080/10826068.2022.2145611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel uricase producing marine bacterium Priestia flexa alkaAU was isolated and identified. The 16S rDNA and the uricase coding gene were sequenced, analyzed and submitted to GenBank. The uricase from Priestia flexa alkaAU (PFU) was purified, determined to be 58.87 kDa, and conjugated with carboxymethyl chitosan (CMCS) by ionic gelation. CMCS conjugation had no effect on the optimum pH of PFU but decreased the optimum temperature by 10 °C. CMCS conjugation increased the specific activity of PFU by 53% at the human body temperature (37 °C) and small intestine's pH (pH 6.8). Uricase thermostabilizing ability of CMCS was significant in the range of 37-80 °C but not at lower temperatures. For improvement of the pH stability of PFU, CMCS was more effective at pHs 3-5 than pHs 6-11. CMCS increased the half-life of PFU against artificial intestinal fluid by 1.5 folds, which demonstrated the potential capability of CMCS-PFU for oral administration.
Collapse
Affiliation(s)
- YuLiang Jiao
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu Province, People’s Republic of China
| | - YuYing Zhu
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu Province, People’s Republic of China
| | - ShuMin Zeng
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu Province, People’s Republic of China
| | - ShuFang Wang
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu Province, People’s Republic of China
| | - Jing Chen
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu Province, People’s Republic of China
| | - XiangHong Zhou
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu Province, People’s Republic of China
| | - GuiZhen Ma
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu Province, People’s Republic of China
| |
Collapse
|
7
|
Advanced Formulations/Drug Delivery Systems for Subcutaneous Delivery of Protein-Based Biotherapeutics. J Pharm Sci 2022; 111:2968-2982. [PMID: 36058255 DOI: 10.1016/j.xphs.2022.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Multiple advanced formulations and drug delivery systems (DDSs) have been developed to deliver protein-based biotherapeutics via the subcutaneous (SC) route. These formulations/DDSs include high-concentration solution, co-formulation of two or more proteins, large volume injection, protein cluster/complex, suspension, nanoparticle, microparticle, and hydrogel. These advanced systems provide clinical benefits related to efficacy and safety, but meanwhile, have more complicated formulations and manufacturing processes compared to conventional solution formulations. To develop a fit-for-purpose formulation/DDS for SC delivery, scientists need to consider multiple factors, such as the primary indication, targeted site, immunogenicity, compatibility, biopharmaceutics, patient compliance, etc. Next, they need to develop appropriate formulation (s) and manufacturing processes using the QbD principle and have a control strategy. This paper aims to provide a comprehensive review of advanced formulations/DDSs recently developed for SC delivery of proteins, as well as some knowledge gaps and potential strategies to narrow them through future research.
Collapse
|
8
|
Bostock C, Teal CJ, Dang M, Golinski AW, Hackel BJ, Shoichet MS. Affibody-mediated controlled release of fibroblast growth factor 2. J Control Release 2022; 350:815-828. [PMID: 36087800 DOI: 10.1016/j.jconrel.2022.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Protein therapeutics possess high target affinity and specificity, yet short residence times, which limit their broad utility. To overcome this challenge, we used affinity interactions to modulate protein release from a hydrogel delivery vehicle thereby prolonging therapeutic availability. Specifically, we designed an affibody-modified hyaluronan (HA)-based hydrogel as a delivery platform for fibroblast growth factor 2 (FGF2), a neuroprotective and neuroregenerative factor in the central nervous system (CNS). We identified a highly specific affibody binding partner with moderate affinity for FGF2 using yeast surface display and flow cytometry-based screening. Importantly, we demonstrated controlled release of bioactive FGF2 from the hydrogel by varying the ratio of affibody to protein and showed increased thermal stability of FGF2 in the presence of affibody. This versatile delivery platform will allow the distinct, simultaneous release of multiple proteins based on specific affinity interactions.
