1
|
Korelidou A, Domínguez-Robles J, Islam R, Donnelly RF, Coulter JA, Larrañeta E. 3D-printed implants loaded with acriflavine for glioblastoma treatment. Int J Pharm 2024; 665:124710. [PMID: 39277153 DOI: 10.1016/j.ijpharm.2024.124710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Drug delivery routes play an essential role in determining the efficacy and safety of medications. This study focused on the development and optimization of 3D-printed reservoir type implants as a combinational therapy drug delivery system for Glioblastoma Multiforme (GBM) post-surgery, possessing also antibacterial properties. In this study, we used a multimodal agent, Acriflavine (ACF) as an alternative drug to treat GBM. To date, ACF is used only as an antiseptic agent, although it has been shown to possess strong anticancer activities. ACF and a low molecular weight PCL were loaded into 3D-printed reservoir-type implants for sustained drug delivery. The study demonstrated that ACF implants exhibited sustained drug release kinetics, with faster release during the initial 30 days, followed by a gradual decrease over 90 days. This controlled release profile enhances the effectiveness of ACF delivery to tumour targets while minimizing side effects associated with systemic administration. In vitro experiments confirmed the inhibitory activity of ACF against GBM cells compared to non-tumour cells. The study also highlighted the bacteriostatic effects of ACF, making the implants potentially useful for post-surgery infection management, particularly against S. aureus, a common bacterial infection associated with brain surgery. The long-term drug-release capabilities of the implants make them attractive candidates for both tumour inhibition and antibacterial treatment. The study suggests that the developed ACF delivery systems have the potential for future clinical studies. Their ability to provide increased drug efficacy without systemic toxicity makes them promising candidates for cancer therapy and post-surgery infection management.
Collapse
Affiliation(s)
- Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Rayhanul Islam
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jonathan A Coulter
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
2
|
Hernandez JL, Chien ST, Doan MA, Suydam IT, Woodrow KA. Antiretroviral (ARV) Properties Dictate Long-Acting Release and Tissue Partitioning Behaviors in Multidrug Subcutaneous Implants. ACS Biomater Sci Eng 2024; 10:6363-6376. [PMID: 39231268 DOI: 10.1021/acsbiomaterials.4c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Subcutaneous implants can provide patients with long-acting, compliance-independent drug dosing. For this reason, subcutaneous implants have shown emerging interest in human immunodeficiency virus (HIV) prevention. However, any successful long-acting HIV-prevention device will require multidrug dosing, which poses a challenge for formulation considering the physicochemically diverse selection of antiretroviral (ARV) candidates. As a method that has shown the capacity of efficient multidrug delivery, we assessed electrospun fiber implants composed of three synergistically potent ARVs and a biodegradable polymer selected by in vitro release studies. In mice, subcutaneous electrospun fiber implants exhibit burst release of the more hydrophilic drugs maraviroc (MVC) and raltegravir (RAL), which could be reduced via simple prewash treatments of the implants. Over an extended 120 day time frame, fiber implants show drug-specific differences in release time frames and magnitudes in blood serum. However, end-point drug tissue concentrations show that the most hydrophobic drug etravirine (ETR) remains in high concentrations within the implant and in local skin tissue biopsies. Furthermore, ETR is found to be capable of significant partitioning into lymph nodes, the lower female reproductive tract, and the rectum. Topologically smooth film implants also exhibit the same drug-dependent trends. Therefore, we illustrate that drug release and drug tissue partitioning are largely dictated by drug properties. Further, we find that the properties of ETR enable significant drug quantities within the tissues most relevant to HIV protection. Evidence from this work emphasizes the need for a greater focus on drug properties and prodrug strategies to enable relevant, extended, and targeted drug release.
Collapse
Affiliation(s)
- Jamie L Hernandez
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Shin-Tian Chien
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - My-Anh Doan
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Ian T Suydam
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Tagliaferri Rael C, Giguere R, Bryndza Tfaily E, Sutton S, Horn E, Schieffer RJ, Hendrix C, D'Aquila RT, Hope TJ. The Global Impact of Diversifying PrEP Options: Results of an International Discrete Choice Experiment of Existing and Potential PrEP Strategies with Gay and Bisexual Men and Physicians. AIDS Res Hum Retroviruses 2024; 40:591-605. [PMID: 38753738 DOI: 10.1089/aid.2023.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
To improve current and future use of existing (oral, injectable) and potential future (implants, douches) pre-exposure prophylaxis (PrEP) products, we must understand product preferences relative to one another, among gay and bisexual men (GBM), and physicians who prescribe PrEP. We completed an online discrete choice experiment (DCE) with separate groups of GBM and/or physicians from the United States, South Africa, Spain, and Thailand. Participants were presented information on PrEP products, including daily pills, event-driven pills (2-1-1 regimen), injections, subdermal implants (dissolvable, removable), and rectal douches. Next, they completed a choice exercise in which they were shown 10 screens, each presenting 3 of the aforementioned products at a time with 11 attributes for physicians and 10 attributes for GBM. For the attributes that were not constant, one level was shown per screen for each product. Participants selected the product they preferred most and rated their likelihood to select (GBM) or recommend (physicians) that product. Data were modeled using hierarchical Bayes estimation; resulting model coefficients were used to develop attribute importance measures and product preferences. For GBM across all countries, if all aforementioned PrEP products were on the market at the same time, over 90% of GBM would use some form of PrEP; 100% of physicians would recommend at least one of the PrEP products. There were variations in product preference by country. GBM in the United States and Thailand preferred the injection (21.7%, 22.9%, respectively), while the dissolvable implant was preferred in South Africa and Spain (19.9%, 19.8%, respectively). In the United States, South Africa, and Spain (where physician data were available), physicians were most likely to recommend the dissolvable implant (37.2%, 40.6%, 38.3%, respectively).
