1
|
Sun J, Li W, Lu Y, Zhou Z, Tian L, Si T, Wang Z, Xu Y, Sun D, Chen CH, Yang M. Size and shape control of microgel-encapsulating tumor spheroid via a user-friendly solenoid valve-based sorter and its application on precise drug testing. Biosens Bioelectron 2024; 264:116614. [PMID: 39126904 DOI: 10.1016/j.bios.2024.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The precision of previous cancer research based on tumor spheroids, especially the microgel-encapsulating tumor spheroids, was limited by the high heterogeneity in the tumor spheroid size and shape. Here, we reported a user-friendly solenoid valve-based sorter to reduce this heterogeneity. The artificial intelligence algorithm was employed to detect and segmentate the tumor spheroids in real-time for the size and shape calculation. A simple off-chip solenoid valve-based sorting actuation module was proposed to sort out target tumor spheroids with the desired size and shape. Utilizing the developed sorter, we successfully uncovered the drug response variations on cisplatin of lung tumor spheroids in the same population but with different sizes and shapes. Moreover, with this sorter, the precision of drug testing on the spheroid population level was improved to a level comparable to the precise but complex single spheroid analysis. The developed sorter also exhibits significant potential for organoid morphology and sorting for precision medicine research.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Wenxiu Li
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhengdong Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Li Tian
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Tongxu Si
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Zesheng Wang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Ying Xu
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Engineering, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Chia-Hung Chen
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Engineering, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China.
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China; Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
2
|
Liu Y, Liang J, Zhang Y, Guo Q. Drug resistance and tumor immune microenvironment: An overview of current understandings (Review). Int J Oncol 2024; 65:96. [PMID: 39219258 PMCID: PMC11387120 DOI: 10.3892/ijo.2024.5684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The use of antitumor drugs represents a reliable strategy for cancer therapy. Unfortunately, drug resistance has become increasingly common and contributes to tumor metastasis and local recurrence. The tumor immune microenvironment (TME) consists of immune cells, cytokines and immunomodulators, and collectively they influence the response to treatment. Epigenetic changes including DNA methylation and histone modification, as well as increased drug exportation have been reported to contribute to the development of drug resistance in cancers. In the past few years, the majority of studies on tumors have only focused on the development and progression of a tumor from a mechanistic standpoint; few studies have examined whether the changes in the TME can also affect tumor growth and drug resistance. Recently, emerging evidence have raised more concerns regarding the role of TME in the development of drug resistance. In the present review, it was discussed how the suppressive TME adapts to drug resistance characterized by the cooperation of immune cells, cytokines, immunomodulators, stromal cells and extracellular matrix. Furthermore, it was reviewed how these immunological or metabolic changes alter immuno‑surveillance and thus facilitate tumor drug resistance. In addition, potential targets present in the TME for developing novel therapeutic strategies to improve individualized therapy for cancer treatment were revealed.
Collapse
Affiliation(s)
- Yan Liu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jun Liang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Yanping Zhang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
3
|
Guo T, Xu J. Cancer-associated fibroblasts: a versatile mediator in tumor progression, metastasis, and targeted therapy. Cancer Metastasis Rev 2024; 43:1095-1116. [PMID: 38602594 PMCID: PMC11300527 DOI: 10.1007/s10555-024-10186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
Tumor microenvironment (TME) has been demonstrated to play a significant role in tumor initiation, progression, and metastasis. Cancer-associated fibroblasts (CAFs) are the major component of TME and exhibit heterogeneous properties in their communication with tumor cells. This heterogeneity of CAFs can be attributed to various origins, including quiescent fibroblasts, mesenchymal stem cells (MSCs), adipocytes, pericytes, endothelial cells, and mesothelial cells. Moreover, single-cell RNA sequencing has identified diverse phenotypes of CAFs, with myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs) being the most acknowledged, alongside newly discovered subtypes like antigen-presenting CAFs (apCAFs). Due to these heterogeneities, CAFs exert multiple functions in tumorigenesis, cancer stemness, angiogenesis, immunosuppression, metabolism, and metastasis. As a result, targeted therapies aimed at the TME, particularly focusing on CAFs, are rapidly developing, fueling the promising future of advanced tumor-targeted therapy.
