1
|
Chiang MR, Hsu CW, Pan WC, Tran NT, Lee YS, Chiang WH, Liu YC, Chen YW, Chiou SH, Hu SH. Reprogramming Dysfunctional Dendritic Cells by a Versatile Catalytic Dual Oxide Antigen-Captured Nanosponge for Remotely Enhancing Lung Metastasis Immunotherapy. ACS NANO 2025; 19:2117-2135. [PMID: 39739571 PMCID: PMC11760334 DOI: 10.1021/acsnano.4c09525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
Dendritic cells (DCs) play a crucial role in initiating antitumor immune responses. However, in the tumor environment, dendritic cells often exhibit impaired antigen presentation and adopt an immunosuppressive phenotype, which hinders their function and reduces their ability to efficiently present antigens. Here, a dual catalytic oxide nanosponge (DON) doubling as a remotely boosted catalyst and an inducer of programming DCs to program immune therapy is reported. Intravenous delivery of DON enhances tumor accumulation via the marginated target. At the tumor site, DON incorporates cerium oxide nanozyme (CeO2)-coated iron oxide nanocubes as a peroxide mimicry in cancer cells, promoting sustained ROS generation and depleting intracellular glutathione, i.e., chemodynamic therapy (CDT). Upon high-frequency magnetic field (HFMF) irradiation, CDT accelerates the decomposition of H2O2 and the subsequent production of more reactive oxygen species, known as Kelvin's force laws, which promote the cycle between Fe3+/Fe2+ and Ce3+/Ce4+ in a sustainable active surface. HFMF-boosted catalytic DON promotes tumors to release tumor-associated antigens, including neoantigens and damage-associated molecular patterns. Then, the porous DON acts as an antigen transporter to deliver autologous tumor-associated antigens to program DCs, resulting in sustained immune stimulation. Catalytic DON combined with the immune checkpoint inhibitor (anti-PD1) in lung metastases suppresses tumors and improves survival over 40 days.
Collapse
Affiliation(s)
- Min-Ren Chiang
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chin-Wei Hsu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wan-Chi Pan
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ngoc-Tri Tran
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Sheng Lee
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wen-Hsuan Chiang
- Department
of Chemical Engineering, National Chung
Hsing University, Taichung 402, Taiwan
| | - Yu-Chen Liu
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology
Frontier Research Center, Center for Infectious Disease Education and Research
(CiDER)Osaka University, Osaka 565-0871, Japan
| | - Ya-Wen Chen
- National
Institute of Cancer Research, National Health
Research Institutes, Miaoli County 35053, Taiwan
| | - Shih-Hwa Chiou
- Institute
of Pharmacology, College of Medicine, National
Yang Ming Chiao Tung University, Hsinchu, Taipei 112304, Taiwan
- Department
of Medical Research, Veterans General Hospital, Taipei, Taipei 112304, Taiwan
| | - Shang-Hsiu Hu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
2
|
Yalamandala BN, Huynh TMH, Lien HW, Pan WC, Iao HM, Moorthy T, Chang YH, Hu SH. Advancing brain immunotherapy through functional nanomaterials. Drug Deliv Transl Res 2025:10.1007/s13346-024-01778-5. [PMID: 39789307 DOI: 10.1007/s13346-024-01778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy. Recent advancements in immune-actuated particles for targeted drug delivery have shown the potential to overcome these obstacles. These particles interact with the BBB by rapidly and reversibly disrupting its structure, thereby significantly enhancing targeting and penetrating delivery. The BBB targeting also minimizes potential long-term damage. At GBM, the particles demonstrated effective chemotherapy, chemodynamic therapy, photothermal therapy (PTT), photodynamic therapy (PDT), radiotherapy, or magnetotherapy, facilitating tumor disruption and promoting antigen release. Additionally, components of the delivery system retained autologous tumor-associated antigens and presented them to dendritic cells (DCs), ensuring prolonged immune activation. This review explores the immunosuppressive mechanisms of GBM, existing therapeutic strategies, and the role of nanomaterials in enhancing immunotherapy. We also discuss innovative particle-based approaches designed to traverse the BBB by mimicking innate immune functions to improve treatment outcomes for brain tumors.
