1
|
Ye X, Chen T, Du Y, Zhao R, Chen L, Wu D, Hu J. Folic acid-based hydrogels co-assembled with protocatechuic acid for enhanced treatment of inflammatory bowel disease. Colloids Surf B Biointerfaces 2025; 246:114367. [PMID: 39541908 DOI: 10.1016/j.colsurfb.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Inflammatory bowel disease (IBD) presents a significant therapeutic challenge due to the need for oral drug delivery systems that withstand acidic environment of stomach while effectively targeting intestinal inflammation. To address this issue, we created a novel hydrogel system based on a folic acid (FA)-dopamine (DA) conjugate, co-assembled with protocatechuic acid (PCA), to form F-DP hydrogels. These hydrogels demonstrated robust anti-gastric acid, mucosal adhesive, and injectable properties, enhancing their efficacy for targeted delivery. In DSS-induced colitis mouse models, treatment with F-DP hydrogels resulted in significant therapeutic improvements, including increased body weight, reduced disease activity index (DAI), and maintained colon length. Biochemical assays revealed that F-DP hydrogels significantly enhanced antioxidant enzyme activities (GSH and SOD) and reduced oxidative stress markers (NO and MDA). Histological assessments confirmed effective repair of the colonic mucosal barrier, restoration of tight junction protein ZO-1, and reduction of inflammatory lesions. Furthermore, immunofluorescence staining indicated that F-DP hydrogels facilitated macrophages polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, thereby reducing inflammation and promoting tissue repair. Our study demonstrates that F-DP hydrogels show significant potential for improving IBD treatment through enhanced gastric resistance, intestinal adhesion, and synergistic anti-inflammatory effects, warranting further investigation for clinical applications.
Collapse
Affiliation(s)
- Ximei Ye
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yinan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Rivera-Hernández G, Roether JA, Aquino C, Boccaccini AR, Sánchez ML. Delivery systems for astaxanthin: A review on approaches for in situ dosage in the treatment of inflammation associated diseases. Int J Pharm 2025; 669:125017. [PMID: 39626846 DOI: 10.1016/j.ijpharm.2024.125017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Astaxanthin is a red-orange keto-carotenoid exhibiting antioxidant activity. AST is mainly used in the cosmetic, food, and healthcare industries. Nevertheless, because of its anti-inflammatory effects and immune modulation activity, AST use in pharmacology has been proposed as an alternative for treating neurodegenerative disorders, inflammatory bowel disease, arthritis, atherosclerosis, or diabetic foot ulcers, among others. However, before an AST clinical implementation, it is still necessary to solve challenges related to the use of AST, such as lack of solubility, poor bioavailability, and sensitivity to light, oxygen, and temperature. For that reason, the development of several biomaterials to encapsulate, protect, and dosage AST has been proposed in recent years. This review discusses the use of liposomes, hydrogels, and polymer micro and nanoparticles as vehicles for AST release based on available literature. Additionally, an analysis of released, encapsulated, and effective AST doses is presented, as well as the regulatory landscape of different delivery systems to reveal details of AST delivery, which should inform future strategies for implementing AST in the clinic.
Collapse
Affiliation(s)
- Gabriela Rivera-Hernández
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| | - Judith A Roether
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Carolina Aquino
- Departamento de ingeniería y ciencias exactas y naturales, Universidad Favaloro, Buenos Aires, Argentina
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany.
| | - Mirna L Sánchez
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany.
| |
Collapse
|
3
|
Gan M, Cao A, Cai L, Xiang X, Li J, Luan Q. Preparation of cellulose-based nanoparticles via electrostatic self-assembly for the pH-responsive delivery of astaxanthin. Food Chem 2025; 463:141324. [PMID: 39321653 DOI: 10.1016/j.foodchem.2024.141324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Oral administration of astaxanthin (AST), a potent antioxidant, is limited owing to its low solubility, physicochemical stability, and bioavailability. This study developed pH-responsive nanocarriers by the electrostatic self-assembly of 2,2,6,6-tetramethylpiperidine-1-oxyradical (TEMPO)-oxidized cellulose nanofibers (TCNFs) and chitosan (CS) to enhance the intestinal delivery of AST. The TCNF/CS@AST nanoparticles were optimized through single-factor experiments and Box-Behnken design, subsequently overcoming the hydrophobicity of AST and demonstrating improved stability against environmental stressors and controlled release in the intestinal environment. Transmission electron microscopy confirmed the near-spherical shape of these nanoparticles, with an average hydrodynamic diameter of 64 nm. TCNF/CS@AST enhanced the antioxidant effectiveness of AST after digestion and in lipopolysaccharide-stimulated RAW 264.7 cells while demonstrating good cellular compatibility. These nanoparticles present a promising strategy for the oral delivery of hydrophobic bioactive compounds orally, with potential applications in precision nutrition.
Collapse
Affiliation(s)
- Miaoyu Gan
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Ailing Cao
- Silk Inspection Center, Hangzhou Customs, Hangzhou 310063, China
| | - Luyun Cai
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Polytechnic Institute, Zhejiang University, Hangzhou 310015, China; College of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Xia Xiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jian Li
- Ningbo Luming Biotechnology Co., Ltd, Ningbo 315100, China
| | - Qian Luan
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Polytechnic Institute, Zhejiang University, Hangzhou 310015, China; College of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
4
|
Wang F, Zeng J, Lin L, Wang X, Zhang L, Tao N. Co-delivery of astaxanthin using positive synergistic effect from biomaterials: From structural design to functional regulation. Food Chem 2024; 470:142731. [PMID: 39755039 DOI: 10.1016/j.foodchem.2024.142731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The powerful antioxidant properties of astaxanthin (AST) face two significant challenges: low water solubility and poor chemical stability. To overcome them, extensive research and development efforts have been directed toward creating effective delivery systems. Among them, the positive synergistic effect between biomaterials can be used to refine the design of delivery systems. Understanding the relationship between structure and function aids in tailoring applications to specific needs. This review outlines the challenges associated with delivering AST and reviews the mechanisms involved in creating delivery systems, specifically focusing on the structure-function relationship of biomaterials. It comprehensively introduces the positive synergistic effect of biomaterials with enhancing the functional properties of AST, and analyzes the impact of designed structures on function regulation and the application prospects of the delivery system in the food industry. The future demand for efficient delivery of AST will increasingly depend on the positive synergistic effect between biomaterials.
Collapse
Affiliation(s)
- Fengqiujie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Liu Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
Liu Y, Huang K, Zhang Y, Li S, Song H, Guan X. Oat anthranilamides regulates high-fat diet-induced intestinal inflammation by the TLR4/NF-κb signalling pathway and gut microbiota. Int J Food Sci Nutr 2024; 75:786-799. [PMID: 39285614 DOI: 10.1080/09637486.2024.2401130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 11/26/2024]
Abstract
Oat anthranilamides have demonstrated antioxidant and anti-inflammatory effects; however, the precise mechanism of action remains unclear. This study investigated the impact of oat anthranilamide B (AVN B) on high-fat diet (HFD)-induced intestinal inflammation in mice and its underlying mechanisms. The results indicated that AVN B supplementation mitigated weight gain and reduced inflammatory and oxidative stress markers in serum, liver, and intestines. It improved intestinal barrier dysfunction by upregulating the expression levels of Occludin and MUC2 while simultaneously reducing intestinal inflammation by inhibiting the TLR4/NF-κB signalling pathway. Additionally, AVN B treatment improved gut microbiota composition. It increased the abundance of beneficial flora and the production of short-chain fatty acids (SCFAs), especially propionate and butyrate, associated with reduced production of pro-inflammatory factors and enhanced intestinal protection. The findings provide scientific evidence for the potential of AVN B as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Yongyong Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| |
Collapse
|
6
|
Bera S, Mitra R, Singh J. Recent advancement in protected delivery methods for carotenoid: a smart choice in modern nutraceutical formulation concept. Biotechnol Genet Eng Rev 2024; 40:4532-4588. [PMID: 37198919 DOI: 10.1080/02648725.2023.2213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Carotenoids are fat-soluble bio pigments often responsible for red, orange, pink and yellow coloration of fruits and vegetables. They are commonly referred as nutraceutical which is an alternative to pharmaceutical drugs claiming to have numerous physiological benefits. However their activity often get disoriented by photonic exposure, temperature and aeration rate thus leading to low bioavailability and bio accessibility. Most of the market value for carotenoids revolves around food and cosmetic industries as supplement where they have been continuously exposed to rigorous physico-chemical treatment. Though several encapsulation techniques are now in practice to improve stability of carotenoids, the factors like shelf life during storage and controlled release from the delivery vehicle always appeared to be a bottleneck in this field. In this situation, different technologies in nanoscale is showing promising result for carotenoid encapsulation and delivery as they provide greater mass per surface area and protects most of their bioactivities. However, safety concerns related to carrier material and process must be evaluated crucially. Thus, the aim of this review was to collect and correlate technical information concerning the parameters playing pivotal role in characterization and stabilization of designed vehicles for carotenoids delivery. This comprehensive study predominantly focused on experiments carried out in past decade explaining how researchers have fabricated bioprocess engineering in amalgamation with nano techniques to improve the bioavailability for carotenoids. Furthermore, it will help the readers to understand the cognisance of carotenoids in nutraceutical market for their trendy application in food, feed and cosmeceutical industries in contemporary era.
