1
|
Yang JB, Xu DZ, Zhang ZH, Zhang X, Ren ZX, Lu ZL, Liu R, Liu Y. Multifunctional System with Camptothecin and [12]aneN 3 Units for Effective In Vivo Anti Pancreatic Cancer through Synergistic Chemotherapy, Gene Therapy, and Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67203-67215. [PMID: 39585759 DOI: 10.1021/acsami.4c12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Maximizing drug cargo carrying capacity in blood circulation, controlling the in vivo fate of nanoparticles, and precisely drug release to tumor targets are the main aims of multifunctional nanomedicine-based antitumor therapy. Here we combined macrocyclic polyamine di(triazole-[12]aneN3) (M) and chemical drug camptothecin (CPT, C) through photosensitizer 1,1-dicyano-2-phenyl-2-(4-diphenylamino) phenyl-ethylene (DT) containing the cleavable disulfide (S) linkage as an all-in-one theranostic nanoprodrug, MDTSC. The corresponding compound with carbon chain (C) linkage, MDTCC, was also prepared for a comparison study. MDTSC showed the ability to carry plasmids, including the p53 tumor suppressor gene, to form lipoplexes with a size of ∼150 nm. Further addition of DOPE-PEG2k resulted in the hybrid lipoplexes MDTSC/DOPE-PEG2k@DNA, which showed good stability in blood circulation and good biocompatibility to normal cell lines. Experiments demonstrated that the hybrid lipoplexes were able to realize the successful cellular uptake and endosomal escape, to generate ROS under visible light irradiation as well as to trigger the localized release of CPT and the plasmid encoding p53 in tumor cells. In vitro, the hybrid lipoplexes showed better EGFP expression than the commercial Lipo2000, and markedly reduced tumor cell proliferation and migration rate irrespective of whether the BxPC-3 cell lines were grown on plates or 3D tumor spheroids. In vivo, the hybrid lipoplexes showed effective anticancer activity by reducing the BxPC-3 pancreatic tumor growth by 99% through the synergetic combination of chemotherapy, photodynamic therapy, and gene therapy. This research represented the first example of using a cocktail of three therapeutic approaches to achieve cooperative and effective anti pancreatic cancer treatment in vivo and in vitro.
Collapse
Affiliation(s)
- Jing-Bo Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- China National Institute for Food and Drug Control, Institute of Chemical Drug Control, HuaTuo Road 29, Beijing 100050, China
| | - De-Zhong Xu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zi-Han Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xi Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zhi-Xuan Ren
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Rui Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yang Liu
- China National Institute for Food and Drug Control, Institute of Chemical Drug Control, HuaTuo Road 29, Beijing 100050, China
| |
Collapse
|
2
|
Hsiao CH, Lin YW, Liu CH, Nguyen HT, Chuang AEY. Light-Driven Green-Fabricated Artificial Intelligence-Enabled Micro/Nanorobots for Multimodal Phototherapeutic Management of Bladder Cancer. Adv Healthc Mater 2024; 13:e2402864. [PMID: 39344248 DOI: 10.1002/adhm.202402864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Combination therapy based on precise phototherapies combined with immune modulation provides successful antitumor effects. In this study, a combination therapy is designed based on phototactic, photosynthetic, and phototherapeutic Chlamydomonas Reinhardtii (CHL)-glycol chitosan (GCS)-polypyrrole (PPy) nanoparticle (NP)-enhanced immunity combined with the tumor microenvironment turnover of cytotoxic T cells and M1/M2 macrophages, which is based on photothermal GCS-PPy NPs decorated onto the phototactic and photosynthetic CHL. Phototherapy based on CHL-GCS-PPy NPs alleviates hypoxia and modulates the tumor immune microenvironment, which induces tumor cell death. In particular, the precise antitumor immune response and potent immune memory induced by combining self-navigated phototherapies significantly alleviate the progression of bladder cancer in C57BL/6 mice and effectively inhibit bladder tumor growth. Furthermore, they also potentially prevent tumor recurrence, which provides a promising therapeutic strategy for clinical tumor therapy.
Collapse
Affiliation(s)
- Chi-Hung Hsiao
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Yung-Wei Lin
- Department of Urology, Wan Fang Hospital, Taipei Medical University, 111 Hsing Long Road, Section 3, Taipei, 11696, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hung Liu
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| |
Collapse
|
3
|
Chu B, Deng H, Niu T, Qu Y, Qian Z. Stimulus-Responsive Nano-Prodrug Strategies for Cancer Therapy: A Focus on Camptothecin Delivery. SMALL METHODS 2024; 8:e2301271. [PMID: 38085682 DOI: 10.1002/smtd.202301271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Indexed: 08/18/2024]
Abstract
Camptothecin (CPT) is a highly cytotoxic molecule with excellent antitumor activity against various cancers. However, its clinical application is severely limited by poor water solubility, easy inactivation, and severe toxicity. Structural modifications and nanoformulations represent two crucial avenues for camptothecin's development. However, the potential for further structural modifications is limited, and camptothecin nanoparticles fabricated via physical loading have the drawbacks of low drug loading and leakage. Prodrug-based CPT nanoformulations have shown unique advantages, including increased drug loading, reduced burst release, improved bioavailability, and minimal toxic side effects. Stimulus-responsive CPT nano-prodrugs that respond to various endogenous or exogenous stimuli by introducing various activatable linkers to achieve spatiotemporally responsive drug release at the tumor site. This review comprehensively summarizes the latest research advances in stimulus-responsive CPT nano-prodrugs, including preparation strategies, responsive release mechanisms, and their applications in cancer therapy. Special focus is placed on the release mechanisms and characteristics of various stimulus-responsive CPT nano-prodrugs and their application in cancer treatment. Furthermore, clinical applications of CPT prodrugs are discussed. Finally, challenges and future research directions for CPT nano-prodrugs are discussed. This review to be valuable to readers engaged in prodrug research is expected.