Collapse
Affiliation(s)
- Tianchen Guo
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
4
|
Nowak-Jary J, Płóciennik A, Machnicka B. Functionalized Magnetic Fe 3O 4 Nanoparticles for Targeted Methotrexate Delivery in Ovarian Cancer Therapy. Int J Mol Sci 2024; 25:9098. [PMID: 39201784 PMCID: PMC11354664 DOI: 10.3390/ijms25169098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Magnetic Fe3O4 nanoparticles (MNPs) functionalized with (3-aminopropylo)trietoksysilan (APTES) or N-carboxymethylchitosan (CMC) were proposed as nanocarriers of methotrexate (MTX) to target ovarian cancer cell lines. The successful functionalization of the obtained nanostructures was confirmed by FT-IR spectroscopy. The nanoparticles were characterized by transmission electron spectroscopy (TEM) and dynamic light scattering (DLS) techniques. Their potential zeta, magnetization, and hyperthermic properties were also explored. MTX was conjugated with the nanocarriers by ionic bonds or by amide bonds. The drug release kinetics were examined at different pH and temperatures. The MTT assay showed no toxicity of the MNPs[APTES] and MNPs[CMC]. Finally, the cytotoxicity of the nanostructures with MTX attached towards the ovarian cancer cells was measured. The sensitivity and resistance to methotrexate was determined in simplistic 2D and spheroid 3D conditions. The cytotoxicity tests of the tested nanostructures showed similar values for inhibiting the proliferation of ovarian cancer cells as methotrexate in its free form. Conjugating MTX with nanoparticles allows the drug to be directed to the target site using an external magnetic field, reducing overall toxicity. Combining this approach with hyperthermia could enhance the therapeutic effect in vivo compared to free MTX, though further research on advanced 3D models is needed.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, 65-516 Zielona Gora, Poland;
| | - Artur Płóciennik
- Institute of Experimental Biology, University of Poznan, 61-614 Poznan, Poland;
| | - Beata Machnicka
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, 65-516 Zielona Gora, Poland;
| |
Collapse
|
5
|
Soozanipour A, Ejeian F, Razmjou A, Asadnia M, Nasr-Esfahani MH, Taheri-Kafrani A. Efficient PEGylated Dendrimer Nanoplatform for Codelivery of Hyaluronidase and Methotrexate: A New Frontier in Chemotherapeutic Efficacy and Tumor Penetration. ACS APPLIED NANO MATERIALS 2024; 7:17262-17277. [DOI: 10.1021/acsanm.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 81746, Iran
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia
| | - Mohsen Asadnia
- Department of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 81746, Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
6
|
Barathan M, Zulpa AK, Ng SL, Lokanathan Y, Ng MH, Law JX. Innovative Strategies to Combat 5-Fluorouracil Resistance in Colorectal Cancer: The Role of Phytochemicals and Extracellular Vesicles. Int J Mol Sci 2024; 25:7470. [PMID: 39000577 PMCID: PMC11242358 DOI: 10.3390/ijms25137470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is a significant public health challenge, with 5-fluorouracil (5-FU) resistance being a major obstacle to effective treatment. Despite advancements, resistance to 5-FU remains formidable due to complex mechanisms such as alterations in drug transport, evasion of apoptosis, dysregulation of cell cycle dynamics, tumor microenvironment (TME) interactions, and extracellular vesicle (EV)-mediated resistance pathways. Traditional chemotherapy often results in high toxicity, highlighting the need for alternative approaches with better efficacy and safety. Phytochemicals (PCs) and EVs offer promising CRC therapeutic strategies. PCs, derived from natural sources, often exhibit lower toxicity and can target multiple pathways involved in cancer progression and drug resistance. EVs can facilitate targeted drug delivery, modulate the immune response, and interact with the TME to sensitize cancer cells to treatment. However, the potential of PCs and engineered EVs in overcoming 5-FU resistance and reshaping the immunosuppressive TME in CRC remains underexplored. Addressing this gap is crucial for identifying innovative therapies with enhanced efficacy and reduced toxicities. This review explores the multifaceted mechanisms of 5-FU resistance in CRC and evaluates the synergistic effects of combining PCs with 5-FU to improve treatment efficacy while minimizing adverse effects. Additionally, it investigates engineered EVs in overcoming 5-FU resistance by serving as drug delivery vehicles and modulating the TME. By synthesizing the current knowledge and addressing research gaps, this review enhances the academic understanding of 5-FU resistance in CRC, highlighting the potential of interdisciplinary approaches involving PCs and EVs for revolutionizing CRC therapy. Further research and clinical validation are essential for translating these findings into improved patient outcomes.