Collapse
Affiliation(s)
- Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ruchira Mitra
- International College, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
7
|
Lv Y, Hao S, Wang Y, Xing S, Tan M. Hepatocytes and mitochondria dual-targeted astaxanthin WPI-SCP nanoparticles for the alleviation of alcoholic liver injury. Int J Biol Macromol 2024; 285:137992. [PMID: 39581423 DOI: 10.1016/j.ijbiomac.2024.137992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Alcoholic liver injury is one of the most frequent liver diseases around the world, and nutritional intervention has been considered as an effective way to alleviate alcohol liver injury. To alleviate the liver damage caused by alcohol, a type of astaxanthin (AXT) loaded nanoparticles were designed for dual targeting of hepatocytes and mitochondria. Firstly, galactooligosaccharides (GOS) were conjugated to whey protein isolate (WPI) and sea cucumber peptide (SCP) via the Maillard reaction, achieving a grafting degree of 29 %, then triphenylphosphonium (TPP) was linked by amide reaction. Secondly, AXT was loaded into the complex of SCP-WPI-GOS-TPP (SWGT) to form AXT@SCP-WPI-GOS-TPP(AXT@SWGT) nanoparticles. The Pearson coefficient increased from 0.69 to 0.76 after introducing TPP targeting moiety. In vivo experiments showed that AXT@SWGT significantly alleviated liver injury caused by alcohol. The vacuolation and fat accumulation associated with alcoholic liver injury was alleviated. The alcohol dehydrogenase and aldehyde dehydrogenase activity were improved by 296.88 % and 34.19 %, respectively. AXT@SWGT significantly enhanced the biological activities of glutathione by 76.86 %, catalase by 145.42 %, and superoxide dismutase by 33.48 %, thereby alleviating oxidative stress. The results indicated that the AXT@SWGT might have the potential to intervene alcoholic liver injury via the dual targeting strategy.
Collapse
Affiliation(s)
- Yueqi Lv
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Sijia Hao
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Yuxiao Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Shanghua Xing
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Dalian Jinshiwan Laboratory, Dalian 116034, Liaoning, China.
| |
Collapse
|
8
|
Zhao X, Zhang Y, Wang P, Liu K, Zheng Y, Wen J, Wang K, Wen X. Layer by layer self-assembled hyaluronic acid nanoarmor for the treatment of ulcerative colitis. J Nanobiotechnology 2024; 22:633. [PMID: 39420343 PMCID: PMC11488142 DOI: 10.1186/s12951-024-02933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024] Open
Abstract
Natural compound-based treatments provide innovative ways for ulcerative colitis therapy. However, poor targeting and rapid degradation curtail its application, which needs to be addressed. Inspired by biomacromolecule-based materials, we have developed an orally administrated nanoparticle (GBP@HA NPs) using bovine serum albumin as a carrier for polyphenol delivery. The system synergizes galactosylated bovine serum albumin with two polyphenols, epigallocatechin gallate and tannic acid, which is then encased in "nanoarmor" of ε-Polylysine and hyaluronic acid to boost its stability and targeting. Remarkably, the nanoarmor demonstrated profound therapeutic effects in both acute and chronic mouse models of ulcerative colitis, mitigating disease symptoms via multiple mechanisms, regulating inflammation related factors and exerting a modulatory impact on gut microbiota. Further mechanistic investigations indicate that GBP@HA NPs may act through several pathways, including modulation of Keap1-Nrf2 and NF-κB signaling, as well as Caspase-1-dependent pyroptosis. Consequently, this novel armored nanotherapy promotes the way for enhanced polyphenol utilization in ulcerative colitis treatment research.
Collapse
Affiliation(s)
- Xinxin Zhao
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuchen Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Pengchong Wang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an Shaanxi, 710068, China
| | - Kailai Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yunhe Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jinpeng Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ke Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Xiaopeng Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
9
|
Zuo N, Wang RT, Bian WM, Liu X, Han BQ, Wang JJ, Shen W, Li L. Vigor King mitigates spermatogenic disorders caused by environmental estrogen zearalenone exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116757. [PMID: 39047363 DOI: 10.1016/j.ecoenv.2024.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Zearalenone (ZEN) has been shown to cause reproductive damage by inducing oxidative stress. Astaxanthin and L-carnitine are widely used to alleviate oxidative stress and promote sperm maturation. However, it remains uncertain whether they are effective in mitigating spermatogenesis disorders induced by ZEN. This study aimed to investigate the therapeutic efficacy and potential mechanisms of Vigor King (Vig), a compound preparation primarily consisting of astaxanthin and L-carnitine, in alleviating ZEN-induced spermatogenesis disorders. In the experiment, mice received continuous oral gavage of ZEN (80 μg/kg) for 35 days, accompanied by a rescue strategy with Vig (200 mg/kg). The results showed that Vig effectively reduced the negative impact on semen quality and improved the structural and functional abnormalities of the seminiferous epithelium caused by ZEN. Additionally, the accumulation of reactive oxygen species (ROS), DNA double-strand breaks, apoptosis, and autophagy abnormalities were all significantly ameliorated. Intriguingly, the GSK3β-dependent BTRC-NRF2 signaling pathway was found to play an important role in this process. Furthermore, testing of offspring indicated that Vig could extend its protective effects to the next generation, effectively combating the transgenerational toxic effects of ZEN. In summary, our research suggests that Vig supplementation holds considerable promise in alleviating spermatogenesis disorders induced by zearalenone.
Collapse
Affiliation(s)
- Ning Zuo
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Rui Ting Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wen Meng Bian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuan Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Bao Quan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Jun Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
10
|
Gong T, Liu X, Wang X, Lu Y, Wang X. Applications of polysaccharides in enzyme-triggered oral colon-specific drug delivery systems: A review. Int J Biol Macromol 2024; 275:133623. [PMID: 38969037 DOI: 10.1016/j.ijbiomac.2024.133623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.
Collapse
Affiliation(s)
- Tingting Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xi Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yunqian Lu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
11
|
Cui G, Yu X, He M, Huang S, Liu K, Li Y, Li J, Shao X, Lv Q, Li X, Tan M. Biological activity, limitations and steady-state delivery of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:1-50. [PMID: 39218500 DOI: 10.1016/bs.afnr.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Food-related functional substances with biological activity serve as a crucial material foundation for achieving precision nutrition, which has gained increasing attraction in regulating physiological functions, preventing chronic diseases, and maintaining human health. Nutritional substances typically include bioactive proteins, peptides, polysaccharides, polyphenols, functional lipids, carotenoids, probiotics, vitamins, saponins, and terpenes. These functional substances play an essential role in precise nutrition. This chapter introduces and summarizes typical functional substances to demonstrate the challenges in precision nutrition for their stability, solubility, and bioavailability. The current status of delivery systems of functional substances is described to give an insight into the development of desirable characteristics, such as food grade status, high loading capacity, site targeting, and controlled release capacity. Finally, the applications of food-borne delivery systems of functional substances for precision nutrition are emphasized to meet the requirement for precision nutrition during nutritional intervention for chronic diseases.
Collapse
Affiliation(s)
- Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xiaoting Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Ming He
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Shasha Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Kangjing Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xiaoyang Shao
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Qiyan Lv
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xueqian Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China.
| |
Collapse
|
12
|
Yu Y, Yang D, Lin B, Zhu L, Li C, Li X. Readily Available Oral Prebiotic Protein Reactive Oxygen Species Nanoscavengers for Synergistic Therapy of Inflammation and Fibrosis in Inflammatory Bowel Disease. ACS NANO 2024; 18:13583-13598. [PMID: 38740518 DOI: 10.1021/acsnano.3c13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A significant gap exists in the demand for safe and effective drugs for inflammatory bowel disease (IBD), and its associated intestinal fibrosis. As oxidative stress plays a central role in the pathogenesis of IBD, astaxanthin (AST), a good antioxidant with high safety, holds promise for treating IBD. However, the application of AST is restricted by its poor solubility and easy oxidation. Herein, different protein-based nanoparticles (NPs) are fabricated for AST loading to identify an oral nanovehicle with potential clinical applicability. Through systematic validation via molecular dynamics simulation and in vitro characterization of properties, whey protein isolate (WPI)-driven NPs using a simple preparation method without the need for cross-linking agents or emulsifiers were identified as the optimal carrier for oral AST delivery. Upon oral administration, the WPI-driven NPs, benefiting from the intrinsic pH sensitivity and mucoadhesive properties, effectively shielded AST from degradation by gastric juices and targeted release of AST at intestinal lesion sites. Additionally, the AST NPs displayed potent therapeutic efficacy in both dextran sulfate sodium (DSS)-induced acute colitis and chronic colitis-associated intestinal fibrosis by ameliorating inflammation, oxidative damage, and intestinal microecology. In conclusion, the AST WPI NPs hold a potential therapeutic value in treating inflammation and fibrosis in IBD.
