1
|
Zhu C, Yang J, Liu L, Li B, Sun T, Sheng W, He Q. Bibliometric analysis of glycolysis and prostate cancer research from 2004 to 2024. Discov Oncol 2025; 16:34. [PMID: 39800812 PMCID: PMC11725561 DOI: 10.1007/s12672-025-01790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Prostate cancer (PCa) ranks as the second most common disease among men and the fourth most prevalent cancer worldwide. Enhanced glycolysis and excessive lactate secretion are recognized as critical factors driving the progression of various cancers. This study systematically investigated the research trends associated with glycolysis in PCa through bibliometric analysis. METHOD In this study, we conducted a systematic search of the Web of Science and PubMed databases for literature pertaining to the glycolysis of PCa that was published between January 1, 2004, and June 30, 2024. To achieve this objective, we employed CiteSpace software to generate visualizations that illustrate countries/regions, institutions, journals, and keywords. Additionally, we extracted pertinent quantitative data. Furthermore, we utilized VOSviewer software to create a collaboration network map among various journals. RESULTS Between 2004 and 2024, a total of 408 research articles on glycolysis in PCa were published, indicating a consistent upward trend in the annual publication rate. In this field, the United States not only leads in the volume of research papers but also has the highest degree of centrality. The journal "Cancer Research" is recognized as the most influential in the field, whereas "Prostate and Cancer" serves as a significant platform for disseminating research related to glycolysis in PCa. Keyword analysis has identified four primary research directions that have dominated this field over the past two decades. The role of glycolysis and its associated enzymes in PCa underpins this research. Glycolysis has also demonstrated significant clinical value in the diagnosis and prognosis of PCa. Moreover, drugs targeting glycolytic inhibitors and natural products have exhibited therapeutic potential against this disease. By modulating glycolytic mechanisms, there is potential to increase resistance in PCa. Currently, leading research in this area encompasses the application of nanotechnology to PCa glycolysis, the roles of long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) in this metabolic pathway, and the interactions between glycolysis and other biological processes in PCa. CONCLUSION This study employs bibliometric analysis to provide a comprehensive overview of research on glycolysis in PCa over the past two decades. It highlights the current state of knowledge in this field, identifies key research hotspots, and explores emerging frontiers, particularly nanotechnology, lncRNA, and miRNA, which are driving innovative research directions.
Collapse
Affiliation(s)
- Congxu Zhu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, No. 300 Bachelor's Road, Changsha, 410208, China
| | - Jingjing Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, No. 300 Bachelor's Road, Changsha, 410208, China
| | - Lumei Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, No. 300 Bachelor's Road, Changsha, 410208, China
| | - Bonan Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, No. 300 Bachelor's Road, Changsha, 410208, China
- Hunan Normal University Affiliated Changsha Hospital, No. 200 North Jinxing Road, Changsha, 410023, China
| | - Tiansong Sun
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, No. 300 Bachelor's Road, Changsha, 410208, China
| | - Wen Sheng
- School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.
| | - Qinghu He
- School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.
| |
Collapse
|
2
|
Liu D, Wang L, Guo Y. Advances in and prospects of immunotherapy for prostate cancer. Cancer Lett 2024; 601:217155. [PMID: 39127338 DOI: 10.1016/j.canlet.2024.217155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Immunotherapy has shown promising therapeutic effects in hematological malignancies and certain solid tumors and has emerged as a critical and highly potential treatment modality for cancer. However, prostate cancer falls under the category of immune-resistant cold tumors, for which immunotherapy exhibits limited efficacy in patients with solid tumors. Thus, it is important to gain a deeper understanding of the tumor microenvironment in prostate cancer to facilitate immune system activation and overcome immune suppression to advance immunotherapy for prostate cancer. In this review, we discuss the immunosuppressive microenvironment of prostate cancer, which is characterized by the presence of few tumor-infiltrating lymphocytes, abundant immunosuppressive cells, low immunogenicity, and a noninflammatory phenotype, which significantly influences the efficacy of immunotherapy for prostate cancer. Immunotherapy is mainly achieved by activating the host immune system and overcoming immunosuppression. In this regard, we summarize the therapeutic advances in immune checkpoint blockade, immunogenic cell death, reversal of the immunosuppressive tumor microenvironment, tumor vaccines, immune adjuvants, chimeric antigen receptor T-cell therapy, and overcoming penetration barriers in prostate cancer, with the aim of providing novel research insights and approaches to enhance the effectiveness of immunotherapy for prostate cancer.