Collapse
Affiliation(s)
- Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, Rabiee N, Ertas YN, Mao Y. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579. [PMID: 38795895 DOI: 10.1016/j.ijbiomac.2024.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, Shandong, PR China
| | - Shuo Pang
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong 250101, PR China
| | - Xiaoli Liu
- Department of Dermatology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zi Dong
- Department of Gastroenterology, Lincang People's Hospital, Lincang, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, United States
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077 India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Türkiye.
| | - Ying Mao
- Department of Oncology, Suining Central Hospital, Suining City, Sichuan, China.
| |
Collapse
|
5
|
Zhou J, Yang R, Chen Y, Chen D. Efficacy tumor therapeutic applications of stimuli-responsive block copolymer-based nano-assemblies. Heliyon 2024; 10:e28166. [PMID: 38571609 PMCID: PMC10987934 DOI: 10.1016/j.heliyon.2024.e28166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Block copolymers are composed of two or more blocks or segments with different chemical properties via various chemical bonds, which can assemble into nanoparticles with a "core-shell" structure. Due to the benefits of simple functionalization, superior drug-loading capacity, and good biocompatibility, various nano-assemblies based on block copolymers have become widely applied in the treatment of cancers in recent years. These nano-assemblies serve as carriers for anti-tumor bioactive, enhancing drug stability and prolonging their circulation time in vivo, which can reduce the toxic side effects of drugs and improve the therapeutic effect. However, the complex and heterogeneous tumor microenvironment poses challenges to the therapeutic efficacy of these nano-assemblies, having the result in the occurrence of drug resistance and the recurrence of tumors. Consequently, a diverse array of stimuli-responsive nano-assemblies has been devised in order to surmount these obstacles. This article provides a comprehensive overview of the utilization of stimuli-responsive nano-assemblies derived from block copolymers in the context of tumor treatment. The review summarizes block polymers responsive to internal stimuli (like ROS, redox, pH, and enzymes) and external stimuli (like light, and temperature), and discusses current challenges and prospects in this field, aiming to provide novel insights for clinical applications.
Collapse
Affiliation(s)
- Jie Zhou
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Rui Yang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Yu Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Daozhen Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
- Department of Laboratory, Haidong Second People's Hospital, Haidong, 810699, China
| |
Collapse
|
6
|
Ding Y, Yu W, Shen R, Zheng X, Zheng H, Yao Y, Zhang Y, Du C, Yi H. Hypoxia-Responsive Tetrameric Supramolecular Polypeptide Nanoprodrugs for Combination Therapy. Adv Healthc Mater 2024; 13:e2303308. [PMID: 37924332 DOI: 10.1002/adhm.202303308] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Despite the intense progress of photodynamic and chemotherapy, however, they cannot prevent solid tumor invasion, metastasis, and relapse, along with inferior efficacy and severe side effects. The hypoxia-responsive nanoprodrugs integrating photodynamic functions are highly sought to address the above-mentioned problems and overcome the tumor hypoxia-reduced efficacy. Herein, a hypoxia-responsive tetrameric supramolecular polypeptide nanoprodrug (SPN-TAPP-PCB4) is constructed from the self-assembly of tetrameric porphyrin-central poly(l-lysine-azobenzene-chlorambucil) (TAPP-(PLL-Azo-CB)4) and an anionic water-soluble [2]biphenyl-extended-pillar[6]arene (AWBpP6) via the synergy of hydrophobic, π-π stacking, and host-guest interactions. Upon laser irradiation, the central TAPP can convert oxygen to generate single oxygen (1 O2 ) to kill tumor cells. Furthermore, under the acidic and PDT-aggravated hypoxia tumor cell microenvironment, SPN-TAPP-PCB4 is rapidly disassembled, and then efficiently releases activated CB through the hypoxic-responsive cleavage of azobenzene linkages. Both in vitro and in vivo biological studies showcase synergistic cancer-killing actions between photodynamic therapy (PDT) and chemotherapy (CT) with negligible toxicity. Consequently, this supramolecular polypeptide nanoprodrug offers an effective strategy to design a hypoxia-responsive nanoprodrug for a potential combo PDT-CT transition.
Collapse
Affiliation(s)
- Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Rongkai Shen
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, 20, Chazhong Rd., Fuzhou, Fujian, 350005, China
| | - Xiangqin Zheng
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, National Key Clinical Specialty Construction Program of (Gynecology), Fujian Province Key Clinical Specialty for Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Hui Zheng
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, National Key Clinical Specialty Construction Program of (Gynecology), Fujian Province Key Clinical Specialty for Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Yuehua Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Chang Du
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huan Yi
- Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, National Key Clinical Specialty Construction Program of (Gynecology), Fujian Province Key Clinical Specialty for Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| |
Collapse
|
7
|
Guo X, Han L, Chen W, He H, Zhang W, Huang C, Wang X. Hypoxia and Singlet Oxygen Dual-Responsive Micelles for Photodynamic and Chemotherapy Therapy Featured with Enhanced Cellular Uptake and Triggered Cargo Delivery. Int J Nanomedicine 2024; 19:247-261. [PMID: 38229704 PMCID: PMC10790668 DOI: 10.2147/ijn.s432407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
Introduction Combination therapy provides better outcomes than a single therapy and becomes an efficient strategy for cancer treatment. In this study, we designed a hypoxia- and singlet oxygen-responsive polymeric micelles which contain azo and nitroimidazole groups for enhanced cellular uptake, repaid cargo release, and codelivery of photosensitizer Ce6 and hypoxia-activated prodrug tirapazamine TPZ (DHM-Ce6@TPZ), which could be used for combining Ce6-mediated photodynamic therapy (PDT) and PDT-activated chemotherapy to enhance the therapy effect of cancer. Methods The hypoxia- and singlet oxygen-responsive polymeric micelles DHM-Ce6@TPZ were prepared by film hydration method. The morphology, physicochemical properties, stimuli responsiveness, in vitro singlet oxygen production, cellular uptake, and cell viability were evaluated. In addition, the in vivo therapeutic effects of the micelles were verified using a tumor xenograft mice model. Results The resulting dual-responsive micelles not only increased the concentration of intracellular photosensitizer and TPZ, but also facilitated photosensitizer and TPZ release for enhanced integration of photodynamic and chemotherapy therapy. As a photosensitizer, Ce6 induced PDT by generating toxic singlet reactive oxygen species (ROS), resulting in a hypoxic tumor environment to activate the prodrug TPZ to achieve efficient chemotherapy, thereby evoking a synergistic photodynamic and chemotherapy therapeutic effect. The cascade synergistic therapeutic effect of DHM-Ce6@TPZ was effectively evaluated both in vitro and in vivo to inhibit tumor growth in a breast cancer mice model. Conclusion The designed multifunctional micellar nano platform could be a convenient and powerful vehicle for the efficient co-delivery of photosensitizers and chemical drugs for enhanced synergistic photodynamic and chemotherapy therapeutic effect of cancer.