Collapse
Affiliation(s)
- Yang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Dairong Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bingru Lin
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Zhu
- School of Chinese Medicine, Hong Kong Baptist University, 999077 Hong Kong, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
13
|
Yu X, Chen Y, Tan M. ROS-responsive carboxymethyl chitosan nanoparticles loaded with astaxanthin for alleviating oxidative damage in intestinal cells. Colloids Surf B Biointerfaces 2024; 239:113960. [PMID: 38744080 DOI: 10.1016/j.colsurfb.2024.113960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
The controlled release of antioxidant substances at the intestinal oxidative damage site is crucial for alleviating intestine-related diseases. Herein, the novel ROS-responsive carrier was synthesized through simple amidation reaction between carboxymethyl chitosan (CMC) and methionine (Met), a natural organic compound containing ROS-responsive linkages (thioether). Initially, astaxanthin (AXT) nanoparticles (AXT2@CMT) with excellent stability and drug loading capacity (39.68 ± 0.23 μg/mL) were prepared by optimizing various reaction conditions. In the simulated high-concentration ROS environment of the intestine, CMT achieved a transition from hydrophobic groups (thioether) into hydrophilic groups (sulfone), which was conducive to the controlled release of AXT. In vitro cell experiments revealed that AXT2@CMT could effectively alleviate the oxidative damage in intestinal epithelioid cell line No. 6 (IEC-6 cell) caused by H2O2. This study achieved a straightforward preparation of ROS-responsive nanocarrier through food ingredients, offering a theoretical foundation for the controlled release of AXT at the intestinal oxidative damage site.
Collapse
Affiliation(s)
- Xiaoting Yu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yannan Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
14
|
Zang Z, Li Y, Chou S, Tian J, Si X, Wang Y, Tan H, Gao N, Shu C, Li D, Chen W, Chen Y, Wang L, He Y, Li B. Polyphenol nanoparticles based on bioresponse for the delivery of anthocyanins. Food Res Int 2024; 184:114222. [PMID: 38609214 DOI: 10.1016/j.foodres.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Anthocyanin (AN) has good antioxidant and anti-inflammatory bioactivities, but its poor biocompatibility and low stability limit the application of AN in the food industry. In this study, core-shell structured carriers were constructed by noncovalent interaction using tannic acid (TA) and poloxamer 188 (F68) to improve the biocompatibility, stability and smart response of AN. Under different treatment conditions, TA-F68 and AN were mainly bound by hydrophobic interaction. The PDI is less than 0.1, and the particle size of nanoparticles (NPs) is uniform and concentrated. The retention of the complex was 15.50 % higher than that of AN alone after 9 d of light treatment. After heat treatment for 180 min, the retention rate after loading was 13.87 % higher than that of AN alone. The carrier reduce the damage of AN by the digestive environment, and intelligently and sustainedly release AN when the esterase is highly expressed. In vitro studies demonstrated that the nanocarriers had good biocompatibility and significantly inhibited the overproduction of reactive oxygen species induced by oxidative stress. In addition, AN-TA-F68 has great potential for free radical scavenging at sites of inflammation. In conclusion, the constructed nano-delivery system provides a potential application for oral ingestion of bioactive substances for intervention in ulcerative colitis.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuan Li
- China Agricultural university. Beijing 311800, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ningxuan Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Chen
- Nanchang University, State Key Laboratory of Food Science and Technology, Nanchang, Jiangxi 330031, China
| | - Liang Wang
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Ying He
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
15
|
Yang J, Lin J, Zhang W, Shen M, Wang Y, Xie J. Resveratrol-loaded pH-responsive Mesona chinensis polysaccharides-zein nanoparticles for effective treatment of ulcerative colitis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3992-4003. [PMID: 38323719 DOI: 10.1002/jsfa.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/09/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Resveratrol (Res) is promising food functional factor with favorable antioxidant and anti-inflammatory properties, although its poor water solubility and low bioavailability limit extensive application. Therefore, in combination with another promising polysaccharide (Mesona chinensis polysaccharides, MCP), Res-loaded food nanocarriers (ResNPs) were developed to increase its water solubility, bioactivity and targeting properties. ResNPs were then applied to alleviate dextran sulfate sodium (DSS)-induced ulcerative colitis. RESULTS Resveratrol can be well encapsulated in MCP-based nanoparticles in an amorphous state, improving its water solubility. ResNPs showed pH-response controlled release behavior in the gastrointestinal tract and increased the enrichment of Res in the colon. In vivo experiments of ResNPs against DSS-induced ulcerative colitis (UC) revealed that ResNPs significantly improved UC symptoms, modulated intestinal inflammation and down-regulated oxidative stress levels compared to free Res. ResNPs also play an positive role with respect to inhibiting the mitogen-activated protein kinase pathway and promoting the expression of tight junction proteins. In addition, ResNPs improved the species composition and relative abundance of intestinal flora in UC mice, which effectively regulated the balance of intestinal flora and promoted the production of short-chain fatty acids. CONCLUSION These results suggest that MCP-based nanoparticles can effectively improve the solubility of resveratrol and enhance its in vivo bioactivity. Moreover, the present study also provides a new strategy for the prevention and treatment of UC with food polyphenol. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Jieqiong Lin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Weidong Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Zhang L, Ye P, Zhu H, Zhu L, Ren Y, Lei J. Bioinspired and biomimetic strategies for inflammatory bowel disease therapy. J Mater Chem B 2024; 12:3614-3635. [PMID: 38511264 DOI: 10.1039/d3tb02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease with high morbidity and an increased risk of cancer or death, resulting in a heavy societal medical burden. While current treatment modalities have been successful in achieving long-term remission and reducing the risk of complications, IBD remains incurable. Nanomedicine has the potential to address the high toxic side effects and low efficacy in IBD treatment. However, synthesized nanomedicines typically exhibit some degree of immune rejection, off-target effects, and a poor ability to cross biological barriers, limiting the development of clinical applications. The emergence of bionic materials and bionic technologies has reshaped the landscape in novel pharmaceutical fields. Biomimetic drug-delivery systems can effectively improve biocompatibility and reduce immunogenicity. Some bioinspired strategies can mimic specific components, targets or immune mechanisms in pathological processes to produce targeting effects for precise disease control. This article highlights recent research on bioinspired and biomimetic strategies for the treatment of IBD and discusses the challenges and future directions in the field to advance the treatment of IBD.
Collapse
Affiliation(s)
- Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
17
|
Sun S, Zhang L, Li Y, Su W, Abd El-Aty AM, Tan M. Design and preparation of NMN nanoparticles based on protein-marine polysaccharide with increased NAD + level in D-galactose induced aging mice model. Colloids Surf B Biointerfaces 2024; 239:113903. [PMID: 38599036 DOI: 10.1016/j.colsurfb.2024.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Nicotinamide mononucleotide (NMN) is being investigated for its ability to address the decline in NAD+ level during aging. This study aimed to construct a delivery system based on ovalbumin and fucoidan nanoparticles to ameliorate the bioaccessibility of NMN by increasing NAD+ level in aging mouse model. The NMN-loaded ovalbumin and fucoidan nanoparticles (OFNPs) were about 177 nm formed by the interplay of hydrogen bonds between ovalbumin and fucoidan. Compared with free NMN, NMN-loaded OFNPs intervention could obviously improve the antioxidant enzyme activity of senescent cell induced by D-galactose. The NMN-loaded OFNPs treatment could ameliorate the loss of weight and organ index induced by senescence, and maintain the water content for the aging mice. The Morris maze test indicated that hitting blind side frequency and escape time of NMN-loaded OFNPs group decreased by 13% and 35% compared with that of free NMN group. Furthermore, the NMN-loaded OFNPs significantly alleviated the age-related oxidative stress and increased the generation of NAD+ 1.34 times by improving the bioaccessibility of NMN. Our data in this study supplied a strategy to enhance the bioavailability of NMN in senescence treatment.