Collapse
Affiliation(s)
- Deng Liu
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China; Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Bai W, Xue Y, Guo Y, Zhang D, Ma K, Chen Z, Xia K, Liao B, Huang G, Pan S, Zheng Y, Wang H, Yang H, Zhang LK, Guan YQ. Reactive oxygen species produced by photodynamic therapy enhance docosahexaenoic acid lipid peroxidation and induce the death of breast cancer cells. Colloids Surf B Biointerfaces 2024; 241:114012. [PMID: 38850743 DOI: 10.1016/j.colsurfb.2024.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Breast cancer remains a serious threat to women's physical and emotional health. The combination therapies can overcome the deficiency of single therapy, enhance the therapeutic effects and reduce the side effects at the same time. In this study, we synthesize a novel nanomedicine that enhanced the therapeutic effects of breast cancer treatment by combining photodynamic therapy and chemotherapy. The doxorubicin (DOX) and photosensitizer methyl pyropheophorbide-a (MPPa) are loaded into the nano-drug delivery system as DPSPFA/MPPa/DOX. In response to near-infrared (NIR) laser, the drugs were quickly released to the cancer cells. The MPPa produces reactive oxygen species (ROS) under the action of photodynamics. Unsaturated fatty acids with ROS promotes lipid peroxidation and the combination of chemotherapy and photodynamic therapy. The data shows that the DPSPFA/MPPa/DOX has a spherical shape, good dispersibility and stability, and the particle size is roughly 200 nm. The drug loading capability of DOX is about 13 %. Both of MCF7 cell model in vitro and breast cancer model in vivo, DPSPFA/MPPa/DOX showed an excellent anti-tumor effect of 86.9 % and without any obvious side effects. These findings might offer potential for a new approach for breast cancer treatment.
Collapse
Affiliation(s)
- Weiwei Bai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yongyong Xue
- MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yiyan Guo
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Dandan Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kuo Ma
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhendong Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kunwen Xia
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Beining Liao
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Guowei Huang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shengjun Pan
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuxin Zheng
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Haoyuan Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hao Yang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China; School of Engineering, Westlake University, Hangzhou 310030, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.
| |
Collapse
|
4
|
Zhang P, Lv W, Luan Y, Cai W, Min X, Feng Z. Identification and validation of a novel anoikis-related prognostic model for prostate cancer. Mol Genet Genomic Med 2024; 12:e2419. [PMID: 38572916 PMCID: PMC10993702 DOI: 10.1002/mgg3.2419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Anoikis resistance is a hallmark characteristic of oncogenic transformation, which is crucial for tumor progression and metastasis. The aim of this study was to identify and validate a novel anoikis-related prognostic model for prostate cancer (PCa). METHODS We collected a gene expression profile, single nucleotide polymorphism mutation and copy number variation (CNV) data of 495 PCa patients from the TCGA database and 140 PCa samples from the MSKCC dataset. We extracted 434 anoikis-related genes and unsupervised consensus cluster analysis was used to identify molecular subtypes. The immune infiltration, molecular function, and genome alteration of subtypes were evaluated. A risk signature was developed using Cox regression analysis and validated with the MSKCC dataset. We also identify potential drugs for high-risk group patients. RESULTS Two subtypes were identified. C1 exhibited a higher level of CNV amplification, immune score, stromal score, aneuploidy score, homologous recombination deficiency, intratumor heterogeneity, single-nucleotide variant neoantigens, and tumor mutational burden compared to C2. C2 showed a better survival outcome and had a high level of gamma delta T cell and activated B cell infiltration. The risk signature consisting of four genes (HELLS, ZWINT, ABCC5, and TPSB2) was developed (area under the curve = 0.780) and was found to be an independent prognostic factor for overall survival in PCa patients. Four CTRP-derived and four PRISM-derived compounds were identified for high-risk patients. CONCLUSIONS The anoikis-related prognostic model developed in this study could be a useful tool for clinical decision-making. This study may provide a new perspective for the treatment of anoikis-related PCa.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenzhi Lv
- Computer Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yang Luan
- Department of Urology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Cai
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiangde Min
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhaoyan Feng
