1
|
Mushtaq A, Li L, A A, Grøndahl L. Chitosan-Based Nanoparticles for Twist1 Knockdown in 4T1 Cells. Macromol Biosci 2025:e2400627. [PMID: 40205959 DOI: 10.1002/mabi.202400627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/17/2025] [Indexed: 04/11/2025]
Abstract
Bone metastasized breast cancer reduces the quality of life and median survival. Targeted delivery of twist1-siRNA using nanoparticles (NPs) is a promising strategy to overcome current limitations in treating such metastatic breast cancers. This research evaluates two types of chitosan (CHI)-based NPs for the delivery of twist1-siRNA. Alendronate conjugated PEG functionalized chitosan (ALD-PEG-CHI) NPs are developed for active targeting while PEG functionalized CHI (mPEG-CHI) NPs are fabricated for passive targeting. The size of twist1-siRNA-loaded NPs is below 70 nm and the zeta potential is near neutral for both types of NPs. Based on gel retardation assay, complete encapsulation of twist1-siRNA is achieved in both NP systems. The ALD-PEG-CHI-siRNA and mPEG-CHI-siRNA NPs display serum protection for 6 and 4 h, respectively, compared to the immediate degradation of naked twist1-siRNA. The NPs can knockdown twist1 in 4T1 cells as demonstrated through protein expression as well as by phenotypic change in directional cell migration by wound healing assay. Overall, these in vitro results illustrate the potential of the NPs as an effective therapeutic system for bone metastasized breast cancer.
Collapse
Affiliation(s)
- Asim Mushtaq
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Anitha A
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, Brisbane, Queensland, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
2
|
Shiozawa Y, Parajuli KR, Pienta K, Taichman R. Role of Chemokines and Cytokines in Prostate Cancer Skeletal Metastasis. Curr Osteoporos Rep 2024; 23:3. [PMID: 39585513 DOI: 10.1007/s11914-024-00897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW Once prostate cancer (PCa) bone metastases develop, the prognosis dramatically declines. The precise mechanisms regulating bone metastasis remain elusive. This review will explore recent findings related to cytokines and chemokines in the process of bone metastases. RECENT FINDINGS We discuss the role of cytokines in tumor growth, invasion, bone remodelling and angiogenesis and immune regulation in PCa skeletal metastases. Major advances in our understanding focus on immune evasion, immune checkpoint blockade, tumor-associated macrophages (TAMs), CAR-T cells, cytokine regulation of matrix metalloproteinases, cytokines including IL-10, IL-27, Interferon-γ, prostate transmembrane protein androgen induced 1 (Pmepa1), and regulation of RUNX2 transcription in supporting survival and growth of disseminated tumor cells (DTCs) and metastases development. The review highlights the complexity of cytokine actions in PCa bone metastases, suggesting potential therapeutic targets to disrupt interactions between cancer cells and their microenvironment.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, 27157, NC, USA.
| | - Keshab Raj Parajuli
- Department of Periodontology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth Pienta
- Cancer Ecology Center, Johns Hopkins School of Medicine, The Brady Urological Institute, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, 21287, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Russell Taichman
- Department of Periodontology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Cancer Ecology Center, Johns Hopkins School of Medicine, The Brady Urological Institute, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, 21287, MD, USA.
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
- Department of Basic & Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Murphy DA, Osteicochea D, Atkins A, Sannes C, McClarnon Z, Adjei IM. Optimizing Oxygen-Production Kinetics of Manganese Dioxide Nanoparticles Improves Hypoxia Reversal and Survival in Mice with Bone Metastases. Mol Pharm 2024; 21:1125-1136. [PMID: 38365202 PMCID: PMC10979454 DOI: 10.1021/acs.molpharmaceut.3c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Persistent hypoxia in bone metastases induces an immunosuppressive environment, limiting the effectiveness of immunotherapies. To address chronic hypoxia, we have developed manganese dioxide (MnO2) nanoparticles with tunable oxygen production kinetics for sustained oxygenation in bone metastases lesions. Using polyethylene glycol (PEG)-stabilized MnO2 or poly(lactic[50]-co-glycolic[50] acid) (50:50 PLGA), poly(lactic[75]-co-glycolic[25] acid) (75:25 PLGA), and polylactic acid (PLA)-encapsulated MnO2 NPs, we demonstrate that polymer hydrophobicity attenuates burst oxygen production and enables tunable oxygen production kinetics. The PEG-MnO2 NPs resulted in rapid hypoxia reduction in spheroids, which was rapidly attenuated, while the PLA-MnO2 NPs exhibited delayed hypoxia control in cancer spheroids. The 50:50 PLGA-MnO2 NPs exhibited the best short- and long-term control of hypoxia in cancer spheroids, resulting in sustained regulation of the expression of HIF-1α and immunosuppressive genes. The sustained control of hypoxia by the 50:50 PLGA-MnO2 NPs enhanced the cytotoxicity of natural killer cells against cancer spheroids. In vivo, 50:50 PLGA-MnO2 showed greater accumulation in the long bones and pelvis, common sites for bone metastases. The NPs decreased hypoxia in bone metastases and decreased regulatory T cell levels, resulting in enhanced survival of mice with established bone metastases.
