1
|
Hu W, Yang L, Liao H, Sun D, Ouyang XK, Wang N, Yang G. Disulfiram-loaded CuO 2 nanocarriers for enhanced synergistic chemodynamic chemotherapy. J Colloid Interface Sci 2024; 674:9-18. [PMID: 38908062 DOI: 10.1016/j.jcis.2024.06.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Disulfiram (DSF) metabolites exhibit antitumor properties when bound to Cu2+. This combination also promotes the generation of reactive oxygen species (ROS), ultimately leading to tumor cell death. In this study, CuO2 served as a carrier for DSF, forming a dual-drug delivery system with Cu2+ and DSF encapsulated in polydopamine (PDA). In the final delivery system, CuO2 (DSF-CuO2@PDA) was hydrolyzed at the tumor site, releasing both Cu2+ and H2O2. Cu2+ reacts with DSF metabolites to form Bis(diethyldithiocarbamate)-Cu (CuET), which triggers a Fenton-like reaction that generates ROS. Chemotherapy and chemodynamic therapy exhibited significant tumor-suppressive capabilities, with an inhibition rate of 61 %. In addition, the DSF-CuO2@PDA complex demonstrated superlative tumor-targeting ability and biocompatibility.
Collapse
Affiliation(s)
- Wei Hu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Lianlian Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hongtao Liao
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316000, PR China
| | - Deguan Sun
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316000, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Guocai Yang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316000, PR China.
| |
Collapse
|
2
|
Qin Y, Meng X, Li L, Liu C, Gao F, Yuan X, Huang Y, Zhu Y. Develop a PD-1-blockade peptide to reinvigorate T-cell activity and inhibit tumor progress. Eur J Pharmacol 2023; 960:176144. [PMID: 37866745 DOI: 10.1016/j.ejphar.2023.176144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Immune checkpoint inhibitors, particularly monoclonal antibodies blocking the programmed cell death 1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway, have been successfully utilized in the clinic. However, certain drawbacks associated with antibodies, such as high immunogenicity and poor tissue penetration, need to be addressed for their broader clinical application. Peptides, as low molecular weight alternatives, have garnered increasing interest in this field. In this study, we employed bacterial surface display technology to identify a PD-1-binding peptide, PBP. The PBP peptide exhibited moderate affinity for human PD-1 (hPD-1) and displayed cross-reactivity with mouse PD-1 (mPD-1). Molecular docking analysis revealed that the interaction residues of the PBP peptide with PD-1 played crucial roles in the formation of the PD-1/PD-L1 complex. A competing binding assay demonstrated that the peptide could interfere the interaction of PD-1 and PD-L1. Moreover, in vitro experiments showed that the PBP peptide could reinvigorate T cells inhibited by PD-L1. In an in vivo mouse model of CT26, the PBP peptide effectively suppressed tumor growth by enhancing T cell function. In conclusion, our results suggest that the PBP peptide exerts an anti-tumor effect by impeding the interplay between PD-1 and PD-L1, highlighting its potential as an alternative for tumor immunotherapy.
Collapse
Affiliation(s)
- Yingzhou Qin
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiangzhou Meng
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lin Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Cuijuan Liu
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fan Gao
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xin Yuan
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ying Huang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yimin Zhu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
3
|
Yang SJ, Pai JA, Yao CJ, Huang CH, Chen JL, Wang CH, Chen KC, Shieh MJ. SN38-loaded nanomedicine mediates chemo-radiotherapy against CD44-expressing cancer growth. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-022-00151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Background
Chemo-radiotherapy is the combined chemotherapy and radiotherapy on tumor treatment to obtain the local radiosensitization and local cytotoxicity of the tumor and to control the microscopic metastatic disease.
Methods
In this study, 7-ethyl-10-hydroxycamptothecin (SN38) molecules could be successfully loaded into human serum albumin (HSA)–hyaluronic acid (HA) nanoparticles (SH/HA NPs) by the hydrophobic side groups of amino acid in HSA.