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Huang M, Teng Q, Cao F, Huang J, Pang J. Ferroptosis and ferroptosis-inducing nanomedicine as a promising weapon in combination therapy of prostate cancer. Biomater Sci 2024; 12:1617-1629. [PMID: 38379396 DOI: 10.1039/d3bm01894f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Incidence and mortality of prostate cancer (PCa) rank in the top five among male tumors. However, single treatment modalities are often restricted due to biochemical recurrence and drug resistance, necessitating the development of new approaches for the combination treatment of castration-resistant and neuroendocrine PCa. Ferroptosis is characterized by the accumulation of iron-overload-mediated lipid peroxidation and has shown promising outcomes in anticancer treatment, prompting us to present a review reporting the application of ferroptosis in the treatment of PCa. First, the process and mechanism of ferroptosis are briefly reviewed. Second, research advances combining ferroptosis-inducing agents and clinical treatment regimens, which exhibit a "two-pronged approach" effect, are further summarized. Finally, the recent progress on ferroptosis-inducing nanomaterials for combination anticancer therapy is presented. This review is expected to provide novel insights into ferroptosis-based combination treatment in drug-resistant PCa.
Collapse
Affiliation(s)
- Mengjun Huang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Qiliang Teng
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Fei Cao
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Jinsheng Huang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
6
|
Kumar A, Lunawat AK, Kumar A, Sharma T, Islam MM, Kahlon MS, Mukherjee D, Narang RK, Raikwar S. Recent Trends in Nanocarrier-Based Drug Delivery System for Prostate Cancer. AAPS PharmSciTech 2024; 25:55. [PMID: 38448649 DOI: 10.1208/s12249-024-02765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024] Open
Abstract
Prostate cancer remains a significant global health concern, requiring innovative approaches for improved therapeutic outcomes. In recent years, nanoparticle-based drug delivery systems have emerged as promising strategies to address the limitations of conventional cancer chemotherapy. The key trends include utilizing nanoparticles for enhancing drug delivery to prostate cancer cells. Nanoparticles have some advantages such as improved drug solubility, prolonged circulation time, and targeted delivery of drugs. Encapsulation of chemotherapeutic agents within nanoparticles allows for controlled release kinetics, reducing systemic toxicity while maintaining therapeutic efficacy. Additionally, site-specific accumulation within the prostate tumor microenvironment is made possible by the functionalization of nanocarrier with targeted ligands, improving therapeutic effectiveness. This article highlights the basics of prostate cancer, statistics of prostate cancer, mechanism of multidrug resistance, targeting approach, and different types of nanocarrier used for the treatment of prostate cancer. It also includes the applications of nanocarriers for the treatment of prostate cancer and clinical trial studies to validate the safety and efficacy of the innovative drug delivery systems. The article focused on developing nanocarrier-based drug delivery systems, with the goal of translating these advancements into clinical applications in the future.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Akshay Kumar Lunawat
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Tarun Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Md Moidul Islam
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Milan Singh Kahlon
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Debanjan Mukherjee
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sarjana Raikwar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
7
|
Hu R, Lan J, Zhang D, Shen W. Nanotherapeutics for prostate cancer treatment: A comprehensive review. Biomaterials 2024; 305:122469. [PMID: 38244344 DOI: 10.1016/j.biomaterials.2024.122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Prostate cancer (PCa) is the most prevalent solid organ malignancy and seriously affects male health. The adverse effects of prostate cancer therapeutics can cause secondary damage to patients. Nanotherapeutics, which have special targeting abilities and controlled therapeutic release profiles, may serve as alternative agents for PCa treatment. At present, many nanotherapeutics have been developed to treat PCa and have shown better treatment effects in animals than traditional therapeutics. Although PCa nanotherapeutics are highly attractive, few successful cases have been reported in clinical practice. To help researchers design valuable nanotherapeutics for PCa treatment and avoid useless efforts, herein, we first reviewed the strategies and challenges involved in prostate cancer treatment. Subsequently, we presented a comprehensive review of nanotherapeutics for PCa treatment, including their targeting methods, controlled release strategies, therapeutic approaches and mechanisms. Finally, we proposed the future prospects of nanotherapeutics for PCa treatment.