Collapse
Affiliation(s)
- Muttiah Barathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Khusairy Zulpa
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Sharkey C, White R, Finocchiaro M, Thomas J, Estevam J, Konry T. Advancing Point-of-Care Applications with Droplet Microfluidics: From Single-Cell to Multicellular Analysis. Annu Rev Biomed Eng 2024; 26:119-139. [PMID: 38316063 DOI: 10.1146/annurev-bioeng-110222-102142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recent advances in single-cell and multicellular microfluidics technology have provided powerful tools for studying cancer biology and immunology. The ability to create controlled microenvironments, perform high-throughput screenings, and monitor cellular interactions at the single-cell level has significantly advanced our understanding of tumor biology and immune responses. We discuss cutting-edge multicellular and single-cell microfluidic technologies and methodologies utilized to investigate cancer-immune cell interactions and assess the effectiveness of immunotherapies. We explore the advantages and limitations of the wide range of 3D spheroid and single-cell microfluidic models recently developed, highlighting the various approaches in device generation and applications in immunotherapy screening for potential opportunities for point-of-care approaches.
Collapse
Affiliation(s)
- Christina Sharkey
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
- Department of Surgery, Division of Urology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel White
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
| | - Michael Finocchiaro
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
| | - Judene Thomas
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Jose Estevam
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
| | - Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
| |
Collapse
|
8
|
Yang Q, Zhou X, Lou B, Zheng N, Chen J, Yang G. An F OF 1-ATPase motor-embedded chromatophore as a nanorobot for overcoming biological barriers and targeting acidic tumor sites. Acta Biomater 2024; 179:207-219. [PMID: 38513724 DOI: 10.1016/j.actbio.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Despite the booming progress of anticancer nanomedicines in the past two decades, precise tumor-targetability and sufficient tumor-accumulation are less successful and still require further research. To tackle this challenge, herein we present a biomolecular motor (FOF1-ATPase)-embedded chromatophore as nanorobot to efficiently overcome biological barriers, and thoroughly investigate its chemotactic motility, tumor-accumulation ability and endocytosis. Chromatophores embedded with FOF1-ATPase motors were firstly extracted from Thermus thermophilus, then their properties were fully characterized. Specifically, two microfluidic platforms (laminar flow microchip and tumor microenvironment (TME) microchip) were designed and developed to fully investigate the motility, tumor-accumulation ability and endocytosis of the chromatophore nanorobot (CN). The results from the laminar flow microchip indicated that the obtained CN possessed the strongly positive chemotaxis towards protons. And the TME microchip experiments verified that the CN had a desirable tumor-accumulation ability. Cellular uptake experiments demonstrated that the CN efficiently promoted the endocytosis of the fluorescence DiO into the HT-29 cells. And the in vivo studies revealed that the intravenously administered CN exhibited vigorous tumor-targetability and accumulation ability as well as highly efficient antitumor efficacy. All the results suggested that FOF1-ATPase motors-embedded CN could be promising nanomachines with powerful self-propulsion for overcoming physiological barriers and tumor-targeted drug delivery. STATEMENT OF SIGNIFICANCE: In this study, we demonstrated that FOF1-ATPase-embedded chromatophore nanorobots exhibit a strong proton chemotaxis, which not only plays a key role in tumor-targetability and accumulation, but also promotes tumor tissue penetration and internalization. The results of in vitro and in vivo studies indicated that drug-loaded chromatophore nanorobots are capable to simultaneously accomplish tumor-targeting, accumulation, penetration and internalization for enhanced tumor therapy. Our study provides a fundamental basis for further study on FOF1-ATPase-embedded chromatophore as tumor-targeting drug delivery systems that have promising clinical applications. It offers a new and more efficient delivery vehicle for cancer related therapeutics.
Collapse
Affiliation(s)
- Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xuhui Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bang Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ning Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jiale Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
9
|
Wilczak M, Surman M, Przybyło M. The Role of Intracellular and Extracellular Vesicles in the Development of Therapy Resistance in Cancer. Curr Pharm Des 2024; 30:2765-2784. [PMID: 39113303 DOI: 10.2174/0113816128326325240723051625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/19/2024] [Indexed: 10/22/2024]
Abstract
Cancer is the second leading cause of global mortality and claims approximately 10 million lives annually. Despite advances in treatments such as surgery, chemotherapy, and immunotherapy, resistance to these methods has emerged. Multidrug resistance (MDR), where cancer cells resist diverse treatments, undermines therapy effectiveness, escalating mortality rates. MDR mechanisms include, among others, drug inactivation, reduced drug uptake, enhanced DNA repair, and activation of survival pathways such as autophagy. Moreover, MDR mechanisms can confer resistance to other therapies like radiotherapy. Understanding these mechanisms is crucial for improving treatment efficacy and identifying new therapeutic targets. Extracellular vesicles (EVs) have gathered attention for their role in cancer progression, including MDR development through protein transfer and genetic reprogramming. Autophagy, a process balancing cellular resources, also influences MDR. The intersection of EVs and autophagy further complicates the understanding of MDR. Both extracellular (exosomes, microvesicles) and intracellular (autophagic) vesicles contribute to therapy resistance by regulating the tumor microenvironment, facilitating cell communication, and modulating drug processing. While much is known about these pathways, there is still a need to explore their potential for predicting treatment responses and understanding tumor heterogeneity.