Collapse
Affiliation(s)
- Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thi My Hue Huynh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hui-Wen Lien
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Wan-Chi Pan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hoi Man Iao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thrinayan Moorthy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Yun-Hsuan Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Wang KL, Li CH, Huang PX, Liu HC, Yalamandala BN, Pan WC, Iao HM, Hu SH. Reprogrammed Lung Metastasis Immunodeficiency via Targeted Penetrated Delivery of M1 Macrophage-Wrapped NanoCubes-Mediated T Cell Infiltration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406790. [PMID: 39575473 DOI: 10.1002/smll.202406790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/07/2024] [Indexed: 01/23/2025]
Abstract
The infiltration of cytotoxic T lymphocytes holds promise for suppressing even the most resilient metastatic tumors in immunotherapy. Polarizing tumor-associated macrophages (TAMs) and remodeling the immune-deficient tumor microenvironment (TME) can enhance T lymphocyte recruitment and infiltration. However, the immune privilege and low immunogenic responses of these aggressive tumor clusters often limit lymphocyte recruitment. Here, an M1 macrophage membrane-coated iron oxide nanoparticle (IO@MM) double as a tumor-penetrated agent and naïve M0 macrophage to M1 polarizer is developed for lung metastatic colorectal cancer (CRC) immunotherapy. At the tumor site, IO@MM combined with resiquimod (R848) increased the immune cell infiltration, turning the "Cold" TME into an immune-activating "Hot" one. Together with self-cascade immunotherapy, IO@MM with R848 promotes tumor release of damage-associated molecular patterns (DAMPs). At the same time, IO@MM uses the membrane as an antigen reservoir and provides autologous DAMPs to retain dendritic cells. This IO@MM effectively inhibits tumors and improves survival rate as an immunomodulator in lung metastasis.
Collapse
Affiliation(s)
- Kang-Li Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Cheng-Han Li
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Pin-Xuan Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hsiu-Ching Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Wan-Chi Pan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hoi Man Iao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
4
|
Zhang H, Grippin A, Sun M, Ma Y, Kim BYS, Teng L, Jiang W, Yang Z. New avenues for cancer immunotherapy: Cell-mediated drug delivery systems. J Control Release 2024; 375:712-732. [PMID: 39326499 DOI: 10.1016/j.jconrel.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Cancer research has become increasingly complex over the past few decades as knowledge of the heterogeneity of cancer cells, their proliferative ability, and their tumor microenvironments has become available. Although conventional therapies remain the most compelling option for cancer treatment to date, immunotherapy is a promising way to harness natural immune defenses to target and kill cancer cells. Cell-mediated drug delivery systems (CDDSs) have been an active line of research for enhancing the therapeutic efficacy and specificity of cancer immunotherapy. These systems can be tailored to different types of immune cells, allowing immune evasion and accumulation in the tumor microenvironment. By enabling the targeted delivery of therapeutic agents such as immune stimulants, cytokines, antibodies, and antigens, CDDSs have improved the survival of some patients with cancer. This review summarizes the research status of CDDSs, with a focus on their underlying mechanisms of action, biology, and clinical applications. We also discuss opportunities and challenges for implementation of CDDSs into mainstream cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Adam Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yifan Ma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Yalamandala B, Chen YJ, Lin YH, Huynh TMH, Chiang WH, Chou TC, Liu HW, Huang CC, Lu YJ, Chiang CS, Chu LA, Hu SH. A Self-Cascade Penetrating Brain Tumor Immunotherapy Mediated by Near-Infrared II Cell Membrane-Disrupting Nanoflakes via Detained Dendritic Cells. ACS NANO 2024; 18:18712-18728. [PMID: 38952208 PMCID: PMC11256899 DOI: 10.1021/acsnano.4c06183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Immunotherapy can potentially suppress the highly aggressive glioblastoma (GBM) by promoting T lymphocyte infiltration. Nevertheless, the immune privilege phenomenon, coupled with the generally low immunogenicity of vaccines, frequently hampers the presence of lymphocytes within brain tumors, particularly in brain tumors. In this study, the membrane-disrupted polymer-wrapped CuS nanoflakes that can penetrate delivery to deep brain tumors via releasing the cell-cell interactions, facilitating the near-infrared II (NIR II) photothermal therapy, and detaining dendritic cells for a self-cascading immunotherapy are developed. By convection-enhanced delivery, membrane-disrupted amphiphilic polymer micelles (poly(methoxypoly(ethylene glycol)-benzoic imine-octadecane, mPEG-b-C18) with CuS nanoflakes enhances tumor permeability and resides in deep brain tumors. Under low-power NIR II irradiation (0.8 W/cm2), the intense heat generated by well-distributed CuS nanoflakes actuates the thermolytic efficacy, facilitating cell apoptosis and the subsequent antigen release. Then, the positively charged polymer after hydrolysis of the benzoic-imine bond serves as an antigen depot, detaining autologous tumor-associated antigens and presenting them to dendritic cells, ensuring sustained immune stimulation. This self-cascading penetrative immunotherapy amplifies the immune response to postoperative brain tumors but also enhances survival outcomes through effective brain immunotherapy.