Results
HSA could be used to increase the biocompatibility and residence time of the nanoparticles in the blood, whereas HA could improve the benefits and overall treatment effect on CD44-expressing colorectal cancer (CRC), and reduce drug side effects. In addition to its role as a chemotherapeutic agent, SN38 could be used as a radiosensitizer, able to arrest the cell cycle, and allowing cells to stay in the G2/M stage, to improve the sensitivity of tumor cells to radiation. In vivo results demonstrated that SH/HA NPs could accumulate in the tumor and produce significant tumor suppression, with no adverse effects observed when combined with γ-ray irradiation. This SH/HA NPs-medicated chemo-radiotherapy could induce an anti-tumor immune response to inhibit the growth of distal tumors, and produce an abscopal effect.
Conclusions
Therefore, this SN38-loaded and HA-incorporated nanoparticle combined with radiotherapy may be a promising therapeutic artifice for CRC in the future.
Collapse
|
4
|
Cheng L, Yu J, Hao T, Wang W, Wei M, Li G. Advances in Polymeric Micelles: Responsive and Targeting Approaches for Cancer Immunotherapy in the Tumor Microenvironment. Pharmaceutics 2023; 15:2622. [PMID: 38004600 PMCID: PMC10675796 DOI: 10.3390/pharmaceutics15112622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, to treat a diverse array of cancer forms, considerable advancements have been achieved in the field of cancer immunotherapies. However, these therapies encounter multiple challenges in clinical practice, such as high immune-mediated toxicity, insufficient accumulation in cancer tissues, and undesired off-target reactions. To tackle these limitations and enhance bioavailability, polymer micelles present potential solutions by enabling precise drug delivery to the target site, thus amplifying the effectiveness of immunotherapy. This review article offers an extensive survey of recent progress in cancer immunotherapy strategies utilizing micelles. These strategies include responsive and remodeling approaches to the tumor microenvironment (TME), modulation of immunosuppressive cells within the TME, enhancement of immune checkpoint inhibitors, utilization of cancer vaccine platforms, modulation of antigen presentation, manipulation of engineered T cells, and targeting other components of the TME. Subsequently, we delve into the present state and constraints linked to the clinical utilization of polymeric micelles. Collectively, polymer micelles demonstrate excellent prospects in tumor immunotherapy by effectively addressing the challenges associated with conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Lichun Cheng
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Jiankun Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Tangna Hao
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Wenshuo Wang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Guiru Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| |
Collapse
|
5
|
Li Q, Liu X, Yan C, Zhao B, Zhao Y, Yang L, Shi M, Yu H, Li X, Luo K. Polysaccharide-Based Stimulus-Responsive Nanomedicines for Combination Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206211. [PMID: 36890780 DOI: 10.1002/smll.202206211] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/09/2023] [Indexed: 06/08/2023]
Abstract
Cancer immunotherapy is a promising antitumor approach, whereas nontherapeutic side effects, tumor microenvironment (TME) intricacy, and low tumor immunogenicity limit its therapeutic efficacy. In recent years, combination immunotherapy with other therapies has been proven to considerably increase antitumor efficacy. However, achieving codelivery of the drugs to the tumor site remains a major challenge. Stimulus-responsive nanodelivery systems show controlled drug delivery and precise drug release. Polysaccharides, a family of potential biomaterials, are widely used in the development of stimulus-responsive nanomedicines due to their unique physicochemical properties, biocompatibility, and modifiability. Here, the antitumor activity of polysaccharides and several combined immunotherapy strategies (e.g., immunotherapy combined with chemotherapy, photodynamic therapy, or photothermal therapy) are summarized. More importantly, the recent progress of polysaccharide-based stimulus-responsive nanomedicines for combination cancer immunotherapy is discussed, with the focus on construction of nanomedicine, targeted delivery, drug release, and enhanced antitumor effects. Finally, the limitations and application prospects of this new field are discussed.
