1
|
Triantafyllopoulou E, Perinelli DR, Forys A, Pantelis P, Gorgoulis VG, Lagopati N, Trzebicka B, Bonacucina G, Valsami G, Pippa N, Pispas S. Unveiling the Performance of Co-Assembled Hybrid Nanocarriers: Moving towards the Formation of a Multifunctional Lipid/Random Copolymer Nanoplatform. Pharmaceutics 2024; 16:1204. [PMID: 39339240 PMCID: PMC11434724 DOI: 10.3390/pharmaceutics16091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the appealing properties of random copolymers, the use of these biomaterials in association with phospholipids is still limited, as several aspects of their performance have not been investigated. The aim of this work is the formulation of lipid/random copolymer platforms and the comprehensive study of their features by multiple advanced characterization techniques. Both biomaterials are amphiphilic, including two phospholipids (1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and a statistical copolymer of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA). We examined the design parameters, including the lipid composition, the % comonomer ratio, and the lipid-to-polymer ratio that could be critical for their behavior. The structures were also probed in different conditions. To the best of the authors' knowledge, this is the first time that P(OEGMA-co-DIPAEMA)/lipid hybrid colloidal dispersions have been investigated from a membrane mechanics, biophysical, and morphological perspective. Among other parameters, the copolymer architecture and the hydrophilic to hydrophobic balance are deemed fundamental parameters for the biomaterial co-assembly, having an impact on the membrane's fluidity, morphology, and thermodynamics. Exploiting their unique characteristics, the most promising candidates were utilized for methotrexate (MTX) loading to explore their encapsulation capability and potential antitumor efficacy in vitro in various cell lines.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Nefeli Lagopati
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
2
|
Peng X, Fang J, Lou C, Yang L, Shan S, Wang Z, Chen Y, Li H, Li X. Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy. Acta Pharm Sin B 2024; 14:3432-3456. [PMID: 39220871 PMCID: PMC11365410 DOI: 10.1016/j.apsb.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 09/04/2024] Open
Abstract
The advent of cancer immunotherapy has imparted a transformative impact on cancer treatment paradigms by harnessing the power of the immune system. However, the challenge of practical and precise targeting of malignant cells persists. To address this, engineered nanoparticles (NPs) have emerged as a promising solution for enhancing targeted drug delivery in immunotherapeutic interventions, owing to their small size, low immunogenicity, and ease of surface modification. This comprehensive review delves into contemporary research at the nexus of NP engineering and immunotherapy, encompassing an extensive spectrum of NP morphologies and strategies tailored toward optimizing tumor targeting and augmenting therapeutic effectiveness. Moreover, it underscores the mechanisms that NPs leverage to bypass the numerous obstacles encountered in immunotherapeutic regimens and probes into the combined potential of NPs when co-administered with both established and novel immunotherapeutic modalities. Finally, the review evaluates the existing limitations of NPs as drug delivery platforms in immunotherapy, which could shape the path for future advancements in this promising field.
Collapse
Affiliation(s)
- Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Chuyuan Lou
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Shaobo Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 10050, China
| | - Zixian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Yutong Chen
- Department of Pathology, Medical College, Jinan University, Guangzhou 510632, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-17177, Sweden
| |
Collapse
|
3
|
Srinivasarao DA, Shah S, Famta P, Vambhurkar G, Jain N, Pindiprolu SKSS, Sharma A, Kumar R, Padhy HP, Kumari M, Madan J, Srivastava S. Unravelling the role of tumor microenvironment responsive nanobiomaterials in spatiotemporal controlled drug delivery for lung cancer therapy. Drug Deliv Transl Res 2024:10.1007/s13346-024-01673-z. [PMID: 39037533 DOI: 10.1007/s13346-024-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Design and development of efficient drug delivery technologies that impart site-specificity is the need of the hour for the effective treatment of lung cancer. The emergence of materials science and nanotechnology partially helped drug delivery scientists to achieve this objective. Various stimuli-responsive materials that undergo degradation at the pathological tumor microenvironment (TME) have been developed and explored for drug delivery applications using nanotechnological approaches. Nanoparticles (NPs), owing to their small size and high surface area to volume ratio, demonstrated enhanced cellular internalization, permeation, and retention at the tumor site. Such passive accumulation of stimuli-responsive materials helped to achieve spatiotemporally controlled and targeted drug delivery within the tumors. In this review, we discussed various stimuli-physical (interstitial pressure, temperature, and stiffness), chemical (pH, hypoxia, oxidative stress, and redox state), and biological (receptor expression, efflux transporters, immune cells, and their receptors or ligands)-that are characteristic to the TME. We mentioned an array of biomaterials-based nanoparticulate delivery systems that respond to these stimuli and control drug release at the TME. Further, we discussed nanoparticle-based combinatorial drug delivery strategies. Finally, we presented our perspectives on challenges related to scale-up, clinical translation, and regulatory approvals.