Collapse
Affiliation(s)
| | - Rebecca Giguere
- HIV Center for Clinical and Behavioral Studies, NYSPI/Columbia University, New York, New York, USA
| | - Ewa Bryndza Tfaily
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | - Robert J Schieffer
- Kellogg School of Management, Northwestern University, Evanston, Illinois, USA
| | - Craig Hendrix
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard T D'Aquila
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas J Hope
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Abdelgader A, Govender M, Kumar P, Choonara YE. A Novel Intrauterine Device for the Spatio-Temporal Release of Norethindrone Acetate as a Counter-Estrogenic Intervention in the Genitourinary Syndrome of Menopause. Pharmaceutics 2024; 16:587. [PMID: 38794250 PMCID: PMC11124343 DOI: 10.3390/pharmaceutics16050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
The genitourinary syndrome of menopause (GSM) is a widely occurring condition affecting millions of women worldwide. The current treatment of GSM involves the use of orally or vaginally administered estrogens, often with the risk of endometrial hyperplasia. The utilization of progestogens offers a means to counteract the effects of estrogen on the endometrial tissue, decreasing unwanted side effects and improving therapeutic outcomes. In this study, a norethindrone acetate (NETA)-loaded, hollow, cylindrical, and sustained release platform has been designed, fabricated, and optimized for implantation in the uterine cavity as a counter-estrogenic intervention in the treatment of GSM. The developed system, which comprises ethyl cellulose (EC) and polycaprolactone (PCL), has been statistically optimized using a two-factor, two-level factorial design, with the mechanical properties, degradation, swelling, and in vitro drug release of NETA from the device evaluated. The morphological characteristics of the platform were further investigated through scanning electron microscopy in addition to cytocompatibility studies using NIH/3T3 cells. Results from the statistical design highlighted the platform with the highest NETA load and the EC-to-PCL ratio that exhibited favorable release and weight loss profiles. The drug release data for the optimal formulation were best fitted with the Peppas-Sahlin model, implicating both diffusion and polymer relaxation in the release mechanism, with cell viability results noting that the prepared platform demonstrated favorable cytocompatibility. The significant findings of this study firmly establish the developed platform as a promising candidate for the sustained release of NETA within the uterine cavity. This functionality serves as a counter-estrogenic intervention in the treatment of GSM, with the platform holding potential for further advanced biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| |
Collapse
|
5
|
Picco CJ, Anjani QK, Donnelly RF, Larrañeta E. An isocratic RP-HPLC-UV method for simultaneous quantification of tizanidine and lidocaine: application to in vitro release studies of a subcutaneous implant. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:979-989. [PMID: 38165785 DOI: 10.1039/d3ay01833d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Implantable devices have been widely investigated to improve the treatment of multiple diseases. Even with low drug loadings, these devices can achieve effective delivery and increase patient compliance by minimizing potential side effects, consequently enhancing the quality of life of the patients. Moreover, multi-drug products are emerging in the pharmaceutical field, capable of treating more than one ailment concurrently. Therefore, a simple analytical method is essential for detecting and quantifying different analytes used in formulation development and evaluation. Here, we present, for the first time, an isocratic method for tizanidine hydrochloride (TZ) and lidocaine (LD) loaded into a subcutaneous implant, utilizing reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a UV detector. These implants have the potential to treat muscular spasticity while providing pain relief for several days after implantation. Chromatographic separation of the two drugs was accomplished using a C18 column, with a mobile phase consisting of 0.1% TFA in water and MeOH in a 58 : 42 ratio, flowing at 0.7 ml min-1. The method exhibited specificity and robustness, providing accurate and precise results. It displayed linearity within the range of 0.79 to 100 μg ml-1, with an R2 value of 1 for the simultaneous analysis of TZ and LD. The developed method demonstrated selectivity, offering limits of detection and quantification of 0.16 and 0.49 μg ml-1 for TZ, and 0.30 and 0.93 μg ml-1 for LD, respectively. Furthermore, the solution containing both TZ and LD proved stable under various storage conditions. While this study applied the method to assess an implant device, it has broader applicability for analysing and quantifying the in vitro drug release of TZ and LD from diverse dosage forms in preclinical settings.
Collapse
Affiliation(s)
- Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
6
|
Nayan MU, Panja S, Sultana A, Zaman LA, Vora LK, Sillman B, Gendelman HE, Edagwa B. Polymer Delivery Systems for Long-Acting Antiretroviral Drugs. Pharmaceutics 2024; 16:183. [PMID: 38399244 PMCID: PMC10892262 DOI: 10.3390/pharmaceutics16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The success of long-acting (LA) drug delivery systems (DDSs) is linked to their biocompatible polymers. These are used for extended therapeutic release. For treatment or prevention of human immune deficiency virus type one (HIV-1) infection, LA DDSs hold promise for improved regimen adherence and reduced toxicities. Current examples include Cabenuva, Apretude, and Sunlenca. Each is safe and effective. Alternative promising DDSs include implants, prodrugs, vaginal rings, and microarray patches. Each can further meet patients' needs. We posit that the physicochemical properties of the formulation chemical design can optimize drug release profiles. We posit that the strategic design of LA DDS polymers will further improve controlled drug release to simplify dosing schedules and improve regimen adherence.
Collapse
Affiliation(s)
- Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Sudipta Panja
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lubaba A. Zaman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK;
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| |
Collapse
|
7
|
Ullah Nayan M, Sillman B, Hasan M, Deodhar S, Das S, Sultana A, Thai Hoang Le N, Soriano V, Edagwa B, Gendelman HE. Advances in long-acting slow effective release antiretroviral therapies for treatment and prevention of HIV infection. Adv Drug Deliv Rev 2023; 200:115009. [PMID: 37451501 DOI: 10.1016/j.addr.2023.115009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Adherence to daily oral antiretroviral therapy (ART) is a barrier to both treatment and prevention of human immunodeficiency virus (HIV) infection. To overcome limitations of life-long daily regimen adherence, long-acting (LA) injectable antiretroviral (ARV) drugs, nanoformulations, implants, vaginal rings, microarray patches, and ultra-long-acting (ULA) prodrugs are now available or in development. These medicines enable persons who are or at risk for HIV infection to be treated with simplified ART regimens. First-generation LA cabotegravir, rilpivirine, and lenacapavir injectables and a dapivirine vaginal ring are now in use. However, each remains limited by existing dosing intervals, ease of administration, or difficulties in finding drug partners. ULA ART regimens provide an answer, but to date, such next-generation formulations remain in development. Establishing the niche will require affirmation of extended dosing, improved access, reduced injection volumes, improved pharmacokinetic profiles, selections of combination treatments, and synchronization of healthcare support. Based on such needs, this review highlights recent pharmacological advances and a future treatment perspective. While first-generation LA ARTs are available for HIV care, they remain far from ideal in meeting patient needs. ULA medicines, now in advanced preclinical development, may close gaps toward broader usage and treatment options.