Collapse
Affiliation(s)
- Shan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China
| | - Lijuan Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China
| | - Yu Li
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Dalian Key Laboratory for Precision Nutrition, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China.
| |
Collapse
|
18
|
Hua Z, Zhang X, Xing S, Li J, Liang D, Chen Y, Abd El-Aty A, Zhu BW, Liu D, Tan M. Design and preparation of multifunctional astaxanthin nanoparticles with good acid stability and hepatocyte-targeting ability for alcoholic liver injury alleviation. MATERIALS TODAY NANO 2024; 25:100436. [DOI: 10.1016/j.mtnano.2023.100436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Hwang EJ, Jeong YIL, Lee KJ, Yu YB, Ohk SH, Lee SY. Anticancer Activity of Astaxanthin-Incorporated Chitosan Nanoparticles. Molecules 2024; 29:529. [PMID: 38276606 PMCID: PMC10818874 DOI: 10.3390/molecules29020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Astaxanthin (AST)-encapsulated nanoparticles were fabricated using glycol chitosan (Chito) through electrostatic interaction (abbreviated as ChitoAST) to solve the aqueous solubility of astaxanthin and improve its biological activity. AST was dissolved in organic solvents and then mixed with chitosan solution, followed by a dialysis procedure. All formulations of ChitoAST nanoparticles showed small diameters (less than 400 nm) with monomodal distributions. Analysis with Fourier transform infrared (FT-IR) spectroscopy confirmed the specific peaks of AST and Chito. Furthermore, ChitoAST nanoparticles were formed through electrostatic interactions between Chito and AST. In addition, ChitoAST nanoparticles showed superior antioxidant activity, as good as AST itself; the half maximal radical scavenging concentrations (RC50) of AST and ChitoAST nanoparticles were 11.8 and 29.3 µg/mL, respectively. In vitro, AST and ChitoAST nanoparticles at 10 and 20 µg/mL properly inhibited the production of intracellular reactive oxygen species (ROSs), nitric oxide (NO), and inducible nitric oxide synthase (iNOS). ChitoAST nanoparticles had no significant cytotoxicity against RAW264.7 cells or B16F10 melanoma cells, whereas AST and ChitoAST nanoparticles inhibited the growth of cancer cells. Furthermore, AST itself and ChitoAST nanoparticles (20 µg/mL) efficiently inhibited the migration of cancer cells in a wound healing assay. An in vivo study using mice and a pulmonary metastasis model showed that ChitoAST nanoparticles were efficiently delivered to a lung with B16F10 cell metastasis; i.e., fluorescence intensity in the lung was significantly higher than in other organs. We suggest that ChitoAST nanoparticles are promising candidates for antioxidative and anticancer therapies of B16F10 cells.
Collapse
Affiliation(s)
- Eun Ju Hwang
- Marine Bio Research Center, Chosun University, Wando 59146, Jeonnam, Republic of Korea;
| | - Young-IL Jeong
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan 50612, Gyeongnam, Republic of Korea;
| | - Kyong-Je Lee
- Department of Prosthodontics, Chosun University Dental Hospital, Gwangju 61452, Republic of Korea;
| | - Young-Bob Yu
- Department of Paramedicine, Nambu University, Gwangju 62271, Republic of Korea;
| | - Seung-Ho Ohk
- Department of Oral Microbiology, Chonnam National University School of Dentistry, Gwangju 61452, Republic of Korea
| | - Sook-Young Lee
- Marine Bio Research Center, Chosun University, Wando 59146, Jeonnam, Republic of Korea;
| |
Collapse
|
20
|
Li Q, Lin L, Zhang C, Zhang H, Ma Y, Qian H, Chen XL, Wang X. The progression of inorganic nanoparticles and natural products for inflammatory bowel disease. J Nanobiotechnology 2024; 22:17. [PMID: 38172992 PMCID: PMC10763270 DOI: 10.1186/s12951-023-02246-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
There is a growing body of evidence indicating a close association between inflammatory bowel disease (IBD) and disrupted intestinal homeostasis. Excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with an increase in M1 proinflammatory macrophage infiltration during the activation of intestinal inflammation, plays a pivotal role in disrupting intestinal homeostasis in IBD. The overabundance of ROS/RNS can cause intestinal tissue damage and the disruption of crucial gut proteins, which ultimately compromises the integrity of the intestinal barrier. The proliferation of M1 macrophages contributes to an exaggerated immune response, further compromising the intestinal immune barrier. Currently, intestinal nanomaterials have gained widespread attention in the context of IBD due to their notable characteristics, including the ability to specifically target regions of interest, clear excess ROS/RNS, and mimic biological enzymes. In this review, we initially elucidated the gut microenvironment in IBD. Subsequently, we delineate therapeutic strategies involving two distinct types of nanomedicine, namely inorganic nanoparticles and natural product nanomaterials. Finally, we present a comprehensive overview of the promising prospects associated with the application of nanomedicine in future clinical settings for the treatment of IBD (graphic abstract). Different classes of nanomedicine are used to treat IBD. This review primarily elucidates the current etiology of inflammatory bowel disease and explores two prominent nanomaterial-based therapeutic approaches. First, it aims to eliminate excessive reactive oxygen species and reactive nitrogen species. Second, they focus on modulating the polarization of inflammatory macrophages and reducing the proportion of pro-inflammatory macrophages. Additionally, this article delves into the treatment of inflammatory bowel disease using inorganic metal nanomaterials and natural product nanomaterials.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Cong Zhang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan Ma
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Haisheng Qian
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Xianwen Wang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
21
|
Zhang X, Su W, Chen Y, Xing S, El-Aty AMA, Song Y, Tan M. Bi-functional astaxanthin macromolecular nanocarriers to alleviate dextran sodium sulfate-induced inflammatory bowel disease. Int J Biol Macromol 2024; 256:128494. [PMID: 38035969 DOI: 10.1016/j.ijbiomac.2023.128494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Dextran sulfate sodium is one of the important members in the field of polysaccharide biotechnology, which can induce inflammatory bowel disease (IBD) in the gastrointestinal tract. Nevertheless, the application of astaxanthin (AST) and epigallocatechin-3-gallate (EGCG), known for their pronounced antioxidant and anti-inflammatory properties, is encumbered by limited stability and bioavailability. To surmount this challenge, dual nutritional macromolecular nanoparticles were provided for alleviating IBD. The forementioned strategy entailed the utilization of EGCG as a wall material via the Mannich reaction, resulting in the creation of specialized nanocarriers capable of mitochondrial targeting and glutathione-responsive AST delivery. In vitro investigations, these nanocarriers demonstrated an enhanced propensity for mitochondrial accumulation, leading to proficient elimination of reactive oxygen species and preservation of optimal mitochondrial membrane potential about 1.5 times stronger than free AST and EGCG. Crucially, in vivo experiments showed that the colon length of IBD mice treated with these nanocarriers increased by 51.29 % and facilitated the polarization of M2 macrophages. Moreover, the assimilation of these nanocarriers exerted a favorable impact on the composition of gut microbiota. These findings underscore the immense potential of dual nutrition nanocarriers in contemporaneously delivering hydrophobic biological activators through oral absorption, thereby presenting a highly promising avenue for combating IBD.
Collapse
Affiliation(s)
- Xiumin Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yannan Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Yukun Song
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China; State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
22
|
Cui H, Jiang Q, Gao N, Tian J, Wu Y, Li J, Yang S, Zhang S, Si X, Li B. Complexes of glycated casein and carboxymethyl cellulose enhance stability and control release of anthocyanins. Food Res Int 2024; 176:113804. [PMID: 38163683 DOI: 10.1016/j.foodres.2023.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
To improve the stability and sustained-release property of anthocyanins (ACNs), casein (CA) - dextran (DEX) glycated conjugates (UGCA) and carboxymethyl cellulose (CMC) were used to prepare ACNs-loaded binary and ternary complexes. The ACNs-loaded binary complexes (ACNs-UGCA) and ternary complexes (ACNs-UGCA-CMC) achieved by 8 min' ultrasonic treatment with 40 % amplitude. The binary and ternary complexes showed spherical structure and good dispersibility, with the average size of 121.2 nm and 132.4 nm respectively. The anthocyanins encapsulation efficiency of ACNs-UGCA-CMC increased almost 20 % than ACNs-UGCA. ACNs-UGCA-CMC had better colloidal stabilities than ACNs-UGCA, such as thermal stability and dilution stability. Simultaneously, both of the binary and ternary complexes significantly prevented anthocyanins from being degraded by heat treatment, ascorbic acid, sucrose and simulated gastrointestinal environment. The protective effect of ACNs-UGCA-CMC was more significant. Furthermore, ACNs-UGCA-CMC showed slower anthocyanins release in simulated releasing environment in vitro and a long retention time in vivo. Our current study provides a potential delivery for improving the stability and controlling release of anthocyanins.