Collapse
Affiliation(s)
- Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Magdalena Surman
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
10
|
Gil JF, Moura CS, Silverio V, Gonçalves G, Santos HA. Cancer Models on Chip: Paving the Way to Large-Scale Trial Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300692. [PMID: 37103886 DOI: 10.1002/adma.202300692] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Cancer kills millions of individuals every year all over the world (Global Cancer Observatory). The physiological and biomechanical processes underlying the tumor are still poorly understood, hindering researchers from creating new, effective therapies. Inconsistent results of preclinical research, in vivo testing, and clinical trials decrease drug approval rates. 3D tumor-on-a-chip (ToC) models integrate biomaterials, tissue engineering, fabrication of microarchitectures, and sensory and actuation systems in a single device, enabling reliable studies in fundamental oncology and pharmacology. This review includes a critical discussion about their ability to reproduce the tumor microenvironment (TME), the advantages and drawbacks of existing tumor models and architectures, major components and fabrication techniques. The focus is on current materials and micro/nanofabrication techniques used to manufacture reliable and reproducible microfluidic ToC models for large-scale trial applications.
Collapse
Affiliation(s)
- João Ferreira Gil
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
- INESC Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Carla Sofia Moura
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028, Portugal
- Polytechnic Institute of Coimbra, Applied Research Institute, Coimbra, 3045-093, Portugal
| | - Vania Silverio
- INESC Microsistemas e Nanotecnologias (INESC MN), Rua Alves Redol 9, Lisbon, 1000-029, Portugal
- Department of Physics, Instituto Superior Técnico, Lisbon, 1049-001, Portugal
- Associate Laboratory Institute for Health and Bioeconomy - i4HB, Lisbon, Portugal
| | - Gil Gonçalves
- TEMA, Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Aveiro, 3810-193, Portugal
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
- W.J. Korf Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
11
|
Chen W, Fang PH, Zheng B, Liang Y, Mao Y, Jiang X, Tang Q. Effective Treatment for Recurrent Ovarian Cancer Guided by Drug Sensitivity from Ascites-Derived Organoid: A Case Report. Int J Womens Health 2023; 15:1047-1057. [PMID: 37465723 PMCID: PMC10351532 DOI: 10.2147/ijwh.s405010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/27/2023] [Indexed: 07/20/2023] Open
Abstract
So far, ovarian cancer has still been the most lethal gynecological malignancy. The chemotherapy and targeted medication are the mainstay for the recurrent ovarian cancer treatment. About 70% of the advanced-stage cases will relapse. Ascites-derived organoid is a pre-clinical model for the precise prediction of the therapeutic effectiveness for the ovarian cancer: it can be used to assess the drug sensitivity, to guide individualized precise treatment, and to improve advanced stage as well as recurrent ovarian cancer patient' survival and prognosis. Until now, there has been no report concerning the establishment of the organoid out of the patient's ascites and the concurrent usage of drug sensitivity test to guide the individualized precise treatment for the ovarian cancer. Here, we report a case of recurrent ovarian cancer of a 59-year-old female patient whose CA125 at its peak increased to 4523.4 U/mL. Then, patient's own ovarian cancer organoid was constructed from the ascites by the abdominocentesis; concurrently, medication sensitivity test was performed on the organoid to guide individualized precise treatment. After the treatment, CA125 decreased to 33.7 U/mL, and the patient's condition relieved effectively. This is the first published case report using ascites-derived organoid and the drug sensitivity test thereof to guide the precise treatment of recurrent ovarian cancer.
Collapse
Affiliation(s)
- Wanyi Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Po-Han Fang
- International School, Jinan University, Guangzhou, People's Republic of China
| | - Bin Zheng
- Guangdong Research Center for Organoid Engineering and Technology, Guangzhou, People's Republic of China
| | - Yue Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Yiwen Mao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Xuefeng Jiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Qionglan Tang
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
12
|
Huang W, Yao F, Tian S, Liu M, Liu G, Jiang Y. Recent Advances in Zein-Based Nanocarriers for Precise Cancer Therapy. Pharmaceutics 2023; 15:1820. [PMID: 37514006 PMCID: PMC10384823 DOI: 10.3390/pharmaceutics15071820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer has emerged as a leading cause of death worldwide. However, the pursuit of precise cancer therapy and high-efficiency delivery of antitumor drugs remains an enormous obstacle. The major challenge is the lack of a smart drug delivery system with the advantages of biodegradability, biocompatibility, stability, targeting and response release. Zein, a plant-based protein, possesses a unique self-assembly ability to encapsulate anticancer drugs directly or indirectly. Using zein as a nanotherapeutic pharmaceutic preparation can protect anticancer drugs from harsh environments, such as sunlight, stomach acid and pepsin. Moreover, the surface functionalization of zein is easily realized, which can endow it with targeting and stimulus-responsive release capacity. Hence, zein is an ideal nanocarrier for the precise delivery of anticancer drugs. Combined with our previous research experiences, we attempt to review the current state of the preparation of zein-based nanocarriers for anticancer drug delivery. The challenges, solutions and development trends of zein-based nanocarriers for precise cancer therapy are discussed. This review will provide a guideline for precise cancer therapy in the future.