Collapse
Affiliation(s)
- Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Lan
- Department of Ultrasound, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
8
|
Zhang JY, Zhao LJ, Wang YT. Synthesis and clinical application of small-molecule drugs approved to treat prostatic cancer. Eur J Med Chem 2023; 262:115925. [PMID: 37948954 DOI: 10.1016/j.ejmech.2023.115925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Prostate cancer is a prevalent form of cancer that primarily affects men, with a high incidence and mortality rate. It is the second most common cancer among males, following lung cancer. Typically occurring in individuals aged 50 and above, this malignant tumor originates from abnormal cells in the prostate tissue. If left untreated, it can spread to nearby tissues, lymph nodes, and even bones. Current treatment methods include surgery, radiotherapy, and chemotherapy. However, these treatments have certain limitations and side effects. Therefore, researching and developing new small-molecule drugs to treat prostate cancer is of great significance. In recent years, many small-molecule drugs have been proven to have therapeutic effects on prostate cancer. The purpose of this review is to give a comprehensive look at the clinical uses and synthetic methods of various significant small-molecule drugs that have been approved to treat prostate cancer, to facilitate the development of more powerful and innovative drugs for the effective control of prostate cancer.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, 450044, China
| | - Li-Jie Zhao
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| |
Collapse
|
9
|
He M, Cao Y, Chi C, Zhao J, Chong E, Chin KXC, Tan NZV, Dmitry K, Yang G, Yang X, Hu K, Enikeev M. Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Front Immunol 2023; 14:1265751. [PMID: 37795091 PMCID: PMC10545965 DOI: 10.3389/fimmu.2023.1265751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa.
Collapse
Affiliation(s)
- Mingze He
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Changliang Chi
- Department of Urology, First Hospital of Jilin University, Changchun, China
| | - Jiang Zhao
- Department of Urology, Xi’an First Hospital, Xi’an, China
| | - Eunice Chong
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ke Xin Casey Chin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nicole Zian Vi Tan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Korolev Dmitry
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Guodong Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Kebang Hu
- Department of Urology, First Hospital of Jilin University, Changchun, China
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
10
|
He M, Cao Y, Chi C, Zhao J, Chong E, Chin KXC, Tan NZV, Dmitry K, Yang G, Yang X, Hu K, Enikeev M. Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy. Front Immunol 2023; 14. [DOI: https:/doi.org/10.3389/fimmu.2023.1265751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa.
Collapse
|
11
|
Sanati M, Afshari AR, Aminyavari S, Kesharwani P, Jamialahmadi T, Sahebkar A. RGD-engineered nanoparticles as an innovative drug delivery system in cancer therapy. J Drug Deliv Sci Technol 2023; 84:104562. [DOI: 10.1016/j.jddst.2023.104562] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
|
12
|
Elbagory AM, Hull R, Meyer M, Dlamini Z. Reports of Plant-Derived Nanoparticles for Prostate Cancer Therapy. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091870. [PMID: 37176928 PMCID: PMC10181082 DOI: 10.3390/plants12091870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Plants have demonstrated potential in providing various types of phytomedicines with chemopreventive properties that can combat prostate cancer. However, despite their promising in vitro activity, the incorporation of these phytochemicals into the market as anticancer agents has been hindered by their poor bioavailability, mainly due to their inadequate aqueous solubility, chemical instability, and unsatisfactory circulation time. To overcome these drawbacks, it has been suggested that the incorporation of phytochemicals as nanoparticles can offer a solution. The use of plant-based chemicals can also improve the biocompatibility of the formulated nanoparticles by avoiding the use of certain hazardous chemicals in the synthesis, leading to decreased toxicity in vivo. Moreover, in some cases, phytochemicals can act as targeting agents to tumour sites. This review will focus on and summarize the following points: the different types of nanoparticles that contain individual phytochemicals or plant extracts in their design with the aim of improving the bioavailability of the phytochemicals; the therapeutic evaluation of these nanoparticles against prostate cancer both in vitro and in vivo and the reported mode of action and the different types of anticancer experiments used; how the phytochemicals can also improve the targeting effects of these nanoparticles in some instances; and the potential toxicity of these nanoparticles.