Collapse
Affiliation(s)
- Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Science, University of Nebraska Medical Center, NE, USA
| | - Suyash Deodhar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Srijanee Das
- Department of Pathology and Microbiology, University of Nebraska Medical Center, NE, USA
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Nam Thai Hoang Le
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | | | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
8
|
Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, Waite D, Glover K, Picco CJ, Korelidou A, Detamornrat U, Vora LK, Li L, Anjani QK, Donnelly RF, Domínguez-Robles J, Larrañeta E. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev 2023; 199:114950. [PMID: 37295560 DOI: 10.1016/j.addr.2023.114950] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.
Collapse
Affiliation(s)
- Elizabeth Magill
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - David Waite
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
9
|
Gunawardana M, Remedios-Chan M, Sanchez D, Fanter R, Webster S, Webster P, Moss JA, Trinh M, Beliveau M, Ramirez CM, Marzinke MA, Kuo J, Gallay PA, Baum MM. Preclinical Considerations for Long-acting Delivery of Tenofovir Alafenamide from Subdermal Implants for HIV Pre-exposure Prophylaxis. Pharm Res 2023; 40:1657-1672. [PMID: 36418671 PMCID: PMC10421770 DOI: 10.1007/s11095-022-03440-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Long-acting formulations of the potent antiretroviral prodrug tenofovir alafenamide (TAF) hold potential as biomedical HIV prevention modalities. Here, we present a rigorous comparison of three animal models, C57BL/6 J mice, beagle dogs, and merino sheep for evaluating TAF implant pharmacokinetics (PKs). METHODS Implants delivering TAF over a wide range of controlled release rates were tested in vitro and in mice and dogs. Our existing PK model, supported by an intravenous (IV) dosing dog study, was adapted to analyze mechanistic aspects underlying implant TAF delivery. RESULTS TAF in vitro release in the 0.13 to 9.8 mg d-1 range with zero order kinetics were attained. Implants with equivalent fabrication parameters released TAF in mice and sheep at rates that were not statistically different, but were 3 times higher in dogs. When two implants were placed in the same subcutaneous pocket, a two-week creep to Cmax was observed in dogs for systemic drug and metabolite concentrations, but not in mice. Co-modeling IV and TAF implant PK data in dogs led to an apparent TAF bioavailability of 9.6 in the single implant groups (compared to the IV group), but only 1.5 when two implants were placed in the same subcutaneous pocket. CONCLUSIONS Based on the current results, we recommend using mice and sheep, with macaques as a complementary species, for preclinical TAF implant evaluation with the caveat that our observations may be specific to the implant technology used here. Our report provides fundamental, translatable insights into multispecies TAF delivery via long-acting implants.
Collapse
Affiliation(s)
- Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Mariana Remedios-Chan
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Debbie Sanchez
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Rob Fanter
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Simon Webster
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Paul Webster
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - John A Moss
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - MyMy Trinh
- Certara USA, Inc., Integrated Drug Development, 100 Overlook Center, Suite 101, Princeton, NJ, USA
| | - Martin Beliveau
- Certara USA, Inc., Integrated Drug Development, 100 Overlook Center, Suite 101, Princeton, NJ, USA
| | - Christina M Ramirez
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles (UCLA), 650 Charles E. Young Drive, Los Angeles, CA, USA
| | - Mark A Marzinke
- Department of Medicine, Johns Hopkins University, 600 N. Wolfe Street, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, 600 N. Wolfe Street/Carnegie 417, Baltimore, MD, USA
| | - Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Philippe A Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA.
| |
Collapse
|
10
|
Pons-Faudoa FP, Di Trani N, Capuani S, Campa-Carranza JN, Nehete B, Sharma S, Shelton KA, Bushman LR, Abdelmawla F, Williams M, Roon L, Nerguizian D, Chua CYX, Ittmann MM, Nichols JE, Kimata JT, Anderson PL, Nehete PN, Arduino RC, Grattoni A. Long-acting refillable nanofluidic implant confers protection against SHIV infection in nonhuman primates. Sci Transl Med 2023; 15:eadg2887. [PMID: 37379369 DOI: 10.1126/scitranslmed.adg2887] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
The impact of pre-exposure prophylaxis (PrEP) on slowing the global HIV epidemic hinges on effective drugs and delivery platforms. Oral drug regimens are the pillar of HIV PrEP, but variable adherence has spurred development of long-acting delivery systems with the aim of increasing PrEP access, uptake, and persistence. We have developed a long-acting subcutaneous nanofluidic implant that can be refilled transcutaneously for sustained release of the HIV drug islatravir, a nucleoside reverse transcriptase translocation inhibitor that is used for HIV PrEP. In rhesus macaques, the islatravir-eluting implants achieved constant concentrations of islatravir in plasma (median 3.14 nM) and islatravir triphosphate in peripheral blood mononuclear cells (median 0.16 picomole per 106 cells) for more than 20 months. These drug concentrations were above the established PrEP protection threshold. In two unblinded, placebo-controlled studies, islatravir-eluting implants conferred 100% protection against infection with SHIVSF162P3 after repeated low-dose rectal or vaginal challenge in male or female rhesus macaques, respectively, compared to placebo control groups. The islatravir-eluting implants were well tolerated with mild local tissue inflammation and no signs of systemic toxicity over the 20-month study period. This refillable islatravir-eluting implant has potential as a long-acting drug delivery system for HIV PrEP.