Collapse
Affiliation(s)
- Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| |
Collapse
|
6
|
Yang Z, Li H, Zhang W, Zhang M, He J, Yu Z, Sun X, Ni P. CD163 Monoclonal Antibody Modified Polymer Prodrug Nanoparticles for Targeting Tumor-Associated Macrophages (TAMs) to Enhance Anti-Tumor Effects. Pharmaceutics 2023; 15:pharmaceutics15041241. [PMID: 37111726 PMCID: PMC10144748 DOI: 10.3390/pharmaceutics15041241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Tumor-associated macrophages (TAMs)-based immunotherapy is a promising strategy. Since TAMs are mainly composed of M2-type macrophages, they have a promoting effect on tumor growth, invasion, and metastasis. M2-type macrophages contain a specific receptor CD163 on their surface, providing a prerequisite for active targeting to TAMs. In this study, we prepared CD163 monoclonal antibody modified doxorubicin-polymer prodrug nanoparticles (abbreviated as mAb-CD163-PDNPs) with pH responsiveness and targeted delivery. First, DOX was bonded with the aldehyde group of a copolymer by Schiff base reaction to form an amphiphilic polymer prodrug, which could self-assemble into nanoparticles in the aqueous solution. Then, mAb-CD163-PDNPs were generated through a "Click" reaction between the azide group on the surface of the prodrug nanoparticles and dibenzocyclocytyl-coupled CD163 monoclonal antibody (mAb-CD163-DBCO). The structure and assembly morphology of the prodrug and nanoparticles were characterized by 1H NMR, MALDI-TOF MS, FT-IR UV-vis spectroscopy, and dynamic light scattering (DLS). In vitro drug release behavior, cytotoxicity, and cell uptake were also investigated. The results show that the prodrug nanoparticles have regular morphology and stable structure, especially mAb-CD163-PDNPs, which can actively target TAMs at tumor sites, respond to the acidic environment in tumor cells, and release drugs. While depleting TAMs, mAb-CD163-PDNPs can actively enrich drugs at the tumor site and have a strong inhibitory effect on TAMs and tumor cells. The result of the in vivo test also shows a good therapeutic effect, with a tumor inhibition rate of 81%. This strategy of delivering anticancer drugs in TAMs provides a new way to develop targeted drugs for immunotherapy of malignant tumors.
Collapse
Affiliation(s)
- Zun Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Haijiao Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wenrui Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Mingzu Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jinlin He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zepeng Yu
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215001, China
| | - Xingwei Sun
- Intervention Department, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Peihong Ni
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Li X, Guo X, Huang J, Lin Q, Qin B, Jiang M, Shan X, Luo Z, Zhang J, Shi Y, Lu Y, Liu X, Du Y, Yang F, Luo L, You J. Recruiting T cells and sensitizing tumors to NKG2D immune surveillance for robust antitumor immune response. J Control Release 2023; 353:943-955. [PMID: 36535542 DOI: 10.1016/j.jconrel.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Although recruiting T cells to convert cold tumors into hot can prevent some tumors from evading immune surveillance, tumors have evolved more mechanisms to achieve immune evasion, such as downregulating major histocompatibility complex I (MHC I) molecules expression to prevent T cells from recognizing tumor-antigens, or secreting immune suppression cytokines that disable T cells. Tumor immune evasion not only promotes tumor growth, but also weakens the efficacy of existing tumor immunotherapies. Therefore, recruiting T cells while reshaping innate immunity plays an important role in preventing tumor immune escape. In this study, we constructed a long-acting in situ forming implant (ISFI) based on the Atrigel technology, co-encapsulated with G3-C12 and sulfisoxazole (SFX) as a drug depot in the tumor site (SFX + G3-C12-ISFI). First, G3-C12 could recruit T cells, and transform cold into hot tumors. Furthermore, SFX could inhibit tumor-derived exosomes secretion, reduce the shedding of NKG2D ligand (NKG2DL), repair NKG2D/NKG2DL pathway, reinvigorate natural killer (NK) cells, and evade the effects of MHC I molecules missing. In the humanized cold tumor model, our strategy showed an excellent anti-tumor effect, providing a smart strategy for solving tumor evasion immune surveillance.
Collapse
Affiliation(s)
- Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Qing Lin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Fuchun Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, PR China.