Collapse
Affiliation(s)
- Xuliang Guo
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Lefei Han
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Wenyu Chen
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Huixin He
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Weijin Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Chaoqi Huang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Xiu Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| |
Collapse
|
8
|
Zhang L, Zhang X, Ran H, Chen Z, Ye Y, Jiang J, Hu Z, Azechi M, Peng F, Tian H, Xu Z, Tu Y. A NIR-driven green affording-oxygen microrobot for targeted photodynamic therapy of tumors. NANOSCALE 2024; 16:635-644. [PMID: 38087964 DOI: 10.1039/d3nr03801g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Photodynamic therapy (PDT) is a light-activated local treatment modality that has promising potential in cancer therapy. However, ineffective delivery of photosensitizers and hypoxia in the tumor microenvironment severely restrict the therapeutic efficacy of PDT. Herein, phototactic Chlorella (C) is utilized to carry photosensitizer-encapsulated nanoparticles to develop a near-infrared (NIR) driven green affording-oxygen microrobot system (CurNPs-C) for enhanced PDT. Photosensitizer (curcumin, Cur) loaded nanoparticles are first synthesized and then covalently attached to C through amide bonds. An in vitro study demonstrates that the developed CurNPs-C exhibits continuous oxygen generation and desirable phototaxis under NIR treatment. After intravenous injection, the initial 660 nm laser irradiation successfully induces the active migration of CurNPs-C to tumor sites for higher accumulation. Upon the second 660 nm laser treatment, CurNPs-C produces abundant oxygen, which in turn induces the natural product Cur to generate more reactive oxygen species (ROS) that significantly inhibit the growth of tumors in 4T1 tumor-bearing mice. This contribution showcases the ability of a light-driven green affording-oxygen microrobot to exhibit targeting capacity and O2 generation for enhancing photodynamic therapy.
Collapse
Affiliation(s)
- Lishan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiaoting Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Hui Ran
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yicheng Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jiamiao Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Ziwei Hu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Miral Azechi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hao Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zhili Xu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
9
|
Song P, Xu G, Peng G, Gui L, Li W, Li W, Zhu L, Tao Y, Zhang W, Ge F. Nanoporous Silica Nanoparticles Coated with Peptide P14 and Decorated with 5-Fluorouracil and Indocyanine Green for NIR-Triggered Photothermal/Photodynamic Therapy. ACS APPLIED NANO MATERIALS 2023; 6:23264-23278. [DOI: 10.1021/acsanm.3c04631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Ping Song
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Guanglin Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Guanglan Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241002, Anhui, China
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Wanzhen Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Wenlong Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Longbao Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Yugui Tao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Weiwei Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| | - Fei Ge
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
| |
Collapse
|
10
|
Fang LR, Wang YH, Xiong ZZ, Wang YM. Research progress of nanomaterials in tumor-targeted drug delivery and imaging therapy. OPENNANO 2023; 14:100184. [DOI: 10.1016/j.onano.2023.100184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Wang M, He M, Zhang M, Xue S, Xu T, Zhao Y, Li D, Zhi F, Ding D. Controllable hypoxia-activated chemotherapy as a dual enhancer for synergistic cancer photodynamic immunotherapy. Biomaterials 2023; 301:122257. [PMID: 37531778 DOI: 10.1016/j.biomaterials.2023.122257] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/04/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
The efficacy of photodynamic therapy (PDT) is severely limited by the hypoxic tumor microenvironment (TME), while the performance of PDT-aroused antitumor immunity is frustrated by the immunosuppressive TME and deficient immunogenic cell death (ICD) induction. To simultaneously tackle these pivotal problems, we herein create an albumin-based nanoplatform co-delivering IR780, NLG919 dimer and a hypoxia-activated prodrug tirapazamine (TPZ) as the dual enhancer for synergistic cancer therapy. Under NIR irradiation, IR780 generates 1O2 for PDT, which simultaneously cleaves the ROS-sensitive linker for triggered TPZ release, and activates its chemotherapy via exacerbated tumor hypoxia. Meanwhile, firstly found by us, TPZ-mediated chemotherapy boosts PDT-induced tumor ICD to evoke stronger antitumor immunity including the development of tumor-specific cytotoxic T lymphocytes (CTLs). Eventually, enriched intratumoral GSH triggers the activation of NLG919 to mitigate the immunosuppressive TME via specific indoleamine 2,3-dioxygenase 1 (IDO-1) inhibition, consequently promoting the intratumoral infiltration of CTLs and the killing of both primary and distant tumors, while the resultant memory T cells allows nearly 100% suppression of tumor recurrence and metastasis. This nanoplatform sets up an example for dully enhanced photodynamic immunotherapy of breast cancer via hypoxia-activated chemotherapy, and paves a solid way for the treatment of other hypoxic and immunosuppressive malignant tumors.