Collapse
Affiliation(s)
- Fernanda P Pons-Faudoa
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Nicola Di Trani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Simone Capuani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- University of Chinese Academy of Science (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Jocelyn Nikita Campa-Carranza
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey, Mexico
| | - Bharti Nehete
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Suman Sharma
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathryn A Shelton
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Lane R Bushman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Farah Abdelmawla
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Martin Williams
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laura Roon
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Nerguizian
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joan E Nichols
- Department of Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter L Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pramod N Nehete
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA
- University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Roberto C Arduino
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at University of Texas Health Science Center, Houston, TX 77030, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
11
|
Mudjahid M, Meidianto Asri R, Nainu F, Dian Permana A. Validation of spectrophotometric method to quantify chloramphenicol in fluid and rat skin tissue mimicking infection environment: Application to in vitro release and ex vivo dermatokinetic studies from dissolving microneedle loaded microparticle sensitive bacteria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122374. [PMID: 36682254 DOI: 10.1016/j.saa.2023.122374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Cellulitis is a common dermis/subcutaneous tissue skin infection and shared global disease burden, with a higher incidence for males and people aged 45-64 years. Application therapy of chloramphenicol (CHL) has been hindered because of its toxicity and limited penetration into the skin. In this research, CHL was developed into a bacterially sensitive microparticles which were further incorporated into a microneedle system to increase penetration. To support this formulation, in this study, UV-vis spectrophotometry method was validated in methanol, polyvinyl alcohol (PVA) 1%, phosphate buffered saline (PBS), tryptic soy broth (TSB) (fluid-mimicking infection), and skin tissue to quantify amount of CHL. The developed analytical method was subsequently validated according to ICH guidelines. The results obtained showed that the correlation coefficients were linear ≥0.9934. The values of LLOQ inside the methanol, PVA 1%, PBS, TSB, and skin tissue were 7.20 µg/mL, 4.40 µg/mL, 8.18 µg/mL, 387.48 µg/mL, and 7.27 µg/mL, respectively. The accuracy and precision of the developed method were prominent. These methods were successfully applied to quantify the amount of CHL in microparticle and microneedle system in fluid and tissue skin infection. The result showed the high drug release microparticle sensitive bacteria, and high drug retention in ex vivo dermatokinetic evaluation in rat skin tissue containing bacterial infection. This was due to the presence of Staphylococcus aureus bacteria culture that produced lipase enzymes, playing a role in lysing microparticle matrix to develop selectively delivery antimicrobials. A further analytical method needs to be matured to quantify CHL inside the in vivo studies.
Collapse
Affiliation(s)
- Mukarram Mudjahid
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
12
|
Browne EN, Manenzhe K, Makoni W, Nkomo S, Mahaka I, Ahmed K, Shapley-Quinn MK, Marton T, Luecke E, Johnson L, van der Straten A, Minnis AM. Incorporating end-users' voices into the development of an implant for HIV prevention: a discrete choice experiment in South Africa and Zimbabwe. BMC Womens Health 2023; 23:58. [PMID: 36765358 PMCID: PMC9913002 DOI: 10.1186/s12905-023-02181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Input from end-users during preclinical phases can support market fit for new HIV prevention technologies. With several long-acting pre-exposure prophylaxis (PrEP) implants in development, we aimed to understand young women's preferences for PrEP implants to inform optimal design. METHODS We developed a discrete choice experiment and surveyed 800 young women in Harare, Zimbabwe and Tshwane, South Africa between September-November 2020. Women aged 18-30 years who were nulliparous, postpartum, or exchanged sex for money, goods or shelter in prior year were eligible; quotas were set for each subgroup. The DCE asked participants to choose between two hypothetical implants for HIV prevention in a series of nine questions. Implants were described by: size, number of rods and insertion sites, duration (6-months, 1-year, 2-years), flexibility, and biodegradability. Random-parameters logit models estimated preference weights. RESULTS Median age was 24 years (interquartile range 21-27). By design, 36% had used contraceptive implants. Duration of protection was most important feature, with strong preference for a 2-year over 6-month implant. In Zimbabwe, the number of rods/insertion sites was second most important and half as important as duration. Nonetheless, to achieve an implant lasting 2-years, 74% were estimated to accept two rods, one in each arm. In South Africa, preference was for longer, flexible implants that required removal, although each of these attributes were one-third as important as duration. On average, biodegradability and size did not influence Zimbabwean women's choices. Contraceptive implant experience and parity did not influence relative importance of attributes. CONCLUSIONS While duration of protection was a prominent attribute shaping women's choices for PrEP implants, other characteristics related to discreetness were relevant. Optimizing for longest dosing while also ensuring minimal detection of implant placement seemed most attractive to potential users.
Collapse
Affiliation(s)
- Erica N. Browne
- grid.62562.350000000100301493Women’s Global Health Imperative, RTI International, 2150 Shattuck Avenue, Suite 800, Berkeley, CA 94704 USA
| | | | | | | | - Imelda Mahaka
- Pangaea Zimbabwe AIDS Trust (PZAT), Harare, Zimbabwe
| | - Khatija Ahmed
- grid.477887.3Setshaba Research Centre, Soshanguve, South Africa ,grid.49697.350000 0001 2107 2298Faculty of Health Sciences, Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Mary Kate Shapley-Quinn
- grid.62562.350000000100301493Women’s Global Health Imperative, RTI International, 2150 Shattuck Avenue, Suite 800, Berkeley, CA 94704 USA
| | - Tozoe Marton
- grid.62562.350000000100301493Women’s Global Health Imperative, RTI International, 2150 Shattuck Avenue, Suite 800, Berkeley, CA 94704 USA
| | - Ellen Luecke
- grid.62562.350000000100301493Women’s Global Health Imperative, RTI International, 2150 Shattuck Avenue, Suite 800, Berkeley, CA 94704 USA
| | - Leah Johnson
- grid.62562.350000000100301493Biomedical Technologies Group, RTI International, Research Triangle Park, USA
| | - Ariane van der Straten
- ASTRA Consulting, Kensington, USA ,grid.266102.10000 0001 2297 6811Center for AIDS Prevention Studies, Department of Medicine, University of California San Francisco, San Francisco, USA
| | - Alexandra M. Minnis
- grid.62562.350000000100301493Women’s Global Health Imperative, RTI International, 2150 Shattuck Avenue, Suite 800, Berkeley, CA 94704 USA
| |
Collapse
|
13
|
Young IC, Massud I, Cottrell ML, Shrivastava R, Maturavongsadit P, Prasher A, Wong-Sam A, Dinh C, Edwards T, Mrotz V, Mitchell J, Seixas JN, Pallerla A, Thorson A, Schauer A, Sykes C, De la Cruz G, Montgomery SA, Kashuba ADM, Heneine W, Dobard CW, Kovarova M, Garcia JV, García-Lerma JG, Benhabbour SR. Ultra-long-acting in-situ forming implants with cabotegravir protect female macaques against rectal SHIV infection. Nat Commun 2023; 14:708. [PMID: 36759645 PMCID: PMC9911691 DOI: 10.1038/s41467-023-36330-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Ultra-long-acting delivery platforms for HIV pre-exposure prophylaxis (PrEP) may increase adherence and maximize public health benefit. We report on an injectable, biodegradable, and removable in-situ forming implant (ISFI) that is administered subcutaneously and can release the integrase inhibitor cabotegravir (CAB) above protective benchmarks for more than 6 months. CAB ISFIs are well-tolerated in female mice and female macaques showing no signs of toxicity or chronic inflammation. In macaques, median plasma CAB concentrations exceed established PrEP protection benchmarks within 3 weeks and confer complete protection against repeated rectal SHIV challenges. Implant removal via a small incision in 2 macaques at week 12 results in a 7- to 48-fold decrease in plasma CAB levels within 72 hours. Modeling to translate CAB ISFI dosing suggests that a 3 mL injection would exceed protective benchmarks in humans for over 5 months post administration. Our results support the clinical advancement of CAB ISFIs for ultra-long-acting PrEP in humans.