Collapse
Affiliation(s)
- Wenquan Huang
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Fei Yao
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Shuangyan Tian
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Mohao Liu
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Guijin Liu
- School of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Yanbin Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
13
|
Tang P, Shen T, Wang H, Zhang R, Zhang X, Li X, Xiao W. Challenges and opportunities for improving the druggability of natural product: Why need drug delivery system? Biomed Pharmacother 2023; 164:114955. [PMID: 37269810 DOI: 10.1016/j.biopha.2023.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
14
|
Zhou C, Lin Z, Li X, Zhang D, Song P. Establishment and characterization of a multi-drug resistant cell line for canine mammary tumors. Front Vet Sci 2023; 10:1129756. [PMID: 37077947 PMCID: PMC10108679 DOI: 10.3389/fvets.2023.1129756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Background and purposeCanine mammary tumors are the most common tumor disease of female dogs, and adjuvant chemotherapy often results in multi-drug resistance. Currently, the mechanisms underlying the development of tumor multi-drug resistance are unclear. The translation of research applications that can be used to effectively overcome tumor resistance is similarly hampered. Therefore, it is urgent to construct multi-drug resistance models of canine mammary tumors that can be used for research, to explore the mechanisms and means of overcoming resistance.Materials and methodsIn this study, the canine triple negative breast cancer cell line CMT-7364 was induced to develop multidrug resistance using doxorubicin by high-dose drug pulse method. The drug resistance and the expression of drug transport pumps of the cells was verified by CCK8 assay, immunoblotting, qPCR and immunofluorescence. Next, we used scratch assay and Transwell invasion assay to compare the migration and invasion abilities of the two cell lines and examined the expression of EMT-related proteins in both using immunoblotting. The differences of transcriptome between parental and drug-resistant cell lines were detected by RNA-seq sequencing. Finally, mouse xenograft models of drug-resistant and parental cell lines were constructed to evaluate the tumorigenic ability.ResultsAfter more than 50 generations of continuous passages stimulated by high-dose drug pulse method, the morphology of drug-resistant cell line CMT-7364/R tended to be mesenchymal-like and heterogeneous under light microscopy compared with the parental cell line CMT-7364/S, and developed resistance to doxorubicin and other commonly used chemotherapeutic drugs. In CMT-7364/R, BCRP was expressed at higher levels at both transcriptional and protein levels, while P-glycoprotein was not significantly different. Secondly, the migration and invasion ability of CMT-7364/R was significantly enhanced, with decreased expression of E-cadherin and increased expression of vimentin and mucin 1-N terminus. Finally, mouse xenograft models were constructed, while there was no significant difference in the volume of masses formed at 21 days.ConclusionIn summary, by using the canine mammary tumor cell line CMT-7364/S as the parental cell line, we successfully constructed a multidrug-resistant CMT-7364/R with high-dose drug pulse methods. Compared to its parental cell line, CMT-7364/R has decreased growth rate, overexpression of BCRP and increased migration and invasion ability due to EMT. The results of this study showed that CMT-7364/R might serve as a model for future studies on tumor drug resistance.
Collapse
|
15
|
Gong J, Shi T, Liu J, Pei Z, Liu J, Ren X, Li F, Qiu F. Dual-drug codelivery nanosystems: An emerging approach for overcoming cancer multidrug resistance. Biomed Pharmacother 2023; 161:114505. [PMID: 36921532 DOI: 10.1016/j.biopha.2023.114505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Multidrug resistance (MDR) promotes tumor recurrence and metastasis and heavily reduces anticancer efficiency, which has become a primary reason for the failure of clinical chemotherapy. The mechanisms of MDR are so complex that conventional chemotherapy usually fails to achieve an ideal therapeutic effect and even accelerates the occurrence of MDR. In contrast, the combination of chemotherapy with dual-drug has significant advantages in tumor therapy. A novel dual-drug codelivery nanosystem, which combines dual-drug administration with nanotechnology, can overcome the application limitation of free drugs. Both the characteristics of nanoparticles and the synergistic effect of dual drugs contribute to circumventing various drug-resistant mechanisms in tumor cells. Therefore, developing dual-drug codelivery nanosystems with different multidrug-resistant mechanisms has an important reference value for reversing MDR and enhancing the clinical antitumor effect. In this review, the advantages, principles, and common codelivery nanocarriers in the application of dual-drug codelivery systems are summarized. The molecular mechanisms of MDR and the dual-drug codelivery nanosystems designed based on different mechanisms are mainly introduced. Meanwhile, the development prospects and challenges of codelivery nanosystems are also discussed, which provide guidelines to exploit optimized combined chemotherapy strategies in the future.