Collapse
Affiliation(s)
- Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, 533 437, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, 533 003, Andhra Pradesh, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Meenu Kumari
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
4
|
Triantafyllopoulou E, Forys A, Perinelli DR, Balafouti A, Karayianni M, Trzebicka B, Bonacucina G, Valsami G, Pippa N, Pispas S. Deciphering the Lipid-Random Copolymer Interactions and Encoding Their Properties to Design a Hybrid System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11936-11946. [PMID: 38797979 PMCID: PMC11190979 DOI: 10.1021/acs.langmuir.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Lipid/copolymer colloidal systems are deemed hybrid materials with unique properties and functionalities. Their hybrid nature leads to complex interfacial phenomena, which have not been fully encoded yet, navigating their properties. Moving toward in-depth knowledge of such systems, a comprehensive investigation of them is imperative. In the present study, hybrid lipid/copolymer structures were fabricated and examined by a gamut of techniques, including dynamic light scattering, fluorescence spectroscopy, cryogenic transmission electron microscopy, microcalorimetry, and high-resolution ultrasound spectroscopy. The biomaterials that were mixed for this purpose at different ratios were 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine and four different linear, statistical (random) amphiphilic copolymers, consisting of oligo(ethylene glycol) methyl ether methacrylate as the hydrophilic comonomer and lauryl methacrylate as the hydrophobic one. The colloidal dispersions were studied for lipid/copolymer interactions regarding their physicochemical, morphological, and biophysical behavior. Their membrane properties and interactions with serum proteins were also studied. The aforementioned techniques confirmed the hybrid nature of the systems and the location of the copolymer in the structure. More importantly, the random architecture of the copolymers, the hydrophobic-to-hydrophilic balance of the nanoplatforms, and the lipid-to-polymer ratio are highlighted as the main design-influencing factors. Elucidating the lipid/copolymer interactions would contribute to the translation of hybrid nanoparticle performance and, thus, their rational design for multiple applications, including drug delivery.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, National and Kapodistrian University
of Athens, Panepistimioupolis
Zografou, Athens 15771, Greece
| | - Aleksander Forys
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, Zabrze 41-819, Poland
| | - Diego Romano Perinelli
- School
of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino 62032, Italy
| | - Anastasia Balafouti
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Maria Karayianni
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Barbara Trzebicka
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, Zabrze 41-819, Poland
| | - Giulia Bonacucina
- School
of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino 62032, Italy
| | - Georgia Valsami
- Section
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, National and Kapodistrian University
of Athens, Panepistimioupolis
Zografou, Athens 15771, Greece
| | - Natassa Pippa
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15771, Athens 157 72, Greece
| | - Stergios Pispas
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| |
Collapse
|
5
|
PEGylated and functionalized polylactide-based nanocapsules: An overview. Int J Pharm 2023; 636:122760. [PMID: 36858134 DOI: 10.1016/j.ijpharm.2023.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Polymeric nanocapsules (NC) are versatile mixed vesicular nanocarriers, generally containing a lipid core with a polymeric wall. They have been first developed over four decades ago with outstanding applicability in the cosmetic and pharmaceutical fields. Biodegradable polyesters are frequently used in nanocapsule preparation and among them, polylactic acid (PLA) derivatives and copolymers, such as PLGA and amphiphilic block copolymers, are widely used and considered safe for different administration routes. PLA functionalization strategies have been developed to obtain more versatile polymers and to allow the conjugation with bioactive ligands for cell-targeted NC. This review intends to provide steps in the evolution of NC since its first report and the recent literature on PLA-based NC applications. PLA-based polymer synthesis and surface modifications are included, as well as the use of NC as a novel tool for combined treatment, diagnostics, and imaging in one delivery system. Furthermore, the use of NC to carry therapeutic and/or imaging agents for different diseases, mainly cancer, inflammation, and infections is presented and reviewed. Constraints that impair translation to the clinic are discussed to provide safe and reproducible PLA-based nanocapsules on the market. We reviewed the entire period in the literature where the term "nanocapsules" appears for the first time until the present day, selecting original scientific publications and the most relevant patent literature related to PLA-based NC. We presented to readers a historical overview of these Sui generis nanostructures.