Collapse
Affiliation(s)
- Abdulrahman M Elbagory
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Cape Town, Private Bag X17, Bellville 7535, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Cape Town, Private Bag X17, Bellville 7535, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
13
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Aptamers against cancer drug resistance: Small fighters switching tactics in the face of defeat. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166720. [PMID: 37062453 DOI: 10.1016/j.bbadis.2023.166720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Discovering novel cancer therapies has attracted extreme interest in the last decade. In this regard, multidrug resistance (MDR) to chemotherapies is the primary challenge in cancer treatment. Cancerous cells are growingly become resistant to existing chemotherapeutics by employing diverse mechanisms, highlighting the significance of discovering approaches to overcome MDR. One promising strategy is utilizing aptamers as unique tools to target elements or signalings incorporated in resistance mechanisms or develop active targeted drug delivery systems or chimeras enabling the precise delivery of novel agents to inhibit the conventionally undruggable resistance elements. Further, due to their advantages over their proteinaceous counterparts, particularly antibodies, including improved targeting action, enhanced thermal stability, easier production, and superior tumor penetration, aptamers are emerging and have frequently been considered for developing cancer therapeutics. Here, we highlighted significant chemoresistance pathways and thoroughly discussed using aptamers as prospective tools to surmount cancer MDR.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Functionalization of Nanosystems in Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Chen J, Zhao B, Zou J, Yang J, Yang L, Zhang J, Chen W, Huang D, Zhong Y. Macromolecular NO-Donor Micelles for Targeted and Augmented Chemotherapy against Prostate Cancer. Adv Healthc Mater 2023; 12:e2202266. [PMID: 36415059 DOI: 10.1002/adhm.202202266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/01/2022] [Indexed: 11/24/2022]
Abstract
Mitoxantrone (MTO) is clinically utilized for treating hormone-refractory prostate cancer (PCa), however, the therapeutic outcome is far from optimal due to the lack of proper drug carrier as well as the inherent MTO detoxification mechanisms of DNA lesion repair and anti-oxidation. Herein, a bombesin-installed nanoplatform combining the chemotherapeutic MTO and the chemotherapeutic sensitizer of nitric oxide (NO) is developed based on MTO-loaded macromolecular NO-donor-containing polymeric micelles (BN-NMMTO ) for targeted NO-sensitized chemotherapy against PCa. BN-NMMTO actively target and accumulates in PCa sites and are internalized into the tumor cells. The macromolecular NO-donor of BN-NMMTO undergoes a reductive reaction to unleash NO upon intracellular glutathione (GSH), accompanying by micelle swelling and MTO release. The targeted intracellular MTO release induces DNA lesion and reactive oxygen species (ROS) generation in tumor cells without damage to the normal cells, and MTO's cytotoxicity is further augmented by NO release via the inhibition of both DNA repair and anti-oxidation pathways as compared with traditional MTO therapies.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Junhui Zou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiachen Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Lifen Yang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.,Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.,Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
16
|
Cyclodextrin-containing redox-responsive nanogels: Fabrication of a modular targeted drug delivery system. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022; 64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PC) is the most prevalent male urogenital cancer worldwide. PC patients presenting an advanced or metastatic cancer succumb to the disease, even after therapeutic interventions including radiotherapy, surgery, androgen deprivation therapy (ADT), and chemotherapy. One of the hallmarks of PC is evading immune surveillance and chronic inflammation, which is a major challenge towards designing effective therapeutic formulations against PC. Chronic inflammation in PC is often characterized by tumor microenvironment alterations, epithelial-mesenchymal transition and extracellular matrix modifications. The inflammatory events are modulated by reactive nitrogen and oxygen species, inflammatory cytokines and chemokines. Major signaling pathways in PC includes androgen receptor, PI3K and NF-κB pathways and targeting these inter-linked pathways poses a major therapeutic challenge. Notably, many conventional treatments are clinically unsuccessful, due to lack of targetability and poor bioavailability of the therapeutics, untoward toxicity and multidrug resistance. The past decade witnessed an advancement of nanotechnology as an excellent therapeutic paradigm for PC therapy. Modern nanovectorization strategies such as stimuli-responsive and active PC targeting carriers offer controlled release patterns and superior anti-cancer effects. The current review initially describes the classification, inflammatory triggers and major inflammatory pathways of PC, various PC treatment strategies and their limitations. Subsequently, recent advancement in combinatorial nanotherapeutic approaches, which target PC inflammatory pathways, and the mechanism of action are discussed. Besides, the current clinical status and prospects of PC homing nanovectorization, and major challenges to be addressed towards the advancement PC therapy are also addressed.