Collapse
Affiliation(s)
- Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ningxuan Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yunan Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Shugang Zhang
- Yunneng (Dalian) Biotechnology Co., Ltd., Dalian, Liaoning 116600, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
23
|
Song G, Zhao Y, Lu J, Liu Z, Quan J, Zhu L. Effects of Astaxanthin on Growth Performance, Gut Structure, and Intestinal Microorganisms of Penaeus vannamei under Microcystin-LR Stress. Animals (Basel) 2023; 14:58. [PMID: 38200789 PMCID: PMC10778157 DOI: 10.3390/ani14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Microcystin-LR (MC-LR) are biologically active cycloheptapeptide compounds that are released by cyanobacteria during water blooms and are extensively found in aquatic ecosystems. The Penaeus vannamei is a significant species in global aquaculture. However, the high level of eutrophication in aquaculture water frequently leads to outbreaks of cyanobacterial blooms, posing a significant threat to its sustainable cultivation. Astaxanthin (AX) is commonly utilized in aquaculture for its physiological benefits, including promoting growth and enhancing immune function in cultured organisms. This study aimed to examine the protective effect of astaxanthin on P. vannamei exposed to microcystin-induced stress. The experiment consisted of three groups: one group was fed formulated feed containing MC (100 μg/kg), another group was fed formulated feed containing MC (100 μg/kg) + AX (100 mg/kg), and the third group was fed basic feed (control group). After 15 days of feeding, the specific growth rate (SGR) was significantly higher in the MCAX group (2.21% day-1) compared to the MC group (0.77% day-1), and there was no significant difference between the MCAX group (2.21% day-1) and the control group (2.24% day-1). Similarly, the percent of weight gain (PWG) was also significantly higher in the MCAX group (14.61%) compared to the MC group (13.44%) and the control group (16.64%). Compared to the control group, the epithelial cells in the MC group suffered severe damage and detachment from the basement membrane. However, in the MCAX group, although there was still a gap between the intestinal epithelial cells and the basement membrane, the overall intestinal morphology was slightly less impaired than it was in the MC group. The analysis of the intestinal microbiota revealed a significant disparity in the community composition (chao 1 and ACE) between the MC and MCAX groups. When comparing the various bacterial genera, the MC group exhibited an increase in Vibrio abundance, whereas the MCAX group showed a decrease in both Shewanella and Vibrio abundance. The results indicate that AX has a positive impact on the growth performance and resistance of P. vannamei against MC by regulating the composition of the intestinal microbiota. AX can be utilized to mitigate the detrimental effects of MC in aquaculture practices. This function could be attributed to the role of AX in preserving the structural integrity of the intestinal mucosa and regulating the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Guolin Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (J.L.); (Z.L.); (J.Q.); (L.Z.)
| | | | | | | | | | | |
Collapse
|
24
|
Li C, Zhou Y, Yuan M, Yang Y, Song R, Xu G, Chen G. Astaxanthin-loaded polylactic acid-glycolic acid nanoparticles ameliorate ulcerative colitis through antioxidant effects. Front Nutr 2023; 10:1267274. [PMID: 38024351 PMCID: PMC10665485 DOI: 10.3389/fnut.2023.1267274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Astaxanthin (AST) is a type of carotenoid with strong antioxidant effects. However, the development and use of AST are limited by its water insolubility and low bioavailability. This study aims to investigate whether AST@PLGA can inhibit UC and reveal its possible mechanism. Methods We tested the particle size, polydispersity index, and zeta potential of AST@PLGA. Then, the in vitro release and antioxidant capacity of AST@PLGA were tested. Finally, the mouse model of colitis was established and SOD, MDA, TNF-α, IL-1β, IL-6 and P38 as well as ERK were detected from mice. Results Particle size, polydispersity index and zeta potential of AST @PLGA were 66.78 ± 0.64 nm, 0.247 and -9.8 ± 0.53 mV, respectively, and were stable within 14 days. Then, it was observed that the AST@PLGA nanoparticles not only maintained the effect of AST but also had a sustained release effect. Experiments in mice showed that AST@PLGA effectively reduced MDA, TNF-α, IL-1β and IL-6 levels and increased SOD levels. AST@PLGA also downregulated the protein expression of P38 and ERK. The results showed the positive protective effect of AST@PLGA in inhibiting acute colitis. Discussion AST@PLGA nanoparticles have good stability and alleviating effect in colitis, which could be functional foods in the future.
Collapse
Affiliation(s)
- Chunmei Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Yu Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Meng Yuan
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
| | - Yawen Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Ruilong Song
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Gang Xu
- Department of Burn and Plastic Surgery, Northern Jiangsu People’s Hospital/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Gang Chen
- School of Rehabilitation Science and Engineering, Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
25
|
Li H, Yu H, Su W, Wang H, Tan M. Tuning the Microstructures of Electrospray Multicore Alginate Microspheres for the Enhanced Delivery of Astaxanthin. ACS OMEGA 2023; 8:41537-41547. [PMID: 37970045 PMCID: PMC10634221 DOI: 10.1021/acsomega.3c05542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Multicore alginate microspheres (MCPs) have been demonstrated as promising carriers for bioactive substances. Herein, the influence of the size of the inner core on the bioaccessibility of astaxanthin (AST) was investigated using both in vitro and in vivo methods. MCPs with different inner core sizes were fabricated in which the oil-in-water emulsion with different oil droplet sizes was embedded in alginate microspheres (AST@MCPs) via the electrospray technology. The AST@MCPs appeared as a uniform sphere with an average size of 300 μm. The AST encapsulation efficiency in the AST@MCPs was determined to be more than 68%, which was independent of the inner core size. The bioaccessibility of AST increased from 38.3 to 83.2% as the size of the inner core decreased. Furthermore, the anti-inflammatory activity of AST@MCPs after in vitro simulated digestion was evaluated by LPS-induced RAW264.7 cells. The results suggested that AST@MCPs with a smaller inner core size exhibited a stronger anti-inflammatory activity, which further proved the results obtained from in vitro simulated digestion. As expected, the oral administration of AST@MCPs significantly mitigated colitis symptoms in DSS-induced ulcerative colitis mice. Compared with AST@MCPs with larger inner cores, AST@MCPs with smaller inner cores reflect stronger anti-inflammatory activity in vivo. These results suggested that the bioaccessibility of AST in MCPs increased significantly with the decrease in the inner core size, which may be attributed to the rapid formation of micelles in the intestine. This work provides a simple and efficient strategy to prepare microspheres for the enhanced delivery of AST, which has important implications for the design of health-promoting foods.
Collapse
Affiliation(s)
- Hongliang Li
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- College of
Food Science and Engineering, Jilin Agricultural
University, Changchun 130118, P. R. China
| | - Hongjin Yu
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haitao Wang
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
26
|
Luo M, Yuan Q, Liu M, Song X, Xu Y, Zhang T, Zeng X, Wu Z, Pan D, Guo Y. Astaxanthin nanoparticles ameliorate dextran sulfate sodium-induced colitis by alleviating oxidative stress, regulating intestinal flora, and protecting the intestinal barrier. Food Funct 2023; 14:9567-9579. [PMID: 37800998 DOI: 10.1039/d3fo03331g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This study aimed to develop a novel astaxanthin nanoparticle using gum arabic (GA) and whey protein powder enriched with milk fat globule membranes (MFGM-WPI) as carriers and to investigate its effect and alleviation mechanism on colitis in mice. We demonstrated that MFGM-GA-astaxanthin could improve the bioaccessibility of astaxanthin and cope with oxidative stress more effectively in a Caco-2 cell model. In vivo studies demonstrated that MFGM-GA-astaxanthin alleviated colitis symptoms and repaired intestinal barrier function by increasing the expression of mucin 2, occludin, and zonula occludens-1. This was attributed to the alleviating effect of MFGM-GA-astaxanthin on oxidative stress. Moreover, MFGM-GA-astaxanthin restored the abnormalities of flora caused by dextran sulfate sodium, including Lactobacillus, Bacteroides, Ruminococcus, and Shigella. This study provides a basis for the therapeutic effect of astaxanthin nanoparticles on colon diseases.
Collapse
Affiliation(s)
- Mengfan Luo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Qiaoyue Yuan
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Mingzhen Liu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Xingye Song
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Yingjie Xu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| |
Collapse
|
27
|
Zhang X, Li C, Hu W, Abdel-Samie MA, Cui H, Lin L. An overview of tea saponin as a surfactant in food applications. Crit Rev Food Sci Nutr 2023; 64:12922-12934. [PMID: 37737159 DOI: 10.1080/10408398.2023.2258392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The residue of Camellia seeds after oil extraction contains many bioactive ingredients, including tea saponin. Tea saponin has many pharmacological effects and is an excellent nonionic surfactant. The development of natural surfactants has become a hot topic in food research. This review gathers the applications of tea saponin as a surfactant in food. It focuses on the application of tea saponin in emulsions, delivery systems, extraction and fermentation, as well as the challenges and development prospects in food applications. Tea saponin shows great potential as a surfactant in food applications, which can replace some synthetic surfactants. The full utilization of tea saponin improves the comprehensive utilization value of Camellia seed residue, contributes to the sustainable development of Camellia industry and avoids resource waste.