Collapse
|
6
|
Elmowafy M, Shalaby K, Elkomy MH, Alsaidan OA, Gomaa HAM, Abdelgawad MA, Mostafa EM. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers (Basel) 2023; 15:1123. [PMID: 36904364 PMCID: PMC10007077 DOI: 10.3390/polym15051123] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In the last few decades, several natural bioactive agents have been widely utilized in the treatment and prevention of many diseases owing to their unique and versatile therapeutic effects, including antioxidant, anti-inflammatory, anticancer, and neuroprotective action. However, their poor aqueous solubility, poor bioavailability, low GIT stability, extensive metabolism as well as short duration of action are the most shortfalls hampering their biomedical/pharmaceutical applications. Different drug delivery platforms have developed in this regard, and a captivating tool of this has been the fabrication of nanocarriers. In particular, polymeric nanoparticles were reported to offer proficient delivery of various natural bioactive agents with good entrapment potential and stability, an efficiently controlled release, improved bioavailability, and fascinating therapeutic efficacy. In addition, surface decoration and polymer functionalization have opened the door to improving the characteristics of polymeric nanoparticles and alleviating the reported toxicity. Herein, a review of the state of knowledge on polymeric nanoparticles loaded with natural bioactive agents is presented. The review focuses on frequently used polymeric materials and their corresponding methods of fabrication, the needs of such systems for natural bioactive agents, polymeric nanoparticles loaded with natural bioactive agents in the literature, and the potential role of polymer functionalization, hybrid systems, and stimuli-responsive systems in overcoming most of the system drawbacks. This exploration may offer a thorough idea of viewing the polymeric nanoparticles as a potential candidate for the delivery of natural bioactive agents as well as the challenges and the combating tools used to overcome any hurdles.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| |
Collapse
|
7
|
Colby AH, Kirsch J, Patwa AN, Liu R, Hollister B, McCulloch W, Burdette JE, Pearce CJ, Oberliels NH, Colson YL, Liu K, Grinstaff MW. Radiolabeled Biodistribution of Expansile Nanoparticles: Intraperitoneal Administration Results in Tumor Specific Accumulation. ACS NANO 2023; 17:2212-2221. [PMID: 36701244 PMCID: PMC9933882 DOI: 10.1021/acsnano.2c08451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/23/2023] [Indexed: 05/18/2023]
Abstract
Nanoparticle biodistribution in vivo is an essential component to the success of nanoparticle-based drug delivery systems. Previous studies with fluorescently labeled expansile nanoparticles, or "eNPs", demonstrated a high specificity of eNPs to tumors that is achieved through a materials-based targeting strategy. However, fluorescent labeling techniques are primarily qualitative in nature and the gold-standard for quantitative evaluation of biodistribution is through radiolabeling. In this manuscript, we synthesize 14C-labeled eNPs to quantitatively evaluate the biodistribution of these particles in a murine model of intraperitoneal mesothelioma via liquid scintillation counting. The results demonstrate a strong specificity of eNPs for tumors that lasts one to 2 weeks postinjection with an overall delivery efficiency to the tumor tissue of 30% of the injected dose which is congruent with prior reports of preclinical efficacy of the technology. Importantly, the route of administration is essential to the eNP's material-based targeting strategy with intraperitoneal administration leading to tumoral accumulation while, in contrast, intravenous administration leads to rapid clearance via the reticuloendothelial system and low tumoral accumulation. A comparison against nanoparticle delivery systems published over the past decade shows that the 30% tumoral delivery efficiency of the eNP is significantly higher than the 0.7% median delivery efficiency of other systems with sufficient quantitative data to define this metric. These results lay a foundation for targeting intraperitoneal tumors and encourage efforts to explore alternative, nonintravenous routes, of delivery to accelerate the translation of nanoparticle therapies to the clinic.