Collapse
Affiliation(s)
- Mengyuan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Mengyao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shujuan Xue
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, D02 NY74, Ireland
| | - Yanan Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Dazhao Li
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
12
|
Li D, Ren T, Ge Y, Wang X, Sun G, Zhang N, Zhao L, Zhong R. A multi-functional hypoxia/esterase dual stimulus responsive and hyaluronic acid-based nanomicelle for targeting delivery of chloroethylnitrosouea. J Nanobiotechnology 2023; 21:291. [PMID: 37612719 PMCID: PMC10464291 DOI: 10.1186/s12951-023-02062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Carmustine (BCNU), a vital type of chloroethylnitrosourea (CENU), inhibits tumor cells growth by inducing DNA damage at O6 position of guanine and eventually forming dG-dC interstrand cross-links (ICLs). However, the clinical application of BCNU is hindered to some extent by the absence of tumor selectivity, poor stability and O6-alkylguanine-DNA alkyltransferase (AGT) mediated drug resistance. In recent years, tumor microenvironment has been widely utilized for advanced drug delivery. In the light of the features of tumor microenvironment, we constructed a multifunctional hypoxia/esterase-degradable nanomicelle with AGT inhibitory activity named HACB NPs for tumor-targeting BCNU delivery and tumor sensitization. HACB NPs was self-assembled from hyaluronic acid azobenzene AGT inhibitor conjugates, in which O6-BG analog acted as an AGT inhibitor, azobenzene acted as a hypoxia-responsive linker and carboxylate ester bond acted as both an esterase-sensitive switch and a connector with hyaluronic acid (HA). The obtained HACB NPs possessed good stability, favorable biosafety and hypoxia/esterase-responsive drug-releasing ability. BCNU-loaded HACB/BCNU NPs exhibited superior cytotoxicity and apoptosis-inducing ability toward the human uterine cervix carcinoma HeLa cells compared with traditional combined medication of BCNU plus O6-BG. In vivo studies further demonstrated that after a selective accumulation in the tumor site, the micelles could respond to hypoxic tumor tissue for rapid drug release to an effective therapeutic dosage. Thus, this multifunctional stimulus-responsive nanocarrier could be a new promising strategy to enhance the anticancer efficacy and reduce the side effects of BCNU and other CENUs.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Yunxuan Ge
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
13
|
Yang HY, Jang MS, Sun XS, Liu CL, Lee JH, Li Y, Fu Y. CD44-mediated tumor homing of hyaluronic acid nanogels for hypoxia-activated photodynamic therapy against tumor. Colloids Surf B Biointerfaces 2023; 228:113395. [PMID: 37327654 DOI: 10.1016/j.colsurfb.2023.113395] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/07/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
In this study, unique hypoxia-activated hyaluronic acid nanogels (HANGs) were reported for CD44-targeted delivery of photosensitizers (chlorin e6, Ce6) for diagnostic imaging and photodynamic therapy (PDT) of cancers. Through the use of a hypoxia-responsive cross-linker (AZO-CDI), the HANGs were prepared by chemically cross-linking primary amine groups-functionalized hyaluronic acid (HA). Under normoxic condition, fluorescence of Ce6 conjugated on the HANGs was highly quenched, and level of reactive oxygen species (ROS) generated from the HANGs was rather low after laser irradiation. However, under hypoxic condition, the HANGs underwent rapid disassociation, and fluorescence of Ce6 conjugated on the HANGs was recovered, triggering high-level singlet oxygen generation after laser irradiation. Due to the presence of HA, the HANGs showed much higher cellular uptake by CD44-positive cancer cells (A549 cells) than that by CD44-negative cancer cells (HepG2 cells). In addition, the HANGs could generate higher level of ROS in A549 cells because of improved cancer cell uptake. This excellent tumor-targeting and singlet oxygen-generating ability of the HANGs was favorable to hypoxia-activated PDT of CD44-positive cancers with significant inhibition of tumor growth within the whole treatment period. Taken together, the HANGs are safe and effective tools in treating CD44-positive cancers.
Collapse
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Moon-Sun Jang
- School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea; Department of Radiology, Samsung Medical Center, Sungkyunkwan University, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Xin Shun Sun
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Chang Ling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Jung Hee Lee
- School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea; Department of Radiology, Samsung Medical Center, Sungkyunkwan University, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea.
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing City 314001, Zhejiang Province, PR China.