Collapse
Affiliation(s)
- Jianing Gong
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Shi
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinfeng Liu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zerong Pei
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
16
|
Petrikaite V, D'Avanzo N, Celia C, Fresta M. Nanocarriers overcoming biological barriers induced by multidrug resistance of chemotherapeutics in 2D and 3D cancer models. Drug Resist Updat 2023; 68:100956. [PMID: 36958083 DOI: 10.1016/j.drup.2023.100956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Multidrug resistance (MDR) is currently a big challenge in cancer therapy and limits its success in several patients. Tumors use the MDR mechanisms to colonize the host and reduce the efficacy of chemotherapeutics that are injected as single agents or combinations. MDR mechanisms are responsible for inactivation of drugs and formbiological barriers in cancer like the drug efflux pumps, aberrant extracellular matrix, hypoxic areas, altered cell death mechanisms, etc. Nanocarriers have some potential to overcome these barriers and improve the efficacy of chemotherapeutics. In fact, they are versatile and can deliver natural and synthetic biomolecules, as well as RNAi/DNAi, thus providing a controlled release of drugs and a synergistic effect in tumor tissues. Biocompatible and safe multifunctional biopolymers, with or without specific targeting molecules, modify the surface and interface properties of nanocarriers. These modifications affect the interaction of nanocarriers with cellular models as well as the selection of suitable models for in vitro experiments. MDR cancer cells, and particularly their 2D and 3D models, in combination with anatomical and physiological structures of tumor tissues, can boost the design and preparation of nanomedicines for anticancer therapy. 2D and 3D cancer cell cultures are suitable models to study the interaction, internalization, and efficacy of nanocarriers, the mechanisms of MDR in cancer cells and tissues, and they are used to tailor a personalized medicine and improve the efficacy of anticancer treatment in patients. The description of molecular mechanisms and physio-pathological pathways of these models further allow the design of nanomedicine that can efficiently overcome biological barriers involved in MDR and test the activity of nanocarriers in 2D and 3D models of MDR cancer cells.
Collapse
Affiliation(s)
- Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Nicola D'Avanzo
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy; Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy
| | - Christian Celia
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania; Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta" s.n.c., 88100 Catanzaro, Italy
| |
Collapse
|
17
|
Hong W, Lou B, Gao Y, Zhao H, Ying S, Yang S, Li H, Yang Q, Yang G. Tumor microenvironment responded naturally extracted F OF1-ATPase loaded chromatophores for antitumor therapy. Int J Biol Macromol 2023; 230:123127. [PMID: 36603722 DOI: 10.1016/j.ijbiomac.2022.123127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
Tumor microenvironment (TME) plays an important role in the growth, invasion, and metastasis of tumor cells. The pH of TME is more acidic in solid tumors than in normal tissues. Although targeted delivery in TME has progressed, the complex and expensive construction of delivery systems has limited their application. FOF1-ATP synthase (FOF1-ATPase) is a rotation molecular motor found in bacteria, chloroplasts, and mitochondria. Here, FOF1-ATPase loaded chromatophores (chroma) isolated from thermophilic bacteria were extracted and utilized as a new delivery system targeting TME for the first time. Curcumin as model drug was successfully loaded by a filming-rehydration ultrasonic dispersion method to prepare a curcumin-loaded chroma delivery system (Cur-Chroma). The mobility and propensity distributions of Cur-Chroma reveal its specific pH-sensitive targeting driven by the transmembrane proton kinetic potential, demonstrating its distinct distribution in the TME and more favorable targeting delivery. Cellular uptake experiments indicated that Cur-Chroma entered cells through grid pathway-mediated endocytosis. In vivo studies have shown that Cur-Chroma can specifically target tumor tissue and effectively inhibit tumor growth with good safety. Curcumin's bioavailability and anti-tumor effects were significantly improved. These studies demonstrate that ATPase-loaded chromatophores are potentially ideal vehicles for anti-tumor drug delivery and have promising applications.