Collapse
Affiliation(s)
- Aaron H. Colby
- Boston
University, Boston, Massachusetts 02215, United States
- Ionic
Pharmaceuticals, LLC, Watertown, Massachusetts 02472, United States
| | - Jack Kirsch
- Boston
University, Boston, Massachusetts 02215, United States
| | - Amit N. Patwa
- Boston
University, Boston, Massachusetts 02215, United States
- Navrachana
University, Vadodara 391410, India
| | - Rong Liu
- Massachusetts
General Hospital, Boston, Massachusetts 02114, United States
| | - Beth Hollister
- HighRock
Consulting, Oxford, North Carolina 27565, United States
| | - William McCulloch
- Alba BioPharm
Advisors, Inc., Raleigh, North Carolina 27614, United States
| | - Joanna E. Burdette
- University
of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Cedric J. Pearce
- Mycosynthetix,
Inc., Hillsborough, North Carolina 27278, United States
| | - Nicholas H. Oberliels
- Ionic
Pharmaceuticals, LLC, Watertown, Massachusetts 02472, United States
- University
of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Yolonda L. Colson
- Massachusetts
General Hospital, Boston, Massachusetts 02114, United States
| | - Kebin Liu
- Augusta
University, Augusta, Georgia 30912, United States
| | - Mark W. Grinstaff
- Boston
University, Boston, Massachusetts 02215, United States
- Ionic
Pharmaceuticals, LLC, Watertown, Massachusetts 02472, United States
| |
Collapse
|
8
|
Altinbasak I, Kocak S, Colby AH, Alp Y, Sanyal R, Grinstaff MW, Sanyal A. pH-Responsive nanofiber buttresses as local drug delivery devices. Biomater Sci 2023; 11:813-821. [PMID: 36408890 PMCID: PMC9930888 DOI: 10.1039/d2bm01199a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electrospun nanofibers are a 3D scaffold of choice for many drug delivery devices due to their high surface area, significant capacity for drug payload, ease of in situ placement, and scalable manufacture. Herein, we report the synthesis of polymeric, pH-responsive nanofiber buttresses via electrospinning. The homopolymer is comprised of an acrylic backbone with acid-sensitive, hydrolyzable, trimethoxybenzaldehyde-protected side chains that lead to buttress transformation from a hydrophobic to a hydrophilic state under physiologically relevant pH conditions (e.g., extracellular tumor environment with pH = 6.5). Hydrolysis of the side chains leads to an increase in fiber diameter from approximately 350 to 900 nm and the release of the encapsulated drug cargo. In vitro drug release profiles demonstrate that significantly more drug is released at pH 5.5 compared to pH 7.4, thereby limiting the release to the target site, with docetaxel releasing over 20 days and doxorubicin over 7 days. Drug burst release, defined as >50% within 24 hours, does not occur at either pH or with either drug. Drug-loaded buttresses preserve drug activity and are cytotoxic to multiple human cancer lines, including breast and lung. Important to their potential application in surgical applications, the tensile strength of the buttresses is 6.3 kPa and, though weaker than commercially available buttresses, they provide sufficient flexibility and mechanical integrity to serve as buttressing materials via the application with a conventional surgical cutting stapler.
Collapse
Affiliation(s)
- Ismail Altinbasak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Salli Kocak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Aaron H Colby
- Boston University, Department of Biomedical Engineering, Boston, MA, USA.
| | - Yasin Alp
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Mark W Grinstaff
- Boston University, Department of Biomedical Engineering, Boston, MA, USA.