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| |
Collapse
|
14
|
Fu Y, Jang MS, Liu C, Li Y, Lee JH, Yang HY. Oxygen-Generating Organic/Inorganic Self-Assembled Nanocolloids for Tumor-Activated Dual-Model Imaging-Guided Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37478563 DOI: 10.1021/acsami.3c07008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Tumor phototheranostics is usually compromised by the hypoxic tumor microenvironment and poor theranostic efficiency. The interplay between organic polymers and inorganic nanoparticles in novel nanocomposites has proven to be advantageous, overcoming previous limitations and harnessing their full potential through activation via the tumor microenvironment. This study successfully fabricated hypoxia-activated nanocolloids called HOISNDs through a process of self-assembly involving superparamagnetic iron oxide nanoparticles (SPIONs) and an organic polymer ligand called tetrakis(4-carboxyphenyl) porphyrin (TCPP)-engineered organic polymer ligand [methoxy poly(ethyleneglycol)-block-poly(dopamine-ethylenediamine-conjugated-4-nitrobenzyl chloroformate)-l-glutamate, mPEG-b-P(Dopa-EDA-co-NBCF)LG-TCPP)]. The SPIONs act as an oxygen generator to overcome the challenges posed by hypoxic tumors and enable the use of hypoxic-activatable MR/fluorescence dual-modal imaging-guided photodynamic therapy (PDT). The colloid stability of these HOISNDs proved to be exceptional in diverse biomimetic environments. Furthermore, they not only augment T2-weighted contrast capability as an MRI contrast agent but also function as an oxygen-producing device to amplify the generation and release of reactive oxygen species (ROS). The HOISNDs can significantly target to tumor sites through the enhanced permeability and retention (EPR) effect with prolonged blood circulation time and subsequently are effectively endocytosed into a hypoxic intracellular environment that "turn on" the imaging function and photodynamic activity. Moreover, HOISNDs possess the ability to effectively decompose naturally occurring H2O2 into oxygen (O2) within the tumor utilizing the Fenton reaction. This method can mitigate the impact of hypoxia on oxygen-dependent PDT. The outcomes of in vivo diagnostic and therapeutic evaluations indicated that HOISNDs are a highly promising tool for dual-model imaging-guided cancer theranosis by ameliorating hypoxic conditions and augmenting PDT efficiency.
Collapse
Affiliation(s)
- Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University, School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, The Republic of Korea
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing City 314001, Zhejiang Province, PR China
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University, School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, The Republic of Korea
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| |
Collapse
|
15
|
Li Z, Guo L, Lin L, Wang T, Jiang Y, Song J, Feng J, Huang J, Li H, Bai Z, Liu W, Zhang J. Porous SiO 2-Based Reactor with Self-Supply of O 2 and H 2O 2 for Synergistic Photo-Thermal/Photodynamic Therapy. Int J Nanomedicine 2023; 18:3623-3639. [PMID: 37427365 PMCID: PMC10327690 DOI: 10.2147/ijn.s387505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose Although the combined photo-thermal (PTT) and photodynamic therapy (PDT) of tumors have demonstrated promise as effective cancer therapy, the hypoxic and insufficient H2O2 supply of tumors seriously limits the efficacy of PDT, and the acidic environment reduces the catalytic activity of nanomaterial in the tumor microenvironment. To develop a platform for efficiently addressing these challenges, we constructed a nanomaterial of Aptamer@dox/GOD-MnO2-SiO2@HGNs-Fc@Ce6 (AMS) for combination tumor therapy. The treatment effects of AMS were evaluated both in vitro and in vivo. Methods In this work, Ce6 and hemin were loaded on graphene (GO) through π-π conjugation, and Fc was connected to GO via amide bond. The HGNs-Fc@Ce6 was loaded into SiO2, and coated with dopamine. Then, MnO2 was modified on the SiO2. Finally, AS1411-aptamer@dox and GOD were fixed to gain AMS. We characterized the morphology, size, and zeta potential of AMS. The oxygen and reactive oxygen species (ROS) production properties of AMS were analyzed. The cytotoxicity of AMS was detected by MTT and calcein-AM/PI assays. The apoptosis of AMS to a tumor cell was estimated with a JC-1 probe, and the ROS level was detected with a 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) probe. The anticancer efficacy in vivo was analyzed by the changes in the tumor size in different treatment groups. Results AMS was targeted to the tumor cell and released doxorubicin. It decomposed glucose to produce H2O2 in the GOD-mediated reaction. The generated sufficient H2O2 was catalyzed by MnO2 and HGNs-Fc@Ce6 to produce O2 and free radicals (•OH), respectively. The increased oxygen content improved the hypoxic environment of the tumor and effectively reduced the resistance to PDT. The generated •OH enhanced the ROS treatment. Moreover, AMS depicted a good photo-thermal effect. Conclusion The results revealed that AMS had an excellent enhanced therapy effect by combining synergistic PTT and PDT.
Collapse
Affiliation(s)
- Zhengzhao Li
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Lianshan Guo
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Liqiao Lin
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Tongting Wang
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Yanqiu Jiang
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Jin Song
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Jihua Feng
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Jianfeng Huang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Haoyu Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Zhihao Bai
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wenqi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Jianfeng Zhang
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| |
Collapse
|
16
|
Huang R, Fan D, Cheng H, Huo J, Wang S, He H, Zhang G. Multi-Site Attack, Neutrophil Membrane-Camouflaged Nanomedicine with High Drug Loading for Enhanced Cancer Therapy and Metastasis Inhibition. Int J Nanomedicine 2023; 18:3359-3375. [PMID: 37361388 PMCID: PMC10290460 DOI: 10.2147/ijn.s415139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Background Advanced breast cancer is a highly metastatic tumor with high mortality. Simultaneous elimination of primary tumor and inhibition of neutrophil-circulation tumor cells (CTCs) cluster formation are urgent issues for cancer therapy. Unfortunately, the drug delivery efficiency to tumors and anti-metastasis efficacy of nanomedicine are far from satisfactory. Methods To address these problems, we designed a multi-site attack, neutrophil membrane-camouflaged nanoplatform encapsulating hypoxia-responsive dimeric prodrug hQ-MMAE2 (hQNM-PLGA) for enhanced cancer and anti-metastasis therapy. Results Encouraged by the natural tendency of neutrophils to inflammatory tumor sites, hQNM-PLGA nanoparticles (NPs) could target delivery of drug to tumor, and the acute hypoxic environment of advanced 4T1 breast tumor promoted hQ-MMAE2 degradation to release MMAE, thus eliminating the primary tumor cells to achieve remarkable anticancer efficacy. Alternatively, NM-PLGA NPs inherited the similar adhesion proteins of neutrophils so that NPs could compete with neutrophils to interrupt the formation of neutrophil-CTC clusters, leading to a reduction in extravasation of CTCs and inhibition of tumor metastasis. The in vivo results further revealed that hQNM-PLGA NPs possessed a perfect safety and ability to inhibit tumor growth and spontaneous lung metastasis. Conclusion This study demonstrates the multi-site attack strategy provides a prospective avenue with the potential to improve anticancer and anti-metastasis therapeutic efficacy.