Collapse
Affiliation(s)
- Isabella C Young
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ivana Massud
- Laboratory Branch, Division of HIV Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mackenzie L Cottrell
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Roopali Shrivastava
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Panita Maturavongsadit
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alka Prasher
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andres Wong-Sam
- Laboratory Branch, Division of HIV Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chuong Dinh
- Laboratory Branch, Division of HIV Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tiancheng Edwards
- Laboratory Branch, Division of HIV Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Victoria Mrotz
- Comparative Medicine Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infection Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James Mitchell
- Laboratory Branch, Division of HIV Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Josilene Nascimento Seixas
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infection Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Aryani Pallerla
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison Thorson
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda Schauer
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig Sykes
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriela De la Cruz
- Pathology Services Core, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Pathology Services Core, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Walid Heneine
- Laboratory Branch, Division of HIV Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Charles W Dobard
- Laboratory Branch, Division of HIV Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martina Kovarova
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Victor Garcia
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Gerardo García-Lerma
- Laboratory Branch, Division of HIV Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - S Rahima Benhabbour
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Picco CJ, Utomo E, McClean A, Domínguez-Robles J, Anjani QK, Volpe-Zanutto F, McKenna PE, Acheson JG, Malinova D, Donnelly RF, Larrañeta E. Development of 3D-printed subcutaneous implants using concentrated polymer/drug solutions. Int J Pharm 2023; 631:122477. [PMID: 36509226 DOI: 10.1016/j.ijpharm.2022.122477] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Implantable drug-eluting devices that provide therapeutic cover over an extended period of time following a single administration have potential to improve the treatment of chronic conditions. These devices eliminate the requirement for regular and frequent drug administration, thus reducing the pill burden experienced by patients. Furthermore, the use of modern technologies, such as 3D printing, during implant development and manufacture renders this approach well-suited for the production of highly tuneable devices that can deliver treatment regimens which are personalised for the individual. The objective of this work was to formulate subcutaneous implants loaded with a model hydrophobic compound, olanzapine (OLZ) using robocasting - a 3D-printing technique. The formulated cylindrical implants were prepared from blends composed of OLZ mixed with either poly(caprolactone) (PCL) or a combination of PCL and poly(ethylene)glycol (PEG). Implants were characterised using scanning electron microscopy (SEM), thermal analysis, infrared spectroscopy, and X-ray diffraction and the crystallinity of OLZ in the formulated devices was confirmed. In vitro release studies demonstrated that all the formulations were capable of maintaining sustained drug release over a period of 200 days, with the maximum percentage drug release observed to be c.a. 60 % in the same period.
Collapse
Affiliation(s)
- Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Andrea McClean
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Peter E McKenna
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Jonathan G Acheson
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, United Kingdom
| | - Dessislava Malinova
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
15
|
Tagliaferri Rael C, Giguere R, Sutton S, Horn E, Schieffer RJ, Greene GJ, D'Aquila R, Bryndza Tfaily E, Kiser PF, Hope TJ. Preferences Among Physicians and Men Who Have Sex with Men (MSM) for a Long-Acting, Removable Implant for HIV Prevention: A Discrete Choice Study. AIDS Res Hum Retroviruses 2022; 38:898-908. [PMID: 36178358 PMCID: PMC9805877 DOI: 10.1089/aid.2022.0035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A longer acting, removable implant for HIV prevention has the potential to improve uptake of HIV pre-exposure prophylaxis (PrEP) by removing the need for daily adherence to an oral tablet, reducing potential side effects, and eliminating concerns about residual drug following injections. To end the HIV epidemic, we must understand the needs and preferences of groups most affected by HIV (e.g., men who have sex with men; MSM), and the physicians who prescribe PrEP to them. This article describes a discrete choice experiment to estimate the preference share for the implant within a competitive context of other PrEP products (including the oral tablet, dissolvable implant, and injection) and evaluate the impact of potential implant attributes. Physicians who had prescribed oral PrEP (n = 75) and MSM at risk for HIV (n = 175) completed a web-based survey that prompted decision-making about PrEP product preferences. The findings from both physicians and MSM demonstrated that the removable implant could capture a meaningful portion of the preference share, making it feasible to advance in the development pipeline as an important addition to the biomedical HIV prevention toolkit. Among MSM, specifically, the cost of treatment was the most important attribute impacting product preference. Our findings inform implant developers and future payers (e.g., commercial manufacturers, insurance companies) about specific device attributes that will likely affect MSM's willingness to use and physicians' willingness to prescribe this HIV prevention strategy.