Collapse
Affiliation(s)
- Xueli Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Wei Hu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Mohamed A Abdel-Samie
- Department of Food and Dairy Sciences and technology, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
28
|
Chen Y, Fei S, Yu X, Tan M. Dandelion ( Taraxacum mongolicum) Extract Alleviated H 2O 2-Induced Oxidative Damage: The Underlying Mechanism Revealed by Metabolomics and Lipidomics. Foods 2023; 12:3314. [PMID: 37685246 PMCID: PMC10486514 DOI: 10.3390/foods12173314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Dandelion has received wide attention in food and medicine fields due to its excellent antioxidant properties. Nonetheless, the underlying mechanism of this action has not yet been fully clarified, particularly at the metabolic level. Herein, the effects of dandelion extract (DE) on H2O2-induced oxidative damage was investigated. The results indicate that the DE alleviated H2O2-induced cell damage (increased by 14.5% compared to H2O2 group), reduced the reactive oxygen species (ROS) level (decreased by 80.1% compared to H2O2 group), maintained the mitochondrial membrane potential (MMP) level, and increased antioxidant-related enzyme activities. Importantly, the metabolic response of PC12 cells indicates that H2O2 disturbed phospholipid metabolism and damaged cell membrane integrity. In addition, energy metabolism, the central nervous system, and the antioxidant-related metabolism pathway were perturbed. In contrast, DE rescued the H2O2-induced metabolic disorder and further alleviated oxidative damage. Collectively, these findings provide valuable stepping stones for a discussion of the mechanism and show the promise of DE as a suitable additive for functional food products.
Collapse
Affiliation(s)
- Yannan Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Gangjingzi District, Dalian 116034, China; (Y.C.); (S.F.); (X.Y.)
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Siyuan Fei
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Gangjingzi District, Dalian 116034, China; (Y.C.); (S.F.); (X.Y.)
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoting Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Gangjingzi District, Dalian 116034, China; (Y.C.); (S.F.); (X.Y.)
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Gangjingzi District, Dalian 116034, China; (Y.C.); (S.F.); (X.Y.)
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
29
|
Morilla MJ, Ghosal K, Romero EL. More Than Pigments: The Potential of Astaxanthin and Bacterioruberin-Based Nanomedicines. Pharmaceutics 2023; 15:1828. [PMID: 37514016 PMCID: PMC10385456 DOI: 10.3390/pharmaceutics15071828] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Carotenoids are natural products regulated by the food sector, currently used as feed dyes and as antioxidants in dietary supplements and composing functional foods for human consumption. Of the nearly one thousand carotenoids described to date, only retinoids, derived from beta carotene, have the status of a drug and are regulated by the pharmaceutical sector. In this review, we address a novel field: the transformation of xanthophylls, particularly the highly marketed astaxanthin and the practically unknown bacterioruberin, in therapeutic agents by altering their pharmacokinetics, biodistribution, and pharmacodynamics through their formulation as nanomedicines. The antioxidant activity of xanthophylls is mediated by routes different from those of the classical oral anti-inflammatory drugs such as corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs): remarkably, xanthophylls lack therapeutic activity but also lack toxicity. Formulated as nanomedicines, xanthophylls gain therapeutic activity by mechanisms other than increased bioavailability. Loaded into ad hoc tailored nanoparticles to protect their structure throughout storage and during gastrointestinal transit or skin penetration, xanthophylls can be targeted and delivered to selected inflamed cell groups, achieving a massive intracellular concentration after endocytosis of small doses of formulation. Most first reports showing the activities of oral and topical anti-inflammatory xanthophyll-based nanomedicines against chronic diseases such as inflammatory bowel disease, psoriasis, atopic dermatitis, and dry eye disease emerged between 2020 and 2023. Here we discuss in detail their preclinical performance, mostly targeted vesicular and polymeric nanoparticles, on cellular models and in vivo. The results, although preliminary, are auspicious enough to speculate upon their potential use for oral or topical administration in the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| |
Collapse
|
30
|
Lin G, Yu F, Li D, Chen Y, Zhang M, Lu K, Wang N, Hu S, Zhao Y, Xu H. Polydopamine-cladded montmorillonite micro-sheets as therapeutic platform repair the gut mucosal barrier of murine colitis through inhibiting oxidative stress. Mater Today Bio 2023; 20:100654. [PMID: 37214550 PMCID: PMC10195987 DOI: 10.1016/j.mtbio.2023.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
Montmorillonite (MMT), a layered aluminosilicate, has a mucosal nutrient effect and restores the gut barriers integrity. However, orally administrating MMT is not effective to combat the reactive oxygen species (ROS) and alleviate the acute inflammatory relapse for colitis patients. Herein, polydopamine-doped montmorillonite micro-sheets (PDA/MMT) have been developed as a therapeutic platform for colitis treatment. SEM and EDS analysis showed that dopamine monomer (DA) was easily polymerized in alkaline condition and polydopamine (PDA) was uniformly cladded on the surface of MMT micro-sheets. The depositing amount of PDA was reaching to 2.06 ± 0.08%. Moreover, in vitro fluorescence probes experiments showed that PDA/MMT presented the broad spectra of scavenging various ROS sources including •OH, •O2-, and H2O2. Meanwhile, the intracellular ROS of Rosup/H2O2 treated Caco-2 cell was also effectively scavenged by PDA/MMT, which resulted in the obvious improvement of the cell viability under oxidative stress. Moreover, most of orally administrated PDA/MMT was transited to the gut and form a protective film on the diseased colon. PDA/MMT exhibited the obvious therapeutic effect on DSS-induced ulcerative colitis mouse. Importantly, the gut mucosa of colitis mouse was well restored after PDA/MMT treatment. Moreover, the colonic inflammation was significantly alleviated and the goblet cells were obliviously recovered. The therapeutic mechanism of PDA/MMT was highly associated with inhibiting oxidative stress. Collectively, PDA/MMT micro-sheets as a therapeutic platform may provide a promising therapeutic strategy for UC treatment.
Collapse
Affiliation(s)
- Gaolong Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Fengnan Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Dingwei Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Yi Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Mengjiao Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Kaili Lu
- CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Neili Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Sunkuan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, China
| | - Yingzheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Helin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| |
Collapse
|
31
|
Hua Z, Zhang X, Zhao X, Zhu BW, Liu D, Tan M. Hepatic-targeted delivery of astaxanthin for enhanced scavenging free radical scavenge and preventing mitochondrial depolarization. Food Chem 2023; 406:135036. [PMID: 36459794 DOI: 10.1016/j.foodchem.2022.135036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/24/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Astaxanthin (AST), as natural hydrophobic nutrition, has exhibited health-promoting benefits for its outstanding antioxidant property. However, most studies tend to enhance its stability and solubility while the targeted delivery of AST is limited. In this study, liver-targeted nanocarriers were designed and prepared by lactobionic acid-modified (2-hydroxypropyl-β-cyclodextrin) for efficient controlled delivery of AST. The minimum average size of AST nanoparticles was about 98 nm with a polydispersity index (PDI) of 0.41. The lactobionic acid-modified AST nanoparticles exhibited significant cellular uptake, and an admirable ability to scavenge free radicals for H2O2-induced HepaRG cells in preventing mitochondrial depolarization. Moreover, accumulation of AST nanoparticles in liver was observed due to the modification of lactobionic acid (LA) of the nanocarriers through the specific binding of LA-asialoglycoprotein receptors. The results in this study provided a new idea for liver-specific nutrition delivery of AST in developing functional food for liver disease nutrition intervention.
Collapse
Affiliation(s)
- Zheng Hua
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xue Zhao
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Bei-Wei Zhu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
32
|
Liang D, Liu C, Li Y, Wu C, Chen Y, Tan M, Su W. Engineering fucoxanthin-loaded probiotics' membrane vesicles for the dietary intervention of colitis. Biomaterials 2023; 297:122107. [PMID: 37058897 DOI: 10.1016/j.biomaterials.2023.122107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Extracellular vesicles (EVs) are very attractive as carriers of active components due to their good immunological and their ability to penetrate the physiological barrier that synthetic delivery carriers cannot penetrate. However, the low secretion capacity of EVs limited its widespread adoption, let alone the lower yield of EVs loaded with active components. Here, we report a large-scale engineering preparation strategy of synthetic probiotic membrane vesicles for encapsulating fucoxanthin (FX-MVs), an intervention for colitis. Compared with the EVs naturally secreted by probiotics, the engineering membrane vesicles showed a 150-fold yield and richer protein. Moreover, FX-MVs improved the gastrointestinal stability of fucoxanthin and inhibited H2O2-induced oxidative damage by scavenging free radicals effectively (p < 0.05). The in vivo results showed that FX-MVs could promote the polarization of macrophages to M2 type, prevent the injury and shortening of colon tissue (p < 0.05), and improve the colonic inflammatory response. Consistently, proinflammatory cytokines were effectively suppressed after FX-MVs treatment (p < 0.05). Unexpectedly, such engineering FX-MVs could also reshape the gut microbiota communities and improve the abundance of short-chain fatty acids in the colon. This study lays a foundation for developing dietary interventions using natural foods to treat intestinal-related diseases.