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
8
|
Jiang M, Qin B, Li X, Liu Y, Guan G, You J. New advances in pharmaceutical strategies for sensitizing anti-PD-1 immunotherapy and clinical research. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1837. [PMID: 35929522 DOI: 10.1002/wnan.1837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 01/31/2023]
Abstract
Attempts have been made continuously to use nano-drug delivery system (NDDS) to improve the effect of antitumor therapy. In recent years, especially in the application of immunotherapy represented by antiprogrammed death receptor 1 (anti-PD-1), it has been vigorously developed. Nanodelivery systems are significantly superior in a number of aspects including increasing the solubility of insoluble drugs, enhancing their targeting ability, prolonging their half-life, and reducing side effects. It can not only directly improve the efficacy of anti-PD-1 immunotherapy, but also indirectly enhance the antineoplastic efficacy of immunotherapy by boosting the effectiveness of therapeutic modalities such as chemotherapy, radiotherapy, photothermal, and photodynamic therapy (PTT/PDT). Here, we summarize the studies published in recent years on the use of nanotechnology in pharmaceutics to improve the efficacy of anti-PD-1 antibodies, analyze their characteristics and shortcomings, and combine with the current clinical research on anti-PD-1 antibodies to provide a reference for the design of future nanocarriers, so as to further expand the clinical application prospects of NDDSs. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guannan Guan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Zhou Z, Liu Y, Song W, Jiang X, Deng Z, Xiong W, Shen J. Metabolic reprogramming mediated PD-L1 depression and hypoxia reversion to reactivate tumor therapy. J Control Release 2022; 352:793-812. [PMID: 36343761 DOI: 10.1016/j.jconrel.2022.11.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
As a promising cancer treatment, photodynamic therapy (PDT) still achieved limited clinical success due to the severe hypoxia and programmed death ligand-1 (PD-L1) over-expressed immunosuppression tumor microenvironment. At present, few methods have been proven to solve these two defects simply and effectively by a single drug or nano-system simultaneously. To ameliorate this situation, we designed and constructed MB@Bu@MnO2 nanoparticles with two-step oxygen regulation ability and PD-1/PD-L1 axis cascade-disruption capacity via a biomineralization method. In such a nanosystem, manganese dioxide albumin (MnO2@Alb) was used as the drug carrier, Butformin (Bu) as mitochondria-associated oxidative phosphorylation (OXPHOS) disruption agent with PD-L1 depression and oxygen reversion ability, and methylene blue (MB) as PDT drug with programmed cell death protein 1 (PD-1) inhibition capacity. Owing to the tumor-responsive capacity of MB@Bu@MnO2 nanoparticles, Bu and MB were selectively delivered and released in tumors. Then, the tumor hypoxia was dramatically reversed by Bu inhibited oxygen consumption, and MnO2 improved oxygen generation. Following this, the reactive oxygen species (ROS) generation was enhanced by MB@Bu@MnO2 nanoparticles mediated PDT owing to the reversed tumor hypoxia. Furthermore, the immunosuppression microenvironment was also obviously reversed by MB@Bu@MnO2 nanoparticles enhanced immunogenic cell death (ICD) and PD-1/PD-L1 axis cascade-disruption, which then enhanced T cell infiltration and improved its tumor cell killing ability. Finally, the growth of solid tumors was significantly depressed by MB@Bu@MnO2 nanoparticles mediated PDT. All in all, this well-designed nanosystem could solve the defects of traditional PDT via PD-1/PD-L1 axis dual disruption and reversing tumor hypoxia by two-step oxygen regulation.
Collapse
Affiliation(s)
- Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Song
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Xin Jiang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Zaian Deng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong 518118, China.