Collapse
Affiliation(s)
- Weiyong Hong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Bang Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ying Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; Zhejiang Moda Biotech Co., Ltd, Hangzhou 310018, China
| | - Hui Zhao
- Department of Intensive Care Unit, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 318050, China
| | - Sanjun Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Saicheng Yang
- Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, China
| | - Hanbing Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
18
|
A universal multivalent hyperbranched delivery platform for circumventing multidrug resistance via double camouflage and rapid bonding with cell. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
19
|
Yan M, Wang L, Wu Y, Wang L, Lu Y. Three-dimensional highly porous hydrogel scaffold for neural circuit dissection and modulation. Acta Biomater 2023; 157:252-262. [PMID: 36521677 DOI: 10.1016/j.actbio.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Biomimetic brain structures and artificial neural networks have provided a simplified strategy for quantitatively investigating the complex structural and functional characteristics of highly interconnected neural networks. To achieve this, three-dimensional (3D) cell culture approaches have attracted much attention, which can mimic cell-cell interactions at the organism level and help better understand the function of specific neurons and neuronal networks than traditional two-dimensional cell culture methods. However, 3D scaffolds similar to the natural extracellular matrix to support the culturing, recording, and manipulation of neurons have long been an unresolved challenge. To resolve this, 3D hydrogel scaffolds can be fabricated via an innovative thermal treatment followed by an esterification process. A highly porous microstructure was formed within the bulk hydrogel scaffold, which showed a high porosity of 91% and a low Young's modulus of 6.11 kPa. Due to the merits of the fabricated hydrogel scaffolds, we constructed 3D neural networks and detected spontaneous action potentials in vitro. We successfully induced seizure-like waveforms in 3D cultured neurons and suppressed hyperactivated discharges by selectively activating γ-aminobutyric acid-ergic (GABAergic) interneurons. These results prove the advantages of our hydrogel scaffolds and demonstrate their application potential in the accurate dissection of neural circuits, which may help develop effective treatments for various neurological disorders. STATEMENT OF SIGNIFICANCE: While 3D cell culture approaches have attracted much attention and offer more advantages than two-dimensional cell culture methods, 3D scaffolds similar to the natural extracellular matrix to support the culturing, recording, and manipulation of neurons have long been an unresolved challenge. Herein, we developed a simplified and low-cost strategy for fabricating highly porous and cytocompatible hydrogel scaffolds for the construction of three-dimensional (3D) neural networks in vitro. The cultured 3D neural networks can mimic the in vivo connection among different neuron subgroups and help accurately dissect and manipulate the structure and function of specific neural circuits.
Collapse
Affiliation(s)
- Mengying Yan
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Lulu Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Yiyong Wu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| | - Yi Lu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| |
Collapse
|
20
|
Li Y, Fan H, Ding J, Xu J, Liu C, Wang H. Microfluidic devices: The application in TME modeling and the potential in immunotherapy optimization. Front Genet 2022; 13:969723. [PMID: 36159996 PMCID: PMC9493116 DOI: 10.3389/fgene.2022.969723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
With continued advances in cancer research, the crucial role of the tumor microenvironment (TME) in regulating tumor progression and influencing immunotherapy outcomes has been realized over the years. A series of studies devoted to enhancing the response to immunotherapies through exploring efficient predictive biomarkers and new combination approaches. The microfluidic technology not only promoted the development of multi-omics analyses but also enabled the recapitulation of TME in vitro microfluidic system, which made these devices attractive across studies for optimization of immunotherapy. Here, we reviewed the application of microfluidic systems in modeling TME and the potential of these devices in predicting and monitoring immunotherapy effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Huiyu Wang
- *Correspondence: Chaoying Liu, ; Huiyu Wang,
| |
Collapse
|
21
|
Chen L, Zhao H, Xue S, Chen K, Zhang Y. Effection of Lactic Acid Dissociation on Swelling-Based Short-Chain Fatty Acid Vesicles Nano-Delivery. Foods 2022; 11:foods11111630. [PMID: 35681380 PMCID: PMC9180077 DOI: 10.3390/foods11111630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Functionalized small-molecule assemblies can exhibit nano-delivery properties that significantly improve the bioavailability of bioactive molecules. This study explored the self-assembly of short-chain fatty acids (FA, Cn < 8) to form novel biomimetic nanovesicles as delivery systems. Lactic acid is involved in the regulation of multiple signaling pathways in cancer metabolism, and the dissociation of lactic acid (LA) is used to regulate the delivery effect of short-chain fatty acid vesicles. The study showed that the dissociation of lactic acid caused pH changes in the solution environment inducing hydrogen ion permeability leading to rapid osmotic expansion and shape transformation of FA vesicles. The intrinsic features of FA vesicle formation in the LA environment accompanied by hydrogen ion fluctuations, and the appearance of nearly spherical vesicles were investigated by transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR). Compared with the vesicle membrane built by surfactants, the FA/LA composite system showed higher permeability and led to better membrane stability and rigidity. Finally, membrane potential studies with the IEC cell model demonstrate that lactate dissociation capacity can effectively increase the cellular adsorption of FA vesicles. Altogether, these results prove that FA vesicles can function as a stand-alone delivery system and also serve as potential development strategies for applications in a lactate environment.