Collapse
Affiliation(s)
- Ran Huang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Daopeng Fan
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Hanghang Cheng
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Jian Huo
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Shuqi Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Hua He
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Gaiping Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
- Longhu Laboratory, Zhengzhou, 450046, People’s Republic of China
| |
Collapse
|
17
|
Wen P, Ke W, Dirisala A, Toh K, Tanaka M, Li J. Stealth and pseudo-stealth nanocarriers. Adv Drug Deliv Rev 2023; 198:114895. [PMID: 37211278 DOI: 10.1016/j.addr.2023.114895] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The stealth effect plays a central role on capacitating nanomaterials for drug delivery applications through improving the pharmacokinetics such as blood circulation, biodistribution, and tissue targeting. Here based on a practical analysis of stealth efficiency and a theoretical discussion of relevant factors, we provide an integrated material and biological perspective in terms of engineering stealth nanomaterials. The analysis surprisingly shows that more than 85% of the reported stealth nanomaterials encounter a rapid drop of blood concentration to half of the administered dose within 1 h post administration although a relatively long β-phase is observed. A term, pseudo-stealth effect, is used to delineate this common pharmacokinetics behavior of nanomaterials, that is, dose-dependent nonlinear pharmacokinetics because of saturating or depressing bio-clearance of RES. We further propose structural holism can be a watershed to improve the stealth effect; that is, the whole surface structure and geometry play important roles, rather than solely relying on a single factor such as maximizing repulsion force through polymer-based steric stabilization (e.g., PEGylation) or inhibiting immune attack through a bio-inspired component. Consequently, engineering delicate structural hierarchies to minimize attractive binding sites, that is, minimal charges/dipole and hydrophobic domain, becomes crucial. In parallel, the pragmatic implementation of the pseudo-stealth effect and dynamic modulation of the stealth effect are discussed for future development.
Collapse
Affiliation(s)
- Panyue Wen
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Wendong Ke
- Chemical Macromolecule Division, Asymchem Life Science (Tianjin) Co., Ltd. No. 71, Seventh Avenue, TEDA Tianjin 300457, P.R. China
| | - Anjaneyulu Dirisala
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazuko Toh
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junjie Li
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
18
|
Mukerabigwi JF, Tang R, Cao Y, Mohammed F, Zhou Q, Zhou M, Ge Z. Mitochondria-Targeting Polyprodrugs to Overcome the Drug Resistance of Cancer Cells by Self-Amplified Oxidation-Triggered Drug Release. Bioconjug Chem 2023; 34:377-391. [PMID: 36716444 DOI: 10.1021/acs.bioconjchem.2c00559] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The multi-drug resistance (MDR) of cancers is one of the main barriers for the success of diverse chemotherapeutic methods and is responsible for most cancer deaths. Developing efficient approaches to overcome MDR is still highly desirable for efficient chemotherapy of cancers. The delivery of targeted anticancer drugs that can interact with mitochondrial DNA is recognized as an effective strategy to reverse the MDR of cancers due to the relatively weak DNA-repairing capability in the mitochondria. Herein, we report on a polyprodrug that can sequentially target cancer cells and mitochondria using folic acid (FA) and tetraphenylphosphonium (TPP) targeting moieties, respectively. They were conjugated to the terminal groups of the amphiphilic block copolymer prodrugs composed of poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) and copolymerized monomers containing cinnamaldehyde (CNM) and doxorubicin (DOX). After self-assembly into micelles with the suitable size (∼30 nm), which were termed as TF@CNM + DOX, and upon intravenous administration, the micelles can accumulate in tumor tissues. After FA-mediated endocytosis, the endosomal acidity (∼pH 5) can trigger the release of CNM from TF@CNM + DOX micelles, followed by enhanced accumulation into the mitochondria via the TPP target. This promotes the overproduction of reactive oxygen species (ROS), which can subsequently enhance the intracellular oxidative stress and trigger ROS-responsive release of DOX into the mitochondria. TF@CNM + DOX shows great potential to inhibit the growth of DOX-resistant MCF-7 ADR tumors without observable side effects. Therefore, the tumor and mitochondria dual-targeting polyprodrug design represents an ideal strategy to treat MDR tumors through improvement of the intracellular oxidative level and ROS-responsive drug release.
Collapse
Affiliation(s)
- Jean Felix Mukerabigwi
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.,Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Kigali, 3900 Kigali, Rwanda
| | - Rui Tang
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yufei Cao
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Fathelrahman Mohammed
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.,CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Min Zhou
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhishen Ge
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
19
|
Prodrug and Glucose Oxidase Coloaded Photodynamic Hydrogels for Combinational Therapy of Melanoma. ACS Biomater Sci Eng 2022; 8:4886-4895. [PMID: 36278808 DOI: 10.1021/acsbiomaterials.2c00992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the advantages of high safety and selectivity, photodynamic therapy (PDT) has been widely used for cancer treatments, while the anticancer efficacy is often limited because of its relying on oxygen concentrations. Therefore, sole PDT fails to achieve the desired therapeutic effect for hypoxic tumors. To address this issue, we herein report the construction of prodrug and glucose oxidase (GOx) coloaded alginate (ALG) hydrogels for PDT-combined chemotherapy of melanoma. The hydrogels are in situ formed in tumor sites after injection of ALG solution containing semiconducting polymer nanoparticles, hypoxia-responsive prodrug tirapazamine (TPZ), and GOx, which is based on chelation of ALG by endogenous Ca2+. Due to the presence of semiconducting polymer nanoparticles acting as photosensitizers, the hydrogels mediate PDT to produce singlet oxygen (1O2) for directly killing tumor cells, in which oxygen is consumed to create a more hypoxic tumor microenvironment. Moreover, the loaded GOx within hydrogels can deplete oxygen to further aggravate tumor hypoxia. As such, TPZ is effectively activated by hypoxia to cause cancer cell death via chemotherapy. Thus, the hydrogels with laser irradiation achieve a combinational action of PDT with chemotherapy to almost completely eradicate tumors, leading to a much higher therapeutic efficacy relative to sole PDT. This study will provide a promising injectable hydrogel platform for effective treatments of cancer.