- Boston University, Department of Chemistry, Boston, MA, USA
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| |
Collapse
|
9
|
Mejía-Méndez JL, López-Mena ER, Sánchez-Arreola E. Activities against Lung Cancer of Biosynthesized Silver Nanoparticles: A Review. Biomedicines 2023; 11:389. [PMID: 36830926 PMCID: PMC9953519 DOI: 10.3390/biomedicines11020389] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Nanomedicine is an interdisciplinary field where nanostructured objects are applied to treat or diagnose disease. Nanoparticles (NPs) are a special class of materials at nanometric scale that can be prepared from lipids, polymers, or noble metals through bottom-up approaches. Biological synthesis is a reliable, sustainable, and non-toxic bottom-up method that uses phytochemicals, microorganisms, and enzymes to induce the reduction of metal ions into NPs. Silver (Ag) NPs exhibit potent therapeutic properties that can be exploited to overcome the limitations of current treatment modalities for human health issues such as lung cancer (LC). Here, we review the preparation of AgNPs using biological synthesis and their application against LC using in vitro and in vivo models. An overview of the staging, diagnosis, genetic mutations, and treatment of LC, as well as its main subtypes, is presented. A summary of the reaction mechanisms of AgNPs using microbial cell cultures, plant extracts, phytochemicals, and amino acids is included. The use of capping agents in the biosynthesis of AgNPs with anticancer activity is also detailed. The history and biological activities of metal-based nanostructures synthesized with gold, copper, palladium, and platinum are considered. The possible anticancer mechanisms of AgNPs against LC models are covered. Our perspective about the future of AgNPs in LC treatment and nanomedicine is added.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico
| | - Eugenio Sánchez-Arreola
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| |
Collapse
|
10
|
Preparation and Characterization of a Novel Multiparticulate Dosage Form Carrying Budesonide-Loaded Chitosan Nanoparticles to Enhance the Efficiency of Pellets in the Colon. Pharmaceutics 2022; 15:pharmaceutics15010069. [PMID: 36678698 PMCID: PMC9865799 DOI: 10.3390/pharmaceutics15010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
An attempt was made to conquer the limitation of orally administered nanoparticles for the delivery of budesonide to the colon. The ionic gelation technique was used to load budesonide on chitosan nanoparticles. The nanoparticles were investigated in terms of size, zeta potential, encapsulation efficiency, shape and drug release. Then, nanoparticles were pelletized using the extrusion-spheronization method and were investigated for their size, mechanical properties, and drug release. Pellets were subsequently coated with a polymeric solution composed of two enteric (eudragit L and S) and time-dependent polymers (eudragit RS) for colon-specific delivery. All formulations were examined for their anti-inflammatory effect in rats with induced colitis and the relapse of the colitis after discontinuation of treatment was also followed. The size of nanoparticles ranged between 288 ± 7.5 and 566 ± 7.7 nm and zeta potential verified their positive charged surface. The drug release from nanoparticles showed an initial burst release followed by a continuous release. Pelletized nanoparticles showed proper mechanical properties and faster drug release in acidic pH compared with alkaline pH. It was interesting to note that pelletized budesonide nanoparticles released the drug throughout the GIT in a sustained fashion, and had long-lasting anti-inflammatory effects while rapid relapse was observed for those treated with conventional budesonide pellets. It seems that there is a synergistic effect of nanoformulation of budesonide and the encapsulation of pelletized nanoparticles in a proper coating system for colon delivery that could result in a significant and long-lasting anti-inflammatory effect.
Collapse
|
11
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Khramtsov P, Kropaneva M, Minin A, Bochkova M, Timganova V, Maximov A, Puzik A, Zamorina S, Rayev M. Prussian Blue Nanozymes with Enhanced Catalytic Activity: Size Tuning and Application in ELISA-like Immunoassay. NANOMATERIALS 2022; 12:nano12101630. [PMID: 35630852 PMCID: PMC9147909 DOI: 10.3390/nano12101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
Prussian blue nanozymes possessing peroxidase-like activity gather significant attention as alternatives to natural enzymes in therapy, biosensing, and environmental remediation. Recently, Prussian blue nanoparticles with enhanced catalytic activity prepared by reduction of FeCl3/K3[Fe(CN)6] mixture have been reported. These nanoparticles were denoted as ‘artificial peroxidase’ nanozymes. Our study provides insights into the process of their synthesis. We studied how the size of nanozymes and synthesis yield can be controlled via adjustment of the synthesis conditions. Based on these results, we developed a reproducible and scalable method for the preparation of ‘artificial peroxidase’ with tunable sizes and enhanced catalytic activity. Nanozymes modified with gelatin shell and functionalized with affine molecules were applied as labels in colorimetric immunoassays of prostate-specific antigen and tetanus antibodies, enabling detection of these analytes in the range of clinically relevant concentrations. Protein coating provides excellent colloidal stability of nanozymes in physiological conditions and stability upon long-term storage.