Collapse
Affiliation(s)
- Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Chandrahas Koumar Ratnacaram
- Cell Signaling and Cancer Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576 104, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
18
|
Zeng X, Zhang Y, Xu X, Chen Z, Ma L, Wang Y, Guo X, Li J, Wang X. Construction of pH-sensitive targeted micelle system co-delivery with curcumin and dasatinib and evaluation of anti-liver cancer. Drug Deliv 2022; 29:792-806. [PMID: 35261298 PMCID: PMC8920389 DOI: 10.1080/10717544.2022.2048132] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Nanomedicine delivery systems can achieve precise drug delivery and reduce toxic side effects compared with traditional drug delivery methods, but further development is still needed to eliminate obstacles such as multiple drug co-delivery, uncontrolled drug-release, and drug-resistance. Herein, we designed a dual drug-loaded nanosystem (THCD-NPs) that selectively transports and targets tumor cells for the treatment of liver cancer. In this drug delivery system, hyaluronic acid (HA)-conjugated curcumin (Cur) and d-α-tocopherol acid polyethylene glycolsuccinate (TPGS) were used as selective drug-carrying vehicles to deliver dasatinib (DAS) to cancer cells for combined administration. The mean size of the nanoparticles was approximately 66.14 ± 4.02 nm with good in vitro stability. The nanoparticles were pH sensitive and could accelerate drug release at low pH conditions. In vitro experiments showed that THCD-NPs were significantly cytotoxic to HepG2 cells and could be effectively taken up by these cells. Detailed investigations also demonstrated its pro-apoptotic activity. In vivo NIR fluorescence imaging showed that the nanoparticles could accumulate efficiently at the tumor site. Meanwhile, in vivo experiments showed that THCD-NPs significantly inhibited tumor growth and reduced the toxic side effects of free drugs in a mouse solid tumor model. In short, the nanoparticles we prepared provide a new idea for the treatment of liver cancer.
Collapse
Affiliation(s)
- Xiangle Zeng
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Yawen Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xue Xu
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Zhuo Chen
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Lanlan Ma
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Yushuai Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xuliang Guo
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xiu Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| |
Collapse
|
19
|
Petrov SA, Zyk NY, Machulkin AE, Beloglazkina EK, Majouga AG. PSMA-targeted low-molecular double conjugates for diagnostics and therapy. Eur J Med Chem 2021; 225:113752. [PMID: 34464875 DOI: 10.1016/j.ejmech.2021.113752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022]
Abstract
This review presents data on dual conjugates of therapeutic and diagnostic action for targeted delivery to prostate cancer cells. The works of the last ten years on this topic were analyzed. The mail attention focuses on low-molecular-weight conjugates directed to the prostate-specific membrane antigen (PSMA); the comparison of high and low molecular weight PSMA-targeted conjugates was made. The considered conjugates were divided in the review into two main classes: diagnostic bimodal conjugates (which are containing two fragments for different types of diagnostics), theranostic conjugates (containing both therapeutic and diagnostic agents); also bimodal high molecular weight therapeutic conjugates containing two therapeutic agents are briefly discussed. The data of in vitro and in vivo studies for PSMA-targeted double conjugates available by the beginning of 2021 have been analyzed.