Collapse
|
20
|
Guo H, Wang L, Wu W, Guo M, Yang L, Zhang Z, Cao L, Pu F, Huang X, Shao Z. Engineered biomimetic nanoreactor for synergistic photodynamic-chemotherapy against hypoxic tumor. J Control Release 2022; 351:151-163. [PMID: 36122895 DOI: 10.1016/j.jconrel.2022.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022]
Abstract
Photodynamic therapy (PDT) can produce a large amount of reactive oxygen species (ROS) in the radiation field to kill tumor cells. However, the sustainable anti-tumor efficacy of PDT is limited due to the hypoxic microenvironment of tumor. In this study, classic PDT agent indocyanine green (ICG) and hypoxia-activated chemotherapeutic drug tirapazamine (TPZ) were loaded on mesoporous polydopamine (PDA) to construct PDA@ICG-TPZ nanoparticles (PIT). Then, PIT was camouflaged with cyclic arginine-glycine-aspartate (cRGD) modified tumor cell membranes to obtain the engineered membrane-coated nanoreactor (cRGD-mPIT). The nanoreactor cRGD-mPIT could achieve the dual-targeting ability via tumor cell membrane mediated homologous targeting and cRGD mediated active targeting. With the enhanced tumor-targeting and penetrating delivery system, PIT could efficiently accumulate in hypoxic tumor cells and the loaded drugs were quickly released in response to near-infrared (NIR) laser. The nanoreactor might produce cytotoxic ROS under NIR and further enhance hypoxia within tumor to activate TPZ, which efficiently inhibited hypoxic tumor by synergistic photodynamic-chemotherapy. Mechanically, hypoxia-inhibitory factor-1α (HIF-1α) was down-regulated by the synergistic therapy. Accordingly, the cRGD-mPIT nanoreactor with sustainable and cascade anti-tumor effects and satisfied biosafety might be a promising strategy in hypoxic tumor therapy.
Collapse
Affiliation(s)
- Haoyu Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lutong Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingke Guo
- Department of Orthopaedics, Affiliated Hospital of NCO school of Army Medical University, Shijiazhuang 050041, China
| | - Lingkai Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenhao Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
21
|
Du Y, Han J, Jin F, Du Y. Recent Strategies to Address Hypoxic Tumor Environments in Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14091763. [PMID: 36145513 PMCID: PMC9505114 DOI: 10.3390/pharmaceutics14091763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Photodynamic therapy (PDT) has become a promising method of cancer treatment due to its unique properties, such as noninvasiveness and low toxicity. The efficacy of PDT is, however, significantly reduced by the hypoxia tumor environments, because PDT involves the generation of reactive oxygen species (ROS), which requires the great consumption of oxygen. Moreover, the consumption of oxygen caused by PDT would further exacerbate the hypoxia condition, which leads to angiogenesis, invasion of tumors to other parts, and metastasis. Therefore, many research studies have been conducted to design nanoplatforms that can alleviate tumor hypoxia and enhance PDT. Herein, the recent progress on strategies for overcoming tumor hypoxia is reviewed, including the direct transport of oxygen to the tumor site by O2 carriers, the in situ generation of oxygen by decomposition of oxygen-containing compounds, reduced O2 consumption, as well as the regulation of tumor microenvironments. Limitations and future perspectives of these technologies to improve PDT are also discussed.
Collapse
|
22
|
Wang Z, Mu X, Yang Q, Luo J, Zhao Y. Hypoxia-responsive nanocarriers for chemotherapy sensitization via dual-mode inhibition of hypoxia-inducible factor-1 alpha. J Colloid Interface Sci 2022; 628:106-115. [PMID: 35987150 DOI: 10.1016/j.jcis.2022.08.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/23/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
The overexpression of hypoxia-inducible factor-1 alpha (HIF-1α) in solid tumor compromises the potency of chemotherapy under hypoxia. The high level of HIF-1α arises from the stabilization effect of reduced nicotinamideadeninedinucleotide(phosphate) NAD(P)H: quinone oxidoreductase 1 (NQO1). It was postulated that the inhibition of NQO1 could degrade HIF-1α and sensitize hypoxic cancer cells to antineoplastic agents. In the current work, we report hypoxia-responsive polymer micelles, i.e. methoxyl poly(ethylene glycol)-co-poly(aspartate-nitroimidazole) orchestrate with a NQO1 inhibitor (dicoumarol) to sensitize the ovarian cancer cell line (SKOV3) to a model anticancer agent (sorafenib) at low oxygen conditions. Both cargos were physically encapsulated in the nanoscale micelles. The placebo micelles transiently induced the depletion of reduced nicotinamideadeninedinucleotidephosphate (NADPH) as well as glutathione and thioredoxin under hypoxia, which further inactivated NQO1 because NADPH was the cofactor of NQO1. As a consequence, the expression of HIF-1α was repressed due to the dual action of dicoumarol and polymer. The degradation of HIF-1α significantly increased the vulnerability of SKOV3 cells to sorafenib-induced apoptosis, as indicated by the enhancement of cytotoxicity, and increase of caspase 3 and cytochrome C. The current work opens new avenues of addressing hypoxia-induced drug resistance in chemotherapy.