Collapse
Affiliation(s)
- Duo Liang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Chenyue Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Caiyun Wu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Yuling Chen
- School of Nursing, Johns Hopkins University, Baltimore, 21205, Maryland, United States
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| |
Collapse
|
33
|
Wang X, Shi G, Fan S, Ma J, Yan Y, Wang M, Tang X, Lv P, Zhang Y. Targeted delivery of food functional ingredients in precise nutrition: design strategy and application of nutritional intervention. Crit Rev Food Sci Nutr 2023; 64:7854-7877. [PMID: 36999956 DOI: 10.1080/10408398.2023.2193275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
With the high incidence of chronic diseases, precise nutrition is a safe and efficient nutritional intervention method to improve human health. Food functional ingredients are an important material base for precision nutrition, which have been researched for their application in preventing diseases and improving health. However, their poor solubility, stability, and bad absorption largely limit their effect on nutritional intervention. The establishment of a stable targeted delivery system is helpful to enhance their bioavailability, realize the controlled release of functional ingredients at the targeted action sites in vivo, and provide nutritional intervention approaches and methods for precise nutrition. In this review, we summarized recent studies about the types of targeted delivery systems for the delivery of functional ingredients and their digestion fate in the gastrointestinal tract, including emulsion-based delivery systems and polymer-based delivery systems. The building materials, structure, size and charge of the particles in these delivery systems were manipulated to fabricate targeted carriers. Finally, the targeted delivery systems for food functional ingredients have gained some achievements in nutritional intervention for inflammatory bowel disease (IBD), liver disease, obesity, and cancer. These findings will help in designing fine targeted delivery systems, and achieving precise nutritional intervention for food functional ingredients on human health.
Collapse
Affiliation(s)
- Xu Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Guohua Shi
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Sufang Fan
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Junmei Ma
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Yonghuan Yan
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Mengtian Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Pin Lv
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
34
|
Tan M, Zhang X, Sun S, Cui G. Nanostructured steady-state nanocarriers for nutrients preservation and delivery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:31-93. [PMID: 37722776 DOI: 10.1016/bs.afnr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food bioactives possess specific physiological benefits of preventing certain diet-related chronic diseases or maintain human health. However, the limitations of the bioactives are their poor stability, lower water solubility and unacceptable bioaccessibility. Structure damage or degradation is often found for the bioactives under certain environmental conditions like high temperature, strong light, extreme pH or high oxygen concentration during food processing, packaging, storage and absorption. Nanostructured steady-state nanocarriers have shown great potential in overcoming the drawbacks for food bioactives. Various delivery systems including solid form delivery system, liquid form delivery system and encapsulation technology have been developed. The embedded food nutrients can largely decrease the loss and degradation during food processing, packaging and storage. The design and application of stimulus and targeted delivery systems can improve the stability, bioavailability and efficacy of the food bioactives upon oral consumption due to enzymatic degradation in the gastrointestinal tract. The food nutrients encapsulated in the smart delivery system can be well protected against degradation during oral administration, thus improving the bioavailability and releazing controlled or targeted release for food nutrients. The encapsulated food bioactives show great potential in nutrition therapy for sub-health status and disease. Much effort is required to design and prepare more biocompatible nanostructured steady-state nanocarriers using food-grade protein or polysaccharides as wall materials, which can be used in food industry and maintain the human health.
Collapse
Affiliation(s)
- Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China.
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Shan Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| |
Collapse
|
35
|
Che T, Song Y, Su W, Xing S, Wang H, Tan M. Hepatic parenchymal cell and mitochondrial-targeted astaxanthin nanocarriers for relief of high fat diet-induced nonalcoholic fatty liver disease. Food Funct 2023; 14:2908-2920. [PMID: 36883333 DOI: 10.1039/d2fo04036k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a metabolic syndrome disorder. Here, hepatic parenchymal cell and mitochondrial-targeted nanocarriers were constructed to deliver astaxanthin (AST) to liver tissue to maximize AST intervention efficiency. The hepatic parenchymal cell-targeting was achieved using galactose (Gal) conjugated onto whey protein isolate (WPI) through the Maillard reaction by recognizing asialoglycoprotein receptors specifically expressed in hepatocytes. Grafting triphenylphosphonium (TPP) onto glycosylated WPI by an amidation reaction enabled the nanocarriers (AST@TPP-WPI-Gal) to achieve dual targeting capability. The AST@TPP-WPI-Gal nanocarriers could target mitochondria in steatotic HepG2 cells with an enhanced anti-oxidative and anti-adipogenesis effect. The ability of AST@TPP-WPI-Gal to target liver tissue was verified by an NAFLD mice model, and the results showed that AST@TPP-WPI-Gal could regulate blood lipid disorders, protect liver function, and remarkably reduce liver lipid accumulation (40%) compared with that of free AST. Therefore, AST@TPP-WPI-Gal might have potential as a dual targeting hepatic agent for nutritional intervention for NAFLD.
Collapse
Affiliation(s)
- Tongtong Che
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yukun Song
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Haitao Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
36
|
Huang HB, Gong W, Hou YY, He WY, Wang R, Wang XC, Hu JN. Mucoadhesive Hydrogel with Anti-gastric Acid and Sustained-Release Functions for Amelioration of DSS-Induced Ulcerative Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4016-4028. [PMID: 36812066 DOI: 10.1021/acs.jafc.2c07777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mucoadhesive hydrogels with multifunctional properties such as gastric acid resistance and sustained drug release in the intestinal tract are highly desirable for the oral treatment of inflammatory bowel diseases (IBDs). Polyphenols are proven to have great efficacies compared with the first-line drugs for IBD treatments. We recently reported that gallic acid (GA) was capable of forming a hydrogel. However, this hydrogel is prone to easy degradation and poor adhesion in vivo. To tackle this problem, the current study introduced sodium alginate (SA) to form a gallic acid/sodium alginate hybrid hydrogel (GAS). As expected, the GAS hydrogel showed excellent antiacid, mucoadhesive, and sustained degradation properties in the intestinal tract. In vitro studies demonstrated that the GAS hydrogel significantly alleviated ulcerative colitis (UC) in mice. The colonic length of the GAS group (7.75 ± 0.38 cm) was significantly longer than that of the UC group (6.12 ± 0.25 cm). The disease activity index (DAI) value of the UC group was (5.5 ± 0.57), which was markedly higher than that of the GAS group (2.5 ± 0.65). The GAS hydrogel also could inhibit the expression of inflammatory cytokines, regulating macrophage polarization and improving the intestinal mucosal barrier functions. All these results indicated that the GAS hydrogel was an ideal candidate for oral treatment of UC.
Collapse
Affiliation(s)
- Hai-Bo Huang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wei Gong
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Yang Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wan-Ying He
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ran Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin-Chuang Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
37
|
Zhang L, Zhou C, Xing S, Chen Y, Su W, Wang H, Tan M. Sea bass protein-polyphenol complex stabilized high internal phase of algal oil Pickering emulsions to stabilize astaxanthin for 3D food printing. Food Chem 2023; 417:135824. [PMID: 36913867 DOI: 10.1016/j.foodchem.2023.135824] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
The protective effect of sea bass protein (SBP)-(-)-epigallocatechin-3-gallate (EGCG) covalent complex-stabilized high internal phase (algal oil) Pickering emulsions (HIPPEs) on astaxanthin and algal oils was demonstrated in this study. The SBP-EGCG complex with better wettability and antioxidant activity was formed by the free radical-induced reaction to stabilize HIPPEs. Our results show that the SBP-EGCG complex formed dense particle shells surrounding the oil droplets, and the shells were crosslinked with the complex in the continuous phase to produce a network structure. The rheological analysis demonstrated that the SBP-EGCG complex endowed HIPPEs with high viscoelasticity, high thixotropic recovery, and good thermal stability, which were beneficial for three-dimensional (3D) printing applications. HIPPEs stabilized by SBP-EGCG complex were applied to improve the stability and bioaccessibility of astaxanthin and to delay algal oil lipid oxidation. The HIPPEs might become a food-grade 3D printing material served as a delivery system for functional foods.