Collapse
Affiliation(s)
- Pavel Khramtsov
- Faculty of Biology, Perm State University, 614068 Perm, Russia; (M.K.); (M.B.); (S.Z.); (M.R.)
- Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia;
- Correspondence: ; Tel.: +7-342-280-77-94
| | - Maria Kropaneva
- Faculty of Biology, Perm State University, 614068 Perm, Russia; (M.K.); (M.B.); (S.Z.); (M.R.)
- Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia;
| | - Artem Minin
- Lab of Applied Magnetism, M.N. Mikheev Institute of Metal Physics of the UB RAS, 620108 Yekaterinburg, Russia;
- Faculty of Biology and Fundamental Medicine, Ural Federal University Named after The First President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia
| | - Maria Bochkova
- Faculty of Biology, Perm State University, 614068 Perm, Russia; (M.K.); (M.B.); (S.Z.); (M.R.)
- Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia;
| | - Valeria Timganova
- Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia;
| | - Andrey Maximov
- Department of Analytical Chemistry and Expertise, Faculty of Chemistry, Perm State University, 614068 Perm, Russia;
| | - Alexey Puzik
- Department of Mineralogy and Petrography, Faculty of Geology, Perm State University, 614068 Perm, Russia;
- Core Facilities and Lab of Hydrochemical Analysis, Perm State University, 614068 Perm, Russia
- Lab of Technological Mineralogy, Institute of Natural Science, Perm State University, 614068 Perm, Russia
- Lab of Biogeochemistry of Technogenic Landscapes, Perm State University, 614068 Perm, Russia
| | - Svetlana Zamorina
- Faculty of Biology, Perm State University, 614068 Perm, Russia; (M.K.); (M.B.); (S.Z.); (M.R.)
- Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia;
| | - Mikhail Rayev
- Faculty of Biology, Perm State University, 614068 Perm, Russia; (M.K.); (M.B.); (S.Z.); (M.R.)
- Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia;
| |
Collapse
|
13
|
Li J, Huang D, Cheng R, Figueiredo P, Fontana F, Correia A, Wang S, Liu Z, Kemell M, Torrieri G, Mäkilä EM, Salonen JJ, Hirvonen J, Gao Y, Li J, Luo Z, Santos HA, Xia B. Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weak-Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108012. [PMID: 34877724 DOI: 10.1002/adma.202108012] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/26/2021] [Indexed: 06/13/2023]
Abstract
An alternative strategy of choosing photothermal and weak-immunostimulatory porous silicon@Au nanocomposites as particulate cores to prepare a biomimetic nanovaccine is reported to improve its biosafety and immunotherapeutic efficacy for solid tumors. A quantitative analysis method is used to calculate the loading amount of cancer cell membranes onto porous silicon@Au nanocomposites. Assisted with foreign-body responses, these exogenous nanoparticulate cores with weak immunostimulatory effect can still efficiently deliver cancer cell membranes into dendritic cells to activate them and the downstream antitumor immunity, resulting in no occurrence of solid tumors and the survival of all immunized mice during 55 day observation. In addition, this nanovaccine, as a photothermal therapeutic agent, synergized with additional immunotherapies can significantly inhibit the growth and metastasis of established solid tumors, via the initiation of the antitumor immune responses in the body and the reversion of their immunosuppressive microenvironments. Considering the versatile surface engineering of porous silicon nanoparticles, the strategy developed here is beneficial to construct multifunctional nanovaccines with better biosafety and more diagnosis or therapeutic modalities against the occurrence, recurrence, or metastasis of solid tumors in future clinical practice.
Collapse
Affiliation(s)
- Jiachen Li
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen/University Medical Center Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Di Huang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Giulia Torrieri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ermei M Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Jarno J Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Yan Gao
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Jialiang Li
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenyang Luo
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen/University Medical Center Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Bing Xia
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|