Collapse
Affiliation(s)
| | - Rebecca Giguere
- HIV Center for Clinical and Behavioral Studies at the New York State Psychiatric Institute and Columbia University, New York, New York, USA
| | | | | | - Robert J. Schieffer
- Northwestern University, Kellogg School of Management, Evanston, Illinois, USA
| | - George J. Greene
- Department of Medical Social Sciences and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Richard D'Aquila
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ewa Bryndza Tfaily
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Patrick F. Kiser
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Address correspondence to: Thomas J. Hope, Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Simpson Querrey, 6th Floor, 303 East Superior Street, Chicago, Illinois 60611, USA
| |
Collapse
|
16
|
Tuning the release rate of rilpivirine from PLGA-based in situ forming implants. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
17
|
Agrahari V, Anderson SM, Peet MM, Wong AP, Singh ON, Doncel GF, Clark MR. Long-acting HIV Pre-exposure Prophylaxis (PrEP) approaches: Recent advances, emerging technologies and development challenges. Expert Opin Drug Deliv 2022; 19:1365-1380. [PMID: 36252277 PMCID: PMC9639748 DOI: 10.1080/17425247.2022.2135699] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Introduction: Poor or inconsistent adherence to daily oral pre-exposure prophylaxis (PrEP) has emerged as a key barrier to effective HIV prevention. The advent of potent long-acting (LA) antiretrovirals (ARVs) in conjunction with advances in controlled release technologies has enabled LA ARV drug delivery systems (DDS) capable of providing extended dosing intervals and overcome the challenge of suboptimal drug adherence with daily oral dosing. Areas covered: This review discusses the current state of the LA PrEP field, recent advances, and emerging technologies, including ARV prodrug modifications and new DDS. Technological challenges, knowledge gaps, preclinical testing considerations, and future directions important in the context of clinical translation and implementation of LA HIV PrEP are discussed. Expert opinion: The HIV prevention field is evolving faster than ever and the bar for developing next-generation LA HIV prevention options continues to rise. The requirements for viable LA PrEP products to be implemented in resource-limited settings are challenging, necessitating proactive consideration and product modifications during the design and testing of promising new candidates. If successfully translated, next-generation LA PrEP that are safe, affordable, highly effective, and accepted by both end-users and key stakeholders will offer significant potential to curb the HIV pandemic.
Collapse
Affiliation(s)
- Vivek Agrahari
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | | - Andrew P. Wong
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Onkar N. Singh
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | |
Collapse
|
18
|
Gatto GJ, Krovi A, Li L, Massud I, Holder A, Gary J, Mills P, Mitchell J, Luecke E, Demkovich ZR, Heneine W, García-Lerma JG, Marzinke MA, Brand RM, Dobard CW, Johnson LM, Van Der Straten A. Comparative Pharmacokinetics and Local Tolerance of Tenofovir Alafenamide (TAF) From Subcutaneous Implant in Rabbits, Dogs, and Macaques. Front Pharmacol 2022; 13:923954. [PMID: 35928266 PMCID: PMC9343794 DOI: 10.3389/fphar.2022.923954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 01/18/2023] Open
Abstract
The administration of antiretrovirals (ARVs) for HIV pre-exposure prophylaxis (PrEP) is highly efficacious and may benefit from new long-acting (LA) drug delivery approaches. This paper describes a subcutaneous, reservoir-style implant for the LA delivery of tenofovir alafenamide (TAF) and documents the preclinical assessment of implant safety and pharmacokinetics (PK) in New Zealand White (NZW) rabbits (3 groups of n = 5), beagle dogs (2 groups of n = 6), and rhesus macaques (2 groups of n = 3). Placebo implants were placed in rabbits (n = 10) and dogs (n = 12). Implant parameters, including selection of the TAF form, choice of excipient, and PCL formulation were tuned to achieve targeted concentrations of the active anabolite of TAF, tenofovir diphosphate (TFV-DP), within peripheral blood mononuclear cells (PBMCs) and mucosal tissues relevant to HIV transmission. Sustained concentrations of TFV-DP in PBMCs over 100 fmol/106 cells were achieved in all animal species indicating that the implants effectively delivered TAF for 3-6 months. Unlike placebo implants without TAF, all active implants resulted in local adverse events (AEs) proximal to the implant ranging in severity from mild to moderate and included dermal inflammation and necrosis across all species. Despite these AEs, the implant performed as designed and achieved a constant drug release profile, supporting the continued development of this drug delivery platform.
Collapse
Affiliation(s)
- G. J. Gatto
- RTI International, Research Triangle Park, NC, United States
| | - A. Krovi
- RTI International, Research Triangle Park, NC, United States
| | - L. Li
- RTI International, Research Triangle Park, NC, United States
| | - I. Massud
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - A. Holder
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - J. Gary
- Neuropathology, StageBio, Frederick, MD, United States
| | - P. Mills
- Department of Comparative Medicine, Tulane University, New Orleans, LA, United States
| | - J. Mitchell
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - E. Luecke
- RTI International, Research Triangle Park, NC, United States
| | - Z. R. Demkovich
- RTI International, Research Triangle Park, NC, United States
| | - W. Heneine
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - J. G. García-Lerma
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - M. A. Marzinke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - R. M. Brand
- Department of Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - C. W. Dobard
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - L. M. Johnson
- RTI International, Research Triangle Park, NC, United States
| | - A. Van Der Straten
- Department of Medicine, Center for AIDS Prevention Studies (CAPS), University of California, San Francisco, CA, United States
- ASTRA Consulting, Kensington, CA, United States
| |
Collapse
|
19
|
Picco CJ, Domínguez-Robles J, Utomo E, Paredes AJ, Volpe-Zanutto F, Malinova D, Donnelly RF, Larrañeta E. 3D-printed implantable devices with biodegradable rate-controlling membrane for sustained delivery of hydrophobic drugs. Drug Deliv 2022; 29:1038-1048. [PMID: 35363100 PMCID: PMC8979538 DOI: 10.1080/10717544.2022.2057620] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Implantable drug delivery systems offer an alternative for the treatments of long-term conditions (i.e. schizophrenia, HIV, or Parkinson’s disease among many others). The objective of the present work was to formulate implantable devices loaded with the model hydrophobic drug olanzapine (OLZ) using robocasting 3D-printing combined with a pre-formed rate controlling membrane. OLZ was selected as a model molecule due to its hydrophobic nature and because is a good example of a molecule used to treat a chronic condition schizophrenia. The resulting implants consisted of a poly(ethylene oxide) (PEO) implant coated with a poly(caprolactone) (PCL)-based membrane. The implants were loaded with 50 and 80% (w/w) of OLZ. They were prepared using an extrusion-based 3D-printer from aqueous pastes containing 36–38% (w/w) of water. The printing process was carried out at room temperature. The resulting implants were characterized by using infrared spectroscopy, scanning electron microscopy, thermal analysis, and X-ray diffraction. Crystals of OLZ were present in the implant after the printing process. In vitro release studies showed that implants containing 50% and 80% (w/w) of OLZ were capable of providing drug release for up to 190 days. On the other hand, implants containing 80% (w/w) of OLZ presented a slower release kinetics. After 190 days, total drug release was ca. 77% and ca. 64% for implants containing 50% and 80% (w/w) of OLZ, respectively. The higher PEO content within implants containing 50% (w/w) of OLZ allows a faster release as this polymer acts as a co-solvent of the drug.