Collapse
Affiliation(s)
- Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xuewen Mu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Qian Yang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Jiajia Luo
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
23
|
Gao Y, Qiu W, Liang M, Ma X, Ye M, Xue P, Kang Y, Deng J, Xu Z. Active targeting redox-responsive mannosylated prodrug nanocolloids promote tumor recognition and cell internalization for enhanced colon cancer chemotherapy. Acta Biomater 2022; 147:299-313. [PMID: 35640802 DOI: 10.1016/j.actbio.2022.05.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Despite the diversified therapeutic approaches for malignant tumors, chemotherapy remains the backbone of current cancer treatment. However, conventional chemotherapeutics was found to be associated with deficient recognition of tumor, low uptake efficiency, insolubility, short circulation, poor biocompatibility and low therapeutic outcomes. Herein, the active targeting redox-responsive mannosylated prodrug nanocolloids (HM NCs) were constructed for enhanced chemotherapy of colon cancer. HM NCs were prepared by the covalent cross-linking of 10-hydroxycamptothecin (HCPT) and mannose (MAN) via a redox-responsive cross-linker containing disulfide bonds, and modified with a moderate amount of polyethylene glycol (PEG). The large amount of mannose contained in HM NCs could actively target overexpressed mannose receptors on the surface of cancer cells and enhance cancer cell internalization through mannose receptor-mediated endocytosis. Owing to the combination of active targeting and the enhanced permeability and retention (EPR) passive targeting, HM NCs could effectively accumulate in tumors and high glutathione (GSH) in tumor microenvironment triggered cleavage of redox-responsive bonds and precise drug release. HM NCs exhibited superior antitumor activity both in vitro and in vivo and appreciably extended the mouse survival rate with good biocompatibility. The innovative HM NCs are expected to be conducive to overcoming the limitations of conventional chemotherapy for colon cancer and providing more choices for future clinical translation. STATEMENT OF SIGNIFICANCE: Despite the enhanced permeability and retention effect, the passive targeting can be interfered with by the complex biologic barriers in the body. In this study, an active targeting system (HM NCs) was constructed by covalent cross-linking of mannose and anticancer drug 10-hydroxycamptothecin via redox-responsive disulfide bonds for enhanced colon cancer chemotherapy. Mannosylation could promote hydrophilia and stability for prolonged blood circulation. Mannose could promote tumor recognition and cell internalization via mannose receptor-mediated endocytosis. High glutathione level could trigger the redox-responsive release of anticancer drugs and further induce cell apoptosis via DNA damage. The HM NCs exhibited superior antitumor activity both in vitro and in vivo and appreciably extended the mouse survival rate with good biocompatibility.
Collapse
|
24
|
Wang Y, Huo J, Li S, Huang R, Fan D, Cheng H, Wan B, Du Y, He H, Zhang G. Self-Rectifiable and Hypoxia-Assisted Chemo-Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10092-10101. [PMID: 35170301 DOI: 10.1021/acsami.1c23121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) can eradicate cancer cells under light irradiation, mainly because of reactive singlet oxygen (1O2) being transformed from intratumoral oxygen. Nonetheless, the consumption of oxygen during PDT results in serious hypoxic conditions and an elevated hypoxia-inducing factor-1α (HIF-1α) level that hamper further photodynamic efficacy and induce tumor metastasis. To address this problem, we developed hypoxia-assisted NP-co-encapsulating Ce6 (photosensitizer) and YC-1 (HIF-1α inhibitor) as a self-rectifiable nanoinhibitor for synergistic antitumor treatment. PDT-aggravated intracellular hypoxic stress facilitated NP dissociation to release the drug (YC-1), which achieved tumor killing and HIF-1α inhibition to further enhance the therapeutic effect of PDT and prevent tumor metastasis. Besides, in vivo studies revealed that the HC/PI@YC-1 NPs afforded synergistic anticancer efficacy with minimal toxicity. Therefore, this study provides a prospective approach against PDT drawbacks and combination cancer therapy.
Collapse
Affiliation(s)
- Yanan Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Jian Huo
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuang Li
- Department of Pathology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou 450003, China
| | - Ran Huang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Daopeng Fan
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hanghang Cheng
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Bo Wan
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongkun Du
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hua He
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaiping Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
25
|
NIR and Reduction Dual-Sensitive Polymeric Prodrug Nanoparticles for Bioimaging and Combined Chemo-Phototherapy. Polymers (Basel) 2022; 14:polym14020287. [PMID: 35054697 PMCID: PMC8779475 DOI: 10.3390/polym14020287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
The combination of chemotherapy, photothermal therapy (PTT) and photodynamic therapy (PDT) based on a single nanosystem is highly desirable for cancer treatment. In this study, we developed a versatile Pt(IV) prodrug-based nanodrug, PVPt@Cy NPs, to realize synchronous chemotherapy, PDT and PTT and integrate cancer treatment with bioimaging. To construct PVPt@Cy NPs, the amphiphilic Pt(IV)-based polymeric prodrug PVPt was synthesized by a facile one-pot coupling reaction, and then it was used to encapsulate an optotheranostic agent (HOCyOH, Cy) via hydrophobic interaction-induced self-assembly. These NPs would disaggregate under acidic, reductive conditions and NIR irradiation, which are accompanied by photothermal conversion and reactive oxygen species (ROS) generation. Moreover, the PVPt@Cy NPs exhibited an enhanced in vitro anticancer efficiency with 808-nm light irradiation. Furthermore, the PVPt@Cy NPs showed strong NIR fluorescence and photothermal imaging in H22 tumor-bearing mice, allowing the detection of the tumor site and monitoring of the drug biodistribution. Therefore, PVPt@Cy NPs displayed an enormous potential in combined chemo-phototherapy.
Collapse
|