Collapse
Affiliation(s)
- Stanislav A Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay Y Zyk
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Alexander G Majouga
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia; Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Moscow, Russia; Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| |
Collapse
|
20
|
Lectins applied to diagnosis and treatment of prostate cancer and benign hyperplasia: A review. Int J Biol Macromol 2021; 190:543-553. [PMID: 34508719 DOI: 10.1016/j.ijbiomac.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022]
Abstract
Environmental factors, as well as genetic factors, contribute to the increase in prostate cancer cases (PCa), the second leading cause of cancer death in men. This fact calls for the development of more reliable, quick and low-cost early detection tests to distinguish between malignant and benign cases. Abnormal cell glycosylation pattern is a promising PCa marker for this purpose. Proteins, such as lectins can decode the information contained in the glycosylation patterns. Several studies have reported on applications of plant lectins as diagnostic tools for PCa considering the ability to differentiate it from benign cases. In addition, they can be used to detect, separate and differentiate the glycosylation patterns of cells or proteins present in serum, urine and semen. Herein, we present an overview of these studies, showing the lectins that map glycans differentially expressed in PCa, as well as benign hyperplasia (BPH). We further review their applications in biosensors, histochemical tests, immunoassays, chromatography, arrays and, finally, their therapeutic potential. This is the first study to review vegetable lectins applied specifically to PCa.
Collapse
|
21
|
Rod-shaped nintedanib nanocrystals improved oral bioavailability through multiple intestinal absorption pathways. Eur J Pharm Sci 2021; 168:106047. [PMID: 34687899 DOI: 10.1016/j.ejps.2021.106047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 11/21/2022]
Abstract
Nintedanib (BIBF) is a biopharmaceutical classification system II (BCS II) drug that has a good therapeutic effect for the treatment of nonsmall cell lung cancer; however, it shows poor oral bioavailability due to low dissolution and intestinal absorption. This study aims to fabricate rod-shaped nanocrystals to enhance oral bioavailability by improving the dissolution and absorption of BIBF in the intestine. By prescription screening, BIBF nanocrystals (BIBF-NCs) with a particle size of 325.30 ± 1.03 nm and zeta potential of 32.70 ± 1.24 mV were fabricated by an antisolvent precipitation-ultrasound approach with a stabilizer of sodium carboxyl methyl cellulose (CMC-Na). BIBF-NCs exhibited a rod-shaped morphology by transmission electron microscopy (TEM). The results of powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) showed that the crystal form of BIBF in BIBF-NCs was altered. The BIBF-NCs remarkably improved the saturation solubility and dissolution of BIBF compared with BIBF powder. According to the results of in situ single-pass intestinal perfusion (SPIP), BIBF-NCs showed improved absorption and membrane permeability, with Ka and Papp values in the jejunum of 0.21 ± 0.01 min-1 and (4.34 ± 0.11) × 10-4 cm/min, respectively. Further, the Ka and Papp values of BIBF-NCs were all reduced significantly after the addition of inhibitors colchicine, chlorpromazine and indomethacin, which demonstrated that BIBF-NCs could be absorbed by endocytosis mediated by caveolae and clathrin and micropinocytosis in the intestine. The cell evaluation results showed that BIBF-NCs could be taken up by macrophages and transported from Caco-2 monolayers. The in vivo pharmacokinetic results showed that the bioavailability of the BIBF-NCs was 2.51-fold higher than that of the BIBF solution (BIBF-Sol) after oral administration with a longer Tmax (4.50 ± 1.00 h vs. 2.60 ± 1.92 h). In summary, rod-shaped BIBF-NCs could significantly improve oral bioavailability through multiple intestinal absorption pathways.
Collapse
|
22
|
Progress in the development of small molecular inhibitors of the Bruton's tyrosine kinase (BTK) as a promising cancer therapy. Bioorg Med Chem 2021; 47:116358. [PMID: 34479103 DOI: 10.1016/j.bmc.2021.116358] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Bruton tyrosine kinase (BTK) is a key kinase in the B cell antigen receptor signal transduction pathway, which is involved in the regulation of the proliferation, differentiation and apoptosis of B cells. BTK has become a significant target for the treatment of hematological malignancies and autoimmune diseases. Ibrutinib, the first-generation BTK inhibitor, has made a great contribution to the treatment of B cell malignant tumors, but there are still some problems such as resistance or miss target of site mutation. Therefore, there is an imperative need to develop novel BTK inhibitors to overcome these problems. Besides, proteolysis targeting chimera (PROTAC) technology has been successfully applied to the development of BTK degradation agents, which has opened a fresh way for the BTK targeted treatment. This paper reviews the biological function of BTK, the discovery and development of BTK targeted drugs as a promising cancer therapy. It mainly reviews the binding sites and structural characteristics of BTK, structure-activity relationships, activity and drug resistance of BTK inhibitors, as well as potential treatment strategies to overcome the resistance of BTK, which provides a reference for the rational design and development of new powerful BTK inhibitors.