Collapse
Affiliation(s)
- Camila J Picco
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | | - Dessislava Malinova
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
20
|
Enggi CK, Isa HT, Wijaya S, Ardika KAR, Asri RM, Donnelly RF, Permana AD. Validation of spectrophotometric method to quantify cabotegravir in simulated vaginal fluid and porcine vaginal tissue in ex vivo permeation and retention studies from thermosensitive and mucoadhesive gels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120600. [PMID: 34802927 DOI: 10.1016/j.saa.2021.120600] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/20/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Cabotegravir (CAB) is an antiretroviral therapy (ARV) used for Human Immunodeficiency Virus (HIV) treatment. CAB has low solubility, which affects its bioavailability in oral therapy. Moreover, the injection form of CAB has difficulty in the administration process. Therefore, it is essential to develop a new drug delivery system for CAB. Vaginal drug delivery system offers many advantages such as a large surface area, increased drug bioavailability, and improved drug delivery. CAB was developed in thermosensitive and mucoadhesive vaginal gel preparations that provided optimal distribution in the vaginal mucosa. To support the process of formulation development, in this study, UV-visible spectrophotometry method was validated in methanol, simulated vaginal fluid (SVF) and vaginal tissue to quantify the amount of CAB in the gel preparations, in vitro, and ex vivo studies, respectively. The developed analytical method was subsequently validated according to ICH guidelines. The calibration curves in these matrices were found to be linear with correlation coefficient values (R2) ≥ 0.998. The LLOQ values in methanol, SVF and vaginal tissue were 2.15 µg/mL, 2.22 µg/mL, and 5.13 µg/mL, respectively. The developed method was found to be accurate and precise without being affected by dilution integrity. These methods were successfully applied to quantify the amount of CAB in gel preparations, in vitro, and ex vivo studies, showing uniformity of drug content and controlled release manner in the permeation profile for 24 h for both thermosensitive and mucoadhesive vaginal gels. Further analytical method is required to be developed for the quantification of CAB in in vivo studies.
Collapse
Affiliation(s)
| | | | - Stevens Wijaya
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
21
|
Bekker LG, Pike C, Hillier SL. HIV prevention: better choice for better coverage. J Int AIDS Soc 2022; 25:e25872. [PMID: 35030296 PMCID: PMC8759757 DOI: 10.1002/jia2.25872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/05/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction Antiretroviral‐based pre‐exposure prophylaxis (PrEP) is today an established, effective and safe method of HIV prevention used in multiple countries worldwide by a broad range of populations at risk of HIV infection. Biomedical innovations are critical in supporting the primary prevention of HIV; however, their potential can only be maximized if end‐user challenges are recognized, described and used to develop next‐generation models. Discussion First‐generation PrEP, a daily oral pill, is highly efficacious, discreet and affords users the ability to commence and conclude treatment rapidly. However, consistent daily adherence and persistence is challenging, especially among younger populations, due in part to side effects, the risk of stock‐outs and a lack of pill storage options. Second‐generation PrEP, longer acting agents that require less frequent dosing, could overcome such challenges. Agents that have shown efficacy in clinical trials include a monthly vaginal ring and PrEP injectables to be administered every 8 weeks, while products in development include 6 monthly injectables, oral therapy that uses monthly rather than daily pills, implants and the potential for long‐acting passive immunization. Conclusions Second‐generation PrEP agents will have the potential to offer improved adherence and less frequent reminders once they have undergone further development and the delivery systems that will best support them have been established. In order to pursue global UNAIDS targets of reducing new HIV infections to fewer than 500,000 annually by 2025, and to ensure that all people have access to prevention options that meet their specific prevention needs, both early and next‐generation PrEP options are needed.
Collapse
Affiliation(s)
- Linda-Gail Bekker
- The Desmond Tutu HIV Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Carey Pike
- The Desmond Tutu HIV Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sharon L Hillier
- Department of Obstetrics, Gynaecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Sonalkar S, Short WR, McAllister A, Kete C, Ingeno L, Fishman J, Koenig HC, Schreiber CA, Teitelman AM. Incorporating HIV Pre-Exposure Prophylaxis Care for Patients Seeking Induced Abortion and Pregnancy Loss Management. Womens Health Issues 2022; 32:388-394. [PMID: 34998653 DOI: 10.1016/j.whi.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Family planning clinical encounters are important opportunities for HIV prevention. Our objectives were to 1) estimate the proportion of patients seeking induced abortion and early pregnancy loss management eligible for HIV pre-exposure prophylaxis (PrEP) and 2) compare PrEP eligibility and uptake between patients with unintended and intended pregnancy. METHODS We conducted a cross-sectional survey and a nested prospective cohort study of patients seeking an induced abortion or early pregnancy loss management. We assessed pregnancy intendedness, PrEP awareness, HIV risk and risk perception, desire for same-day PrEP start, and PrEP continuation at 30 days. We used the χ2 and Fisher's exact tests to assess differences between the participants with intended and unintended pregnancy. We had 80% power to detect a 14% difference in PrEP eligibility between the groups. RESULTS We enrolled 250 women. Fifty-six percent (139) had an unintended pregnancy and 44% (110) had an intended pregnancy. PrEP eligibility did not differ significantly between the patients with intended and unintended pregnancy (16% vs. 10%; p = .18). More than one-half (54%, 135/250) were unaware of PrEP before their study visit, and 93% (232/250) considered themselves unlikely to acquire HIV. Of 33 women who were PrEP eligible, 11 accepted same-day start and 1 continued PrEP at 30 days. CONCLUSIONS Intendedness of pregnancy was unrelated to PrEP eligibility in women seeking induced abortion and early pregnancy loss management. Most patients seeking these services are unaware of PrEP. Integrating PrEP into family planning care is likely to increase awareness and uptake of PrEP in women.