Collapse
Affiliation(s)
- Lichun Chen
- Correspondence: ; Tel.: +86-137-7757-7107; Fax: +86-571-2800-8902
| | | | | | | | | |
Collapse
|
22
|
Rapid synthesis of 'yolk-shell'-like nanosystem for MR molecular and chemo-radio sensitization. J Control Release 2022; 347:55-67. [PMID: 35489546 DOI: 10.1016/j.jconrel.2022.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
Abstract
Though amounts of attempts about nanomedicine for chemo-radiotherapy have been made, more efficient strategies for chemo-radio therapy enhancement still need to be studied and perfected. Herein, a 'yolk-shell'-like nanostructure (Bi2S3@mBixMnyOz nanosystem) was facilely constructed by directly using radiosensitizer Bi2S3 nanorods (NRs) as a partial sacrificial template. Then, the chemotherapeutic drug doxorubicin (DOX) loaded PEGylated Bi2S3@mBixMnyOz nanosystem (PBmB-DOX) was constructed, which could realize tumor microenvironment (TME)-responsive drug release for chemotherapy sensitivity enhancement. And the Bi2S3 NRs core could deposit more radiant energy to improve the radiotherapy sensitivity. Meanwhile, the compounds shell could catalyze H2O2 to generate O2, so as to alleviate tumor hypoxia for further chemo-radio therapy sensitization enhancement. More importantly, ferroptosis was participated in the process of PBmB-induced therapy via glutathione (GSH)-depletion mediated GPX4 inactivation, together with Mn ions induced chemodynamic therapy (Fenton-like reaction), which made additional contributions to increase the therapeutic efficacy. Last but not least, the GSH-stimulated degradation of compounds shell could contribute to self-enhanced T1-MR imaging activation, which allowed on-demand tumor diagnosis. In this work, the synthetic strategy that directly using Bi2S3 NRs as a partial sacrificial template to rapidly synthesize the 'yolk-shell'-like nanostructure for nanomedical application has rarely been reported before. And the in vitro and in vivo results suggest that our 'yolk-shell'-like PBmB-DOX nanosystem holds great promise to regulate TME for tumor-specific diagnosis and synergistic therapy.
Collapse
|
23
|
Nano Drug Delivery Systems: Effective Therapy Strategies to Overcome Multidrug Resistance in Tumor Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Yang X, Shang P, Ji J, Malichewe C, Yao Z, Liao J, Du D, Sun C, Wang L, Tang YJ, Guo X. Hyaluronic Acid-Modified Nanoparticles Self-Assembled from Linoleic Acid-Conjugated Chitosan for the Codelivery of miR34a and Doxorubicin in Resistant Breast Cancer. Mol Pharm 2022; 19:2-17. [PMID: 34910493 DOI: 10.1021/acs.molpharmaceut.1c00459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, a chitosan-based, self-assembled nanosystem that codelivered microRNA34a (miR34a) and doxorubicin (Dox) with hyaluronic acid (HA) modification (named CCmDH NPs) was developed to reverse the resistance of breast cancer (BCa) cells to Dox. The CCmDH NPs had a diameter of 180 ± 8.3 nm and a ζ potential of 16.5 mV with a slow-release effect for 96 h. The codelivery system could protect miR34a from nuclease and serum degradation and transport miR34a and Dox into drug-resistant MCF-7/A cells. In addition, the CCmDH NPs could inhibit proliferation and promote apoptosis by regulating the protein expression of B-cell lymphoma-2 (Bcl-2) and poly(ADP-ribose) polymerase (PARP) and inhibit invasion, metastasis, and adhesion by regulating E-cadherin, N-cadherin, MMP2, CD44, and Snail molecules. The CCmDH NPs induced a 73.7% tumor reduction in xenograft tumor growth in nude mice in vivo. This study provides evidence for the anticancer activity of CCmDH NPs carrying Dox and miR34a in BCa, especially metastatic Dox-resistant BCa models.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Pengfei Shang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Jianbo Ji
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Christina Malichewe
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Zhiyin Yao
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| | - Jing Liao
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Dandan Du
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Chao Sun
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Lei Wang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Xiuli Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|