Collapse
Affiliation(s)
- Chiara Bostock
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Carter J Teal
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada; Institute of Biomedical Engineering, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Mickael Dang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Alex W Golinski
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, MN 55455, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, MN 55455, United States
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada; Institute of Biomedical Engineering, 164 College Street, Toronto, Ontario M5S 3G9, Canada.
| |
Collapse
|
9
|
Computation-Aided Design of Albumin Affibody-Inserted Antibody Fragment for the Prolonged Serum Half-Life. Pharmaceutics 2022; 14:pharmaceutics14091769. [PMID: 36145517 PMCID: PMC9500697 DOI: 10.3390/pharmaceutics14091769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Single-chain variable fragments (scFvs) have been recognized as promising agents in cancer therapy. However, short serum half-life of scFvs often limits clinical application. Fusion to albumin affibody (ABD) is an effective and convenient half-life extension strategy. Although one terminus of scFv is available for fusion of ABD, it is also frequently used for fusion of useful moieties such as small functional proteins, cytokines, or antibodies. Herein, we investigated the internal linker region for ABD fusion instead of terminal region, which was rarely explored before. We constructed two internally ABD-inserted anti-HER2 4D5scFv (4D5-ABD) variants, which have short (4D5-S-ABD) and long (4D5-L-ABD) linker length respectively. The model structures of these 4D5scFv and 4D5-ABD variants predicted using the deep learning-based protein structure prediction program (AlphaFold2) revealed high similarity to either the original 4D5scFv or the ABD structure, implying that the functionality would be retained. Designed 4D5-ABD variants were expressed in the bacterial expression system and characterized. Both 4D5-ABD variants showed anti-HER2 binding affinity comparable with 4D5scFv. Binding affinity of both 4D5-ABD variants against albumin was also comparable. In a pharmacokinetic study in mice, the 4D5-ABD variants showed a significantly prolonged half-life of 34 h, 114 times longer than that of 4D5scFv. In conclusion, we have developed a versatile scFv platform with enhanced pharmacokinetic profiles with an aid of deep learning-based structure prediction.
Collapse
|
10
|
Teal CJ, Hettiaratchi MH, Ho MT, Ortin-Martinez A, Ganesh AN, Pickering AJ, Golinski AW, Hackel BJ, Wallace VA, Shoichet MS. Directed Evolution Enables Simultaneous Controlled Release of Multiple Therapeutic Proteins from Biopolymer-Based Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202612. [PMID: 35790035 DOI: 10.1002/adma.202202612] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
With the advent of increasingly complex combination strategies of biologics, independent control over their delivery is the key to their efficacy; however, current approaches are hindered by the limited independent tunability of their release rates. To overcome these limitations, directed evolution is used to engineer highly specific, low affinity affibody binding partners to multiple therapeutic proteins to independently control protein release rates. As a proof-of-concept, specific affibody binding partners for two proteins with broad therapeutic utility: insulin-like growth factor-1 (IGF-1) and pigment epithelium-derived factor (PEDF) are identified. Protein-affibody binding interactions specific to these target proteins with equilibrium dissociation constants (KD ) between 10-7 and 10-8 m are discovered. The affibodies are covalently bound to the backbone of crosslinked hydrogels using click chemistry, enabling sustained, independent, and simultaneous release of bioactive IGF-1 and PEDF over 7 days. The system is tested with C57BL/6J mice in vivo, and the affibody-controlled release of IGF-1 results in sustained activity when compared to bolus IGF-1 delivery. This work demonstrates a new, broadly applicable approach to tune the release of therapeutic proteins simultaneously and independently and thus the way for precise control over the delivery of multicomponent therapies is paved.
Collapse
Affiliation(s)
- Carter J Teal
- Institute of Biomedical Engineering, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Marian H Hettiaratchi
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Margaret T Ho
- Institute of Biomedical Engineering, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Ahil N Ganesh
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Andrew J Pickering
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Alex W Golinski
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, MN, 55455, USA
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, MN, 55455, USA
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, ON, M5S 1A1, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College Street, Toronto, ON, M5T 3A9, Canada
| | - Molly S Shoichet
- Institute of Biomedical Engineering, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College Street, Toronto, ON, M5T 3A9, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
11
|
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022; 17:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
Collapse
Affiliation(s)
- Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Tung-Chun Lee
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| |
Collapse
|
12
|
Li Y, Yang HY, Lee DS. Biodegradable and Injectable Hydrogels in Biomedical Applications. Biomacromolecules 2022; 23:609-618. [PMID: 35133798 DOI: 10.1021/acs.biomac.1c01552] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Injectable hydrogels are a unique class of hydrogels that are formed upon injection into living bodies. They possess features of typical hydrogels such as softness, 3D network structures, large contents of water, the ability to load water-soluble substances, and so on. Furthermore, their injectability allows injectable hydrogels to be implanted into living bodies using a syringe in a minimally invasive way. After being loaded with different active substances (drugs, proteins, genes, viruses, cells, etc.), injectable hydrogels have been demonstrated to be potential in many different biomedical applications including controlled release and tissue engineering. However, biodegradability is also an important property of injectable hydrogels and allows removal of the hydrogels after accomplishment of their tasks. In this Perspective, we aim at introducing several different types of biodegradable and injectable hydrogels and compare their differences in properties and applications. Lastly, we also point out some remaining problems and future trends in the field of biodegradable and injectable hydrogels.