Collapse
Affiliation(s)
- Sarita Sonalkar
- Division of Family Planning, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - William R Short
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Penn Presbyterian Medical Center, Philadelphia, Pennsylvania
| | - Arden McAllister
- Division of Family Planning, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Corinne Kete
- Division of Family Planning, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Leah Ingeno
- Division of Family Planning, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica Fishman
- Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania; Annenberg School for Communication, Philadelphia, Pennsylvania; Leonard Davis Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Helen C Koenig
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Penn Presbyterian Medical Center, Philadelphia, Pennsylvania
| | - Courtney A Schreiber
- Division of Family Planning, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anne M Teitelman
- School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Enggi CK, Isa HT, Sulistiawati S, Ardika KAR, Wijaya S, Asri RM, Mardikasari SA, Donnelly RF, Permana AD. Development of thermosensitive and mucoadhesive gels of cabotegravir for enhanced permeation and retention profiles in vaginal tissue: A proof of concept study. Int J Pharm 2021; 609:121182. [PMID: 34648879 DOI: 10.1016/j.ijpharm.2021.121182] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
As an effective anti-HIV drug, cabotegravir (CAB) is currently administered via oral and injection routes, leading to several drawbacks, such as poor oral bioavailability and problems in the injection application process, as well as low drug concentration in vaginal tissue of woman patients. To overcome these issues, for the first time, we formulated CAB into three types of vaginal gels, considering the benefits of vaginal tissue as a delivery route. Thermosensitive gel, mucoadhesive gel, and the combination of these gels were developed as suitable carriers for CAB. Pluronics®, hydroxy propyl methyl cellulose (HPMC), Carbomer and poly(ethylene glycol) (PEG) 400 were used as thermosensitive, mucoadhesive and permeation enhancer agents, respectively. The gels were evaluated for their thermosensitive and mucoadhesive properties, as well as their pH values, viscosities, gel erosions, drug content recovery, in vitro drug release, ex vivo permeation, ex vivo retention, hemolytic activities, Lactobacillus inhibition activities and in vivo irritation properties. The results showed that all formulations showed desired characteristics for vaginal administration. Importantly, all formulations did not show hemolytic activities and inhibitions to Lactobacillus as normal bacteria in the vagina. Furthermore, no irritation in the vaginal tissues of the rats was observed by histopathological studies. Considering the thermosensitive and mucoadhesive properties, the combination of Pluronic® F127, Pluronic F68, and HPMC in thermosensitive-mucoadhesive vaginal gels was selected as the optimum dosage form for CAB as this formulation was able to provide ease administration due to its liquid form at room temperature. The use of PEG in this formulation was able to increase the penetrability of CAB through vaginal tissue with 0.61 ± 0.05 mg and 17.28 ± 0.95 mg of CAB being able to penetrate and localize in the vagina, respectively. Essentially, the optimum formulation was retained in the vaginal mucosa for>8 h. To conclude, further extensive in vivo studies should now be conducted to evaluate the efficacy of this approach.
Collapse
Affiliation(s)
| | | | | | | | - Stevens Wijaya
- Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
24
|
Krovi SA, Johnson LM, Luecke E, Achilles SL, van der Straten A. Advances in long-acting injectables, implants, and vaginal rings for contraception and HIV prevention. Adv Drug Deliv Rev 2021; 176:113849. [PMID: 34186143 DOI: 10.1016/j.addr.2021.113849] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/22/2022]
Abstract
Worldwide, women face compounding reproductive health risks, including human immunodeficiency virus (HIV), sexually-transmitted infections (STIs), and unintended pregnancy. Multipurpose prevention technologies (MPTs) offer combined protection against these overlapping risks in singular prevention products that offer potential for simplified use, lower burden, higher acceptability, and increased public health benefits. Over the past decade, substantial progress has been made in development of extended-release MPTs, which have further potential to grant sexual and reproductive health autonomy to women globally and to offer choice for women to accommodate varying needs during their reproductive lives. Here, we highlight the advances made in injectable, implant, and ring delivery forms, and the importance of incorporating end-user preferences early in the research and development of these products.
Collapse
Affiliation(s)
| | | | - Ellen Luecke
- Women's Global Health Imperative, RTI International, Berkeley, CA, USA
| | - Sharon L Achilles
- University of Pittsburgh, School of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Ariane van der Straten
- Center for AIDS Prevention Studies, Dept of Medicine, University of California San Francisco, San Francisco, CA, USA; ASTRA Consulting, Kensington, CA, USA
| |
Collapse
|
25
|
Paredes AJ, Ramöller IK, McKenna PE, Abbate MT, Volpe-Zanutto F, Vora LK, Kilbourne-Brook M, Jarrahian C, Moffatt K, Zhang C, Tekko IA, Donnelly RF. Microarray patches: Breaking down the barriers to contraceptive care and HIV prevention for women across the globe. Adv Drug Deliv Rev 2021; 173:331-348. [PMID: 33831475 DOI: 10.1016/j.addr.2021.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Despite the existence of a variety of contraceptive products for women, as well as decades of research into the prevention and treatment of human immunodeficiency virus (HIV), there is still a globally unmet need for easily accessible, acceptable, and affordable products to protect women's sexual and reproductive health. Microarray patches (MAPs) are a novel platform being developed for the delivery of hormonal contraception and antiretroviral drugs. MAPs provide enhanced drug delivery to the systemic circulation via the transdermal route when compared to transdermal patches, oral and injectable formulations. These minimally invasive patches can be self-administered by the user, reducing the burden on health care personnel. Since MAPs represent needle-free drug delivery, no sharps waste is generated after application, thereby eliminating possible MAP reuse and risk of needle-stick injuries. This review discusses the administration of contraceptive and antiretroviral drugs using MAPs, their acceptability by end-users, and the future perspective of the field.
Collapse
|