Collapse
|
23
|
Chen K, Jiang K, Tang L, Chen X, Hu J, Sun F. Analysis of Clinical Trials on Therapies for Prostate Cancer in Mainland China and Globally from 2010 to 2020. Front Oncol 2021; 11:647110. [PMID: 34084744 PMCID: PMC8167212 DOI: 10.3389/fonc.2021.647110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
The overall aging of the world population has contributed to the continuous upward trend in the incidence of prostate cancer (PC). Trials on PC therapy have been extensively performed, but no study has analyzed the overall trends and characteristics of these trials, especially for those carried out in China. This study aimed to provide insights on the future direction of drug development in PC, thus supplying essential supportive data for stakeholders, including researchers, patients, investors, clinicians, and pharmaceutical industry. The details of the clinical trials of drug therapies for PC during January 1, 2010, to January 1, 2020, were collected from Pharmaprojects. A total of 463 clinical trials on different therapies with 132 different drugs were completed. The long-acting endocrine therapy with few side effects, radiotherapy combined with immune checkpoint inhibitors, gene-targeted chemotherapeutics, and novel immunotherapeutic products changed the concept of PC treatment. In mainland China, 31 trials with 19 drugs have been completed in the 10 assessment years. China has initiated a few trials investigating a limited number of drug targets, centered in a markedly uneven geographical distribution of leading clinical trial units; hence, the development of PC drugs has a long way to go. Given the large patient pool, China deserves widespread attention for PC drug research and development. These findings might have a significant impact on scientific research and industrial investment.
Collapse
Affiliation(s)
- Kun Chen
- NHC Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lannan Tang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jianxin Hu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fa Sun
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
24
|
Gong C, Yu X, Zhang W, Han L, Wang R, Wang Y, Gao S, Yuan Y. Regulating the immunosuppressive tumor microenvironment to enhance breast cancer immunotherapy using pH-responsive hybrid membrane-coated nanoparticles. J Nanobiotechnology 2021; 19:58. [PMID: 33632231 PMCID: PMC7905864 DOI: 10.1186/s12951-021-00805-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
The combination of an immuno-metabolic adjuvant and immune checkpoint inhibitors holds great promise for effective suppression of tumor growth and invasion. In this study, a pH-responsive co-delivery platform was developed for metformin (Met), a known immuno-metabolic modulator, and short interfering RNA (siRNA) targeting fibrinogen-like protein 1 mRNA (siFGL1), using a hybrid biomimetic membrane (from macrophages and cancer cells)-camouflaged poly (lactic-co-glycolic acid) nanoparticles. To improve the endo-lysosomal escape of siRNA for effective cytosolic siRNA delivery, a pH-triggered CO2 gas-generating nanoplatform was developed using the guanidine group of Met. It can react reversibly with CO2 to form Met-CO2 for the pH-dependent capture/release of CO2. The introduction of Met, a conventional anti-diabetic drug, promotes programmed death-ligand 1 (PD-L1) degradation by activating adenosine monophosphate-activated protein kinase, subsequently blocking the inhibitory signals of PD-L1. As a result, siFGL1 delivery by the camouflaged nanoparticles of the hybrid biomimetic membrane can effectively silence the FGL1 gene, promoting T-cell-mediated immune responses and enhancing antitumor immunity. We found that a combination of PD-L1/programmed death 1 signaling blockade and FGL1 gene silencing exhibited high synergistic therapeutic efficacy against breast cancer in vitro and in vivo. Additionally, Met alleviated tumor hypoxia by reducing oxygen consumption and inducing M1-type differentiation of tumor-related macrophages, which improved the tumor immunosuppressive microenvironment. Our results indicate the potential of hybrid biomimetic membrane-camouflaged nanoparticles and combined Met-FGL1 blockade in breast cancer immunotherapy.![]()
Collapse
Affiliation(s)
- Chunai Gong
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Xiaoyan Yu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Wei Zhang
- Department of Pharmaceutics, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, China
| | - Lu Han
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Rong Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Yujie Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|