Collapse
Affiliation(s)
- Yi Li
- College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang Province 314001, PR China
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
13
|
Li F, Zhang Y, Wang F, Chen J, Wang B, Li N, Lin X, Zhuang J. Metal–organic framework-based biomimetic cascade bioreactor for highly efficient treatment of hyperuricemia with low side effects. NEW J CHEM 2022. [DOI: 10.1039/d2nj00208f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on a metal–organic framework-based biomimetic cascade bioreactor for efficient treatment of hyperuricemia with low side effects.
Collapse
Affiliation(s)
- Fenglan Li
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yuanyuan Zhang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Fang Wang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jinfa Chen
- The Center of Laboratory, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Bin Wang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ning Li
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xinhua Lin
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Junyang Zhuang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
14
|
Zhong Z. Controlled delivery systems are the cornerstone of advanced therapies and vaccines: An Asian perspective. J Control Release 2021; 334:34-36. [PMID: 33872628 DOI: 10.1016/j.jconrel.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
15
|
Chen B, Wu S, Ye Q. Fabrication and characterization of biodegradable KH560 crosslinked chitin hydrogels with high toughness and good biocompatibility. Carbohydr Polym 2021; 259:117707. [PMID: 33673987 DOI: 10.1016/j.carbpol.2021.117707] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022]
Abstract
Chitin hydrogels have multiple advantages of nontoxicity, biocompatibility, biodegradability, and three-dimensional hydrophilic polymer network structure similar to the macromolecular biological tissue. However, the mechanical strength of chitin hydrogels is relatively weak. Construction of chitin hydrogels with high mechanical strength and good biocompatibility is essential for the successful applications in biomedical field. Herein, we developed double crosslinked chitin hydrogels by dissolving chitin in KOH/urea aqueous solution with freezing-thawing process, then using KH560 as cross-linking agent and coagulating in ethanol solution at low temperature. The obtained chitin/ KH560 (CK) hydrogels displayed good transparency and toughness with compressed nanofibrous network and porous structure woven with chitin nanofibers. Moreover, the optimal CK hydrogels exhibited excellent mechanical properties (σb = 1.92 ± 0.21 Mpa; εb = 71 ± 5 %), high swelling ratio, excellent blood compatibility, biocompatibility and biodegradability, which fulfill the requirements of biomedical materials and showing potential applications in biomedicine.
Collapse
Affiliation(s)
- Biao Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China; The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, 410013, China.
| |
Collapse
|
16
|
Li Y, Yang HY, Lee DS. Advances in biodegradable and injectable hydrogels for biomedical applications. J Control Release 2020; 330:151-160. [PMID: 33309972 DOI: 10.1016/j.jconrel.2020.12.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 01/04/2023]
Abstract
In situ-forming injectable hydrogels are smart biomaterials that can be implanted into living bodies with minimal invasion. Due to pioneer work of Prof. Sung Wan Kim in this field, injectable hydrogels have shown great potentials in many different biomedical applications. Biodegradable and injectable hydrogels can be administered at room temperature as viscous polymer sols. They will degrade after accomplishing their tasks. Before injecting into living bodies, active substances can be loaded into viscous polymer sols with a high loading efficiency by simple mixing. After injecting into living bodies, active substances-loaded hydrogels can be formed and active substances can be released in a controlled manner upon diffusion or polymer degradation. Due to their outstanding properties and unique features, injectable hydrogels are very promising in many biomedical applications including drug/protein/gene delivery, tissue engineering, and regenerative medicine. In this review, we briefly introduce recent development of several important types of in situ-forming injectable hydrogels reported by our group during the last three years. Important properties and potential applications (such as cancer therapy, insulin release and wound healing) of these injectable hydrogels are reviewed. Challenges and perspectives in this research field are also discussed.
Collapse
Affiliation(s)
- Yi Li
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, PR China; Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing 314001, Zhejiang, PR China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|