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
10
|
Hopkins C, Javius-Jones K, Wang Y, Hong H, Hu Q, Hong S. Combinations of chemo-, immuno-, and gene therapies using nanocarriers as a multifunctional drug platform. Expert Opin Drug Deliv 2022; 19:1337-1349. [PMID: 35949105 DOI: 10.1080/17425247.2022.2112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cancer immunotherapies have created a new generation of therapeutics to employ the immune system to attack cancer cells. However, these therapies are typically based on biologics that are nonspecific and often exhibit poor tumor penetration and dose-limiting toxicities. Nanocarriers allow the opportunity to overcome these barriers as they have the capabilities to direct immunomodulating drugs to tumor sites via passive and active targeting, decreasing potential adverse effects from nonspecific targeting. In addition, nanocarriers can be multifunctionalized to deliver multiple cancer therapeutics in a single drug platform, offering synergistic potential from co-delivery approaches. AREAS COVERED This review focuses on the delivery of cancer therapeutics using emerging nanocarriers to achieve synergistic results via co-delivery of immune-modulating components (i.e. chemotherapeutics, monoclonal antibodies, and genes). EXPERT OPINION Nanocarrier-mediated delivery of combinatorial immunotherapy creates the opportunity to fine-tune drug release while achieving superior tumor targeting and tumor cell death, compared to free drug counterparts. As these nanoplatforms are constantly improved upon, combinatorial immunotherapy will afford the greatest benefit to treat an array of tumor types while inhibiting cancer evasion pathways.
Collapse
Affiliation(s)
- Caroline Hopkins
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Heejoo Hong
- Department of Clinical Pharmacology & Therapeutics, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
11
|
HOXC6 Regulates the Epithelial-Mesenchymal Transition through the TGF-β/Smad Signaling Pathway and Predicts a Poor Prognosis in Glioblastoma. JOURNAL OF ONCOLOGY 2022; 2022:8016102. [PMID: 35571491 PMCID: PMC9098331 DOI: 10.1155/2022/8016102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
Background The HOX gene family of transcription factors, characterized by conserved homeodomains, is positively correlated with the resistance to chemotherapy drugs and poor prognosis, as well as the initiating potential of gliomas. However, there are few studies regarding the HOXC6 gene in glioma cells. Therefore, in the present study, we explored the regulatory roles and detailed mechanisms underlying the relationship between HOXC6 and the progression of GBM. Methods The expression levels and prognostic value of HOXC6 in GBM were evaluated using the data obtained from the GCCA, GEPIA, and ONCOMINE databases. The relationship between GBM prognosis and levels of HOXC6 was identified using Kaplan-Meier curves. The protein levels of HOXC6 in GBM and adjacent normal tissues were identified via Western blot and immunohistochemistry (IHC) staining methods. Lentiviruses containing full-length HOXC6 and HOXC6 specific siRNA sequences were used to overexpress and knock down, respectively, the expression of HOXC6 in U87 and U251 cells. The role of HOXC6 in the regulation of migration and proliferation of GBM cells was accessed using Transwell, wound healing, CCK-8, and colony formation assays. The activation of the TGF-β/Smad signaling pathway was detected via Western blotting. Results Compared to normal tissues and control cells, GBM tissues and cell lines showed higher expressions of HOXC6. The expression of HOXC6 was associated with disease-free and the overall survival of GBM patients. Additionally, positive correlations between the expression of HOXC6 and the migration and proliferation of GBM cells were observed in vitro. The mechanistic analyses indicated that HOXC6 exerts its promotive effect on the progression and invasion of glioma cells by promoting the activation of the EMT and TGF-β/Smad signaling pathways. Conclusions HOXC6 enhances the migration and proliferation of GBM by activating the EMT signaling pathway.
Collapse
|
12
|
Li Z, Liu C, Li C, Wang F, Liu J, Zheng Z, Wu J, Zhang B. Irinotecan/scFv co-loaded liposomes coaction on tumor cells and CAFs for enhanced colorectal cancer therapy. J Nanobiotechnology 2021; 19:421. [PMID: 34906155 PMCID: PMC8670172 DOI: 10.1186/s12951-021-01172-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), as an important component of stroma, not only supply the "soils" to promote tumor invasion and metastasis, but also form a physical barrier to hinder the penetration of therapeutic agents. Based on this, the combinational strategy that action on both tumor cells and CAFs simultaneously would be a promising approach for improving the antitumor effect. RESULTS In this study, the novel multifunctional liposomes (IRI-RGD/R9-sLip) were designed, which integrated the advantages including IRI and scFv co-loading, different targets, RGD mediated active targeting, R9 promoting cell efficient permeation and lysosomal escape. As expected, IRI-RGD/R9-sLip showed enhanced cytotoxicity in different cell models, effectively increased the accumulation in tumor sites, as well as exhibited deep permeation ability both in vitro and in vivo. Notably, IRI-RGD/R9-sLip not only exhibited superior in vivo anti-tumor effect in both CAFs-free and CAFs-abundant bearing mice models, but also presented excellent anti-metastasis efficiency in lung metastasis model. CONCLUSION In a word, the novel combinational strategy by coaction on both "seeds" and "soils" of the tumor provides a new approach for cancer therapy, and the prepared liposomes could efficiently improve the antitumor effect with promising clinical application prospects.