Collapse
Affiliation(s)
- Lijuan Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Chengfu Zhou
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yannan Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haitao Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
38
|
Wang C, Wang E, Bai Y, Lu Y, Qi H. Encapsulated fucoxanthin improves the structure and functional properties of fermented yogurt during cold storage. Food Chem 2023; 419:136076. [PMID: 37004366 DOI: 10.1016/j.foodchem.2023.136076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Fucoxanthin (FX) extracted from Undaria pinnatifida by an ultrasonic-assisted extraction (UAE) procedure was successfully added to the fermented yogurt through a stably nanoencapsulation. The physicochemical characteristics, texture analysis, rheological testing, sensory evaluation, simulated digestion analysis, and 16SrDNA sequencing analysis were used to evaluate the effect of encapsulated-FX on the function, structure and stability of the fermented yogurt during 7 days cold storage. Encapsulated-FX with a highly water dispersion, changed the microstructure of yogurt, making it more uniform and denser, enhanced the antioxidant activity, increased the stability of milk protein in simulated gastric environment in vitro and promoted the absorption of protein small molecule fragments in the intestine, and inhibited the growth of harmful bacteria during cold storage. This study provided a simple strategy for the production of FX-fortified yogurt by using an effective nanoencapsulation technology, and promoted the extraction and application of active ingredients of edible brown algae.
Collapse
|
39
|
Cai L, Gan M, Regenstein JM, Luan Q. Improving the biological activities of astaxanthin using targeted delivery systems. Crit Rev Food Sci Nutr 2023; 64:6902-6923. [PMID: 36779336 DOI: 10.1080/10408398.2023.2176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The antioxidant and anti-inflammatory properties of astaxanthin (AST) enable it to protect against oxidative stress-related and inflammatory diseases with a range of biological effects. These activities provide the potential to develop healthier food products. Therefore, it would be beneficial to design delivery systems for AST to overcome its low stability, control its release, and/or improve its bioavailability. This review discusses the basis for AST's various biological activities and the factors limiting these activities, including stability, solubility, and bioavailability. It also discusses the different systems available for the targeted delivery of AST and their applications in enhancing the biological activity of AST. These include systems that are candidates for preventive and therapeutic effects, which include nerves, liver, and skin, particularly for possible cancer reduction. Targeted delivery of AST to specific regions of the gastrointestinal tract, or more selectively to target tissues and cells, can be achieved using targeted delivery systems to increase the biological activities of AST.
Collapse
Affiliation(s)
- Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Miaoyu Gan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Qian Luan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| |
Collapse
|
40
|
Chen Y, Su W, Tie S, Cui W, Yu X, Zhang L, Hua Z, Tan M. Orally deliverable sequence-targeted astaxanthin nanoparticles for colitis alleviation. Biomaterials 2023; 293:121976. [PMID: 36566552 DOI: 10.1016/j.biomaterials.2022.121976] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/27/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Orally targeted strategy of anti-inflammatory agents has attracted tremendous attention for reducing highly health-care costs and enhancing the intervention efficiency of ulcerative colitis (UC). Herein, we developed a new kind of sequence-targeted astaxanthin nanoparticles for UC treatment. Astaxanthin nanoparticles were firstly designed by self-assembly method using (3-carboxypentyl) (triphenyl) phosphonium bromide (TPP)-modified whey protein isolate (WPI)-dextran (DX) conjugates. Subsequently, lipoic acid (LA) modified hyaluronic acid (HA) was coated on the surface of the nanoparticles by double emulsion evaporation method. Exhilaratingly, the constructed sequence-targeted astaxanthin nanoparticle exhibited excellent macrophages and mitochondria targeting ability, with a Pearson's correlation coefficient of 0.84 adstnd 0.92, respectively. In vivo imaging elucidated an obvious accumulation of the sequence-targeted nanoparticles in colon tissues in UC mice. Meanwhile, the reduction stimulus release features of astaxanthin were observed in the presence of 10 mM of glutathione (GSH) at pH 7.4. Most importantly, in vivo experiments indicated that sequence-targeted astaxanthin nanoparticles could markedly alleviate inflammation by moderating the TLR4/MyD88/NF-κB signaling pathway. What's more, the composition of gut microbiota and the production of short chain fatty acid were also improved upon the uptake of sequence-targeted astaxanthin nanoparticles. Our results suggested this novel astaxanthin nanoparticles, which showed sequence-targeted ability and reduction response feature, could be exploited as a promising strategy for effective UC treatment.
Collapse
Affiliation(s)
- Yannan Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Shanshan Tie
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Weina Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Xiaoting Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Lijuan Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Zheng Hua
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Gangjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| |
Collapse
|
41
|
Zhang X, Zhao X, Hua Z, Xing S, Li J, Fei S, Tan M. ROS-triggered self-disintegrating and pH-responsive astaxanthin nanoparticles for regulating the intestinal barrier and colitis. Biomaterials 2023; 292:121937. [PMID: 36495803 DOI: 10.1016/j.biomaterials.2022.121937] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Smart delivery systems with stimuli-responsive capability are able to improve the bioaccessibility through increasing the solubility, physicochemical stability and biocompatibility of bioactive compounds. In this study, the astaxanthin nanoparticles with reactive oxygen species (ROS) and pH dual-response function were design and constructed using poly (propylene sulfide) covalently modified sodium alginate as carriers based on ultrasonic assisted self-assembly strategy. Atomic force microscope and scanning electron microscope analysis showed that the nanoparticles were spherical in shape with a size of around 260 nm. Meanwhile, the astaxanthin nanoparticles showed both pH and ROS stimuli-responsive release characteristics. In vitro cell experiments showed that astaxanthin nanoparticles significantly inhibited the production of ROS and mitochondrial depolarization induced by oxidative stress. In vivo colitis experiment of mice revealed that astaxanthin nanoparticles could significantly relieve colitis, protect the integrity of colon tissue and restore the expression of tight junction proteins ZO-1 and occludin. The abundance of Lactobacillus and Lachnospiraceae, and the ratio of Firmicutes/Bacteroidota of gut microbiota were significantly improved after intervention of the stimuli-responsive astaxanthin nanoparticles. This work provided a simple strategy for constructing ROS/pH dual response delivery system, which provided an experimental basis for improving the oral bioavailability of hydrophobic active compounds.
Collapse
Affiliation(s)
- Xuedi Zhang
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Xue Zhao
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Zheng Hua
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Siyuan Fei
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| |
Collapse
|
42
|
Lee J, Kim MH, Kim H. Anti-Oxidant and Anti-Inflammatory Effects of Astaxanthin on Gastrointestinal Diseases. Int J Mol Sci 2022; 23:ijms232415471. [PMID: 36555112 PMCID: PMC9779521 DOI: 10.3390/ijms232415471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
A moderate amount of reactive oxygen species (ROS) is produced under normal conditions, where they play an important role in cell signaling and are involved in many aspects of the immune response to pathogens. On the other hand, the excessive production of ROS destructs macromolecules, cell membranes, and DNA, and activates pro-inflammatory signaling pathways, which may lead to various pathologic conditions. Gastrointestinal (GI) mucosa is constantly exposed to ROS due to the presence of bacteria and other infectious pathogens in food, as well as alcohol consumption, smoking, and the use of non-steroidal anti-inflammatory drugs (NSAID). Prolonged excessive oxidative stress and inflammation are two major risk factors for GI disorders such as ulcers and cancers. Bioactive food compounds with potent anti-oxidant and anti-inflammatory activity have been tested in experimental GI disease models to evaluate their therapeutic potential. Astaxanthin (AST) is a fat-soluble xanthophyll carotenoid that is naturally present in algae, yeast, salmon, shrimp, and krill. It has been shown that AST exhibits protective effects against GI diseases via multiple mechanisms. Residing at the surface and inside of cell membranes, AST directly neutralizes ROS and lipid peroxyl radicals, enhances the activity of anti-oxidant enzymes, and suppresses pro-inflammatory transcription factors and cytokines. In addition, AST has been shown to inhibit cancer cell growth and metastasis via modulating cell proliferation-related pathways, apoptosis, and autophagy. Considering the potential benefits of AST in GI diseases, this review paper aims to summarize recent advances in AST research, focusing on its anti-oxidant and anti-inflammatory effects against gastric and intestinal ulcers and cancers.
Collapse
Affiliation(s)
- Jaeeun Lee
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min-Hyun Kim
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: (M.-H.K.); (H.K.); Tel.: +1-602-496-4163 (M.-H.K.); +82-2-2123-3125 (H.K.)
| | - Hyeyoung Kim
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
- Correspondence: (M.-H.K.); (H.K.); Tel.: +1-602-496-4163 (M.-H.K.); +82-2-2123-3125 (H.K.)
| |
Collapse
|
43
|
Zhang L, Zaky AA, Zhou C, Chen Y, Su W, Wang H, Abd El-Aty A, Tan M. High internal phase Pickering emulsion stabilized by sea bass protein microgel particles: Food 3D printing application. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Chen Y, Su W, Tie S, Zhang L, Tan M. Advances of astaxanthin-based delivery systems for precision nutrition. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Zhou C, Zhang L, Zaky AA, Tie S, Cui G, Liu R, El-Aty AA, Tan M. High internal phase Pickering emulsion by Spanish mackerel proteins-procyanidins: Application for stabilizing astaxanthin and surimi. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|