Collapse
Affiliation(s)
- David A Murphy
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Daniela Osteicochea
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Aidan Atkins
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Caitlin Sannes
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Zachary McClarnon
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Isaac M Adjei
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Zhang Y, Wang Y, Zhu A, Yu N, Xia J, Li J. Dual-Targeting Biomimetic Semiconducting Polymer Nanocomposites for Amplified Theranostics of Bone Metastasis. Angew Chem Int Ed Engl 2024; 63:e202310252. [PMID: 38010197 DOI: 10.1002/anie.202310252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Bone metastasis is a type of metastatic tumors that involves the spreads of malignant tumor cells into skeleton, and its diagnosis and treatment remain a big challenge due to the unique tumor microenvironment. We herein develop osteoclast and tumor cell dual-targeting biomimetic semiconducting polymer nanocomposites (SPFeNOC ) for amplified theranostics of bone metastasis. SPFeNOC contain semiconducting polymer and iron oxide (Fe3 O4 ) nanoparticles inside core and surface camouflaged hybrid membrane of cancer cells and osteoclasts. The hybrid membrane camouflage enables their targeting to both metastatic tumor cells and osteoclasts in bone metastasis through homologous targeting mechanism, thus achieving an enhanced nanoparticle accumulation in tumors. The semiconducting polymer mediates near-infrared (NIR) fluorescence imaging and sonodynamic therapy (SDT), and Fe3 O4 nanoparticles are used for magnetic resonance (MR) imaging and chemodynamic therapy (CDT). Because both cancer cells and osteoclasts are killed synchronously via the combinational action of SDT and CDT, the vicious cycle in bone metastasis is broken to realize high antitumor efficacy. Therefore, 4T1 breast cancer-based bone metastasis can be effectively detected and cured by using SPFeNOC as dual-targeting theranostic nanoagents. This study provides an unusual biomimetic nanoplatform that simultaneously targets osteoclasts and cancer cells for amplified theranostics of bone metastasis.
Collapse
Affiliation(s)
- Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yue Wang
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Anni Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Ningyue Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
5
|
Jaffer H, Andrabi SS, Petro M, Kuang Y, Steinmetz MP, Labhasetwar V. Catalytic antioxidant nanoparticles mitigate secondary injury progression and promote functional recovery in spinal cord injury model. J Control Release 2023; 364:109-123. [PMID: 37866402 PMCID: PMC10842504 DOI: 10.1016/j.jconrel.2023.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Traumatic spinal cord injury exacerbates disability with time due to secondary injury cascade triggered largely by overproduction of reactive oxygen species (ROS) at the lesion site, causing oxidative stress. This study explored nanoparticles containing antioxidant enzymes (antioxidant NPs) to neutralize excess ROS at the lesion site and its impact. When tested in a rat contusion model of spinal cord injury, a single dose of antioxidant NPs, administered intravenously three hours after injury, effectively restored the redox balance at the lesion site, interrupting the secondary injury progression. This led to reduced spinal cord tissue inflammation, apoptosis, cavitation, and inhibition of syringomyelia. Moreover, the treatment reduced scar tissue forming collagen at the lesion site, protected axons from demyelination, and stimulated lesion healing, with further analysis indicating the formation of immature neurons. The ultimate effect of the treatment was improved motor and sensory functions and rapid post-injury weight loss recovery. Histological analysis revealed activated microglia in the spinal cord displaying rod-shaped anti-inflammatory and regenerative phenotype in treated animals, contrasting with amoeboid inflammatory and degenerative phenotype in untreated control. Overall data suggest that restoring redox balance at the lesion site shifts the dynamics in the injured spinal cord microenvironment from degenerative to regenerative, potentially by promoting endogenous repair mechanisms. Antioxidant NPs show promise to be developed as an early therapeutic intervention in stabilizing injured spinal cord for enhanced recovery.
Collapse
Affiliation(s)
- Hayder Jaffer
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Syed Suhail Andrabi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Marianne Petro
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youzhi Kuang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael P Steinmetz
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|