Collapse
Affiliation(s)
- Zhaohuan Li
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Chunxi Liu
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, People's Republic of China
| | - Chenglei Li
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Fangqing Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Jianhao Liu
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Zengjuan Zheng
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China.
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China.
| |
Collapse
|
13
|
Yang Y, Liu Q, Shi X, Zheng Q, Chen L, Sun Y. Advances in plant-derived natural products for antitumor immunotherapy. Arch Pharm Res 2021; 44:987-1011. [PMID: 34751930 DOI: 10.1007/s12272-021-01355-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
In recent years, immunotherapy has emerged as a novel antitumor strategy in addition to traditional surgery, radiotherapy and chemotherapy. It uniquely focuses on immune cells and immunomodulators in the tumor microenvironment and helps eliminate tumors at the root by rebuilding the immune system. Despite remarkable breakthroughs, cancer immunotherapy still faces many challenges: lack of predictable and prognostic biomarkers, adverse side effects, acquired treatment resistance, high costs, etc. Therefore, more efficacious and efficient, safer and cheaper antitumor immunomodulatory drugs have become an urgent requirement. For decades, plant-derived natural products obtained from land and sea have provided the most important source for the development of antitumor drugs. Currently, more attention is being paid to the discovery of potential cancer immunotherapy modulators from plant-derived natural products, such as polysaccharides, phenols, terpenoids, quinones and alkaloids. Some of these agents have outstanding advantages of multitargeting and low side effects and low cost compared to conventional immunotherapeutic agents. We intend to summarize the progress of comprehensive research on these plant-derived natural products and their derivatives and discuss their possible mechanisms in regulating the immune system and their efficacy as monotherapies or in combination with regular chemotherapeutic agents.
Collapse
Affiliation(s)
- Yi Yang
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Xianai Shi
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China.
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
- Department of Gyn-Surgical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
14
|
Prrx1 promotes stemness and angiogenesis via activating TGF-β/smad pathway and upregulating proangiogenic factors in glioma. Cell Death Dis 2021; 12:615. [PMID: 34131109 PMCID: PMC8206106 DOI: 10.1038/s41419-021-03882-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Glioma is one of the most lethal cancers with highly vascularized networks and growing evidences have identified glioma stem cells (GSCs) to account for excessive angiogenesis in glioma. Aberrant expression of paired-related homeobox1 (Prrx1) has been functionally associated with cancer stem cells including GSCs. In this study, Prrx1 was found to be markedly upregulated in glioma specimens and elevated Prrx1 expression was inversely correlated with prognosis of glioma patients. Prrx1 potentiated stemness acquisition in non-stem tumor cells (NSTCs) and stemness maintenance in GSCs, accompanied with increased expression of stemness markers such as SOX2. Prrx1 also promoted glioma angiogenesis by upregulating proangiogenic factors such as VEGF. Consistently, silencing Prrx1 markedly inhibited glioma proliferation, stemness, and angiogenesis in vivo. Using a combination of subcellular proteomics and in vitro analyses, we revealed that Prrx1 directly bound to the promoter regions of TGF-β1 gene, upregulated TGF-β1 expression, and ultimately activated the TGF-β/smad pathway. Silencing TGF-β1 mitigated the malignant behaviors induced by Prrx1. Activation of this pathway cooperates with Prrx1 to upregulate the expression of stemness-related genes and proangiogenic factors. In summary, our findings revealed that Prrx1/TGF-β/smad signal axis exerted a critical role in glioma stemness and angiogeneis. Disrupting the function of this signal axis might represent a new therapeutic strategy in glioma patients.
Collapse
|
15
|
Li X, Zhang W, Lin J, Wu H, Yao Y, Zhang J, Yang C. T cell membrane cloaking tumor microenvironment-responsive nanoparticles with a smart "membrane escape mechanism" for enhanced immune-chemotherapy of melanoma. Biomater Sci 2021; 9:3453-3464. [PMID: 33949434 DOI: 10.1039/d1bm00331c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of combination immune-chemotherapy makes up for the limitation of monotherapy and achieves superior antitumor activity against cancer. However, combinational therapy is always restricted by poor tumor targeted drug delivery efficacy. Herein, novel T cell membrane cloaking tumor microenvironment-responsive nanoparticles (PBA modified T cell membrane cloaking hyaluronic acid (HA)-disulfide bond-vitamin E succinate/curcumin, shortened as RCM@T) were developed. T cell membrane cloaking not only serves as a protection shell for sufficient drug delivery but also acts as a programmed cell death-1(PD-1) "antibody" to selectively bind the PD-L1 of tumor cells. When RCM@T is intravenously administrated into the blood stream, it accumulates at tumor sites and responds to an acidic pH to achieve a "membrane escape effect" and expose the HA residues of RCM for tumor targeted drug delivery. RCM accumulates in the cytoplasm via CD44 receptor mediated endocytosis and intracellularly releases antitumor drug in the intracellular redox microenvironment for tumor chemotherapy. T cell membrane debris targets the PD-L1of tumor cells for tumor immunotherapy, which not only directly kills tumor cells, but also improves the CD8+ T cell level and facilitates effector cytokine release. Taken together, the as-constructed RCM@T creates a new way for the rational design of a drug delivery system via the combination of stimuli-responsive drug release, chemotherapeutical agent delivery and cell membrane based immune checkpoint blockade immunotherapy.
Collapse
Affiliation(s)
- Xiaofang Li
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Wen Zhang
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Jing Lin
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Hao Wu
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Yucen Yao
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Jiayi Zhang
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| | - Chunrong Yang
- College Pharmacy, Jiamusi University, 258 Xuefu Street, Jiamusi, Heilongjiang 154007, China.
| |
Collapse
|
16
|
Cocktail strategy for 'cold' tumors therapy via active recruitment of CD8+ T cells and enhancing their function. J Control Release 2021; 334:413-426. [PMID: 33964366 DOI: 10.1016/j.jconrel.2021.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
In immunotherapy, 'cold' tumors, with low T cells infiltration, hardly benefit from the treatment of immune checkpoint inhibitors (ICIs). To address this issue, we screened two 'cold' tumor models for mice with high expression of galectin-3 (Gal-3) and designed a cocktail strategy to actively recruit CD8+ T cells into the tumor microenvironment (TME), which reversed 'cold' tumors into 'hot' and remarkably elevated their ICIs-responsiveness. Gal-3, an important driving force of tumorigenesis, inhibits T cell infiltration into tumor tissue that shapes 'cold' tumor phenotype, and promotes tumor metastasis. In this respect, Gal-3 antagonist G3-C12 peptide was chosen and further loaded into poly(lactic-co-glycolic acid) (PLGA) microspheres, with the prepared G3-C12@PLGA playing a dual role of antitumor, namely, killing two birds with one stone. Specifically, G3-C12@PLGA actively recruit T cells into 'cold' tumors by rescuing IFN-γ, and simultaneously inhibit tumor metastasis induced by Gal-3. Moreover, when combined with chemotherapeutic agent (Oxaliplatin) and anti-PD-1 peptide (APP), the immunopotentiating effect of dendritic cells (DCs) was extremely improved, with T-cell depletion dramatically reversed. In vivo experiments showed that such cocktail therapy exerted remarkable antitumor effect on 'cold' breast cancer (BC) and ovarian serous cancer (OSC). These results indicated that our strategy might be promising in treating 'cold' tumors with high expression of Gal-3, which not only enhance cancer treatment outcome, but provide a new platform for the prevention of postoperative tumor recurrence/metastasis.
Collapse
|