Collapse
Affiliation(s)
- Bhanu
Nirosha Yalamandala
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Jen Chen
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ya-Hui Lin
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
- Brain
Research Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Thi My Hue Huynh
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wen-Hsuan Chiang
- Department
of Chemical Engineering, National Chung
Hsing University, Taichung 402, Taiwan
| | - Tsu-Chin Chou
- Institute
of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Heng-Wei Liu
- Department
of Neurosurgery, Shuang Ho Hospital, Taipei
Medical University, New Taipei
City 23561, Taiwan
- Taipei Neuroscience
Institute, Taipei Medical University, Taipei 11031, Taiwan
- Department
of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chieh-Cheng Huang
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Yu-Jen Lu
- Department
of Neurosurgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- College
of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Chi-Shiun Chiang
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Li-An Chu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
- Brain
Research Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Shang-Hsiu Hu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute
of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
6
|
Wu TH, Lu YJ, Chiang MR, Chen PH, Lee YS, Shen MY, Chiang WH, Liu YC, Chuang CY, Amy Lin HC, Hu SH. Lung metastasis-Harnessed in-Situ adherent porous organic nanosponge-mediated antigen capture for A self-cascaded detained dendritic cells and T cell infiltration. Biomaterials 2024; 305:122443. [PMID: 38160627 DOI: 10.1016/j.biomaterials.2023.122443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The infiltration of cytotoxic T lymphocytes promises to suppress the most irresistible metastatic tumor for immunotherapy, yet immune privilege and low immunogenic responses in these aggressive clusters often restrict lymphocyte recruitment. Here, an in situ adherent porous organic nanosponge (APON) doubles as organ selection agent and antigen captor to overcome immune privilege is developed. With selective organ targeting, the geometric effect of APON composed of disc catechol-functionalized covalent organic framework (COF) boosts the drug delivery to lung metastases. Along with a self-cascaded immune therapy, the therapeutic agents promote tumor release of damage-associated molecular patterns (DAMPs), and then, in situ deposition of gels to capture these antigens. Furthermore, APON with catechol analogs functions as a reservoir of antigens and delivers autologous DAMPs to detain dendritic cells, resulting in a sustained enhancement of immunity. This disc sponges (APON) at lung metastasis as antigen reservoirs and immune modulators effectively suppress the tumor in 60 days and enhanced the survival rate.
Collapse
Affiliation(s)
- Ting-Hsien Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 33305, Taiwan; The College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Min-Ren Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Pin-Hua Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-Sheng Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ming-Yin Shen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan; Department of Surgery, China Medical University Hsinchu Hospital, Hsinchu County, 30272, Taiwan
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yu-Chen Liu
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hsiao-Chun Amy Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
7
|
Chiang M, Lin Y, Zhao W, Liu H, Hsu R, Chou T, Lu T, Lee I, Liao L, Chiou S, Chu L, Hu S. In Situ Forming of Nitric Oxide and Electric Stimulus for Nerve Therapy by Wireless Chargeable Gold Yarn-Dynamos. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303566. [PMID: 37867218 PMCID: PMC10667856 DOI: 10.1002/advs.202303566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Endogenous signals, namely nitric oxide (NO) and electrons, play a crucial role in regulating cell fate as well as the vascular and neuronal systems. Unfortunately, utilizing NO and electrical stimulation in clinical settings can be challenging due to NO's short half-life and the invasive electrodes required for electrical stimulation. Additionally, there is a lack of tools to spatiotemporally control gas release and electrical stimulation. To address these issues, an "electromagnetic messenger" approach that employs on-demand high-frequency magnetic field (HFMF) to trigger NO release and electrical stimulation for restoring brain function in cases of traumatic brain injury is introduced. The system comprises a NO donor (poly(S-nitrosoglutathione), pGSNO)-conjugated on a gold yarn-dynamos (GY) and embedded in an implantable silk in a microneedle. When subjected to HFMF, conductive GY induces eddy currents that stimulate the release of NO from pGSNO. This process significantly enhances neural stem cell (NSC) synapses' differentiation and growth. The combined strategy of using NO and electrical stimulation to inhibit inflammation, angiogenesis, and neuronal interrogation in traumatic brain injury is demonstrated in vivo.
Collapse
Affiliation(s)
- Min‐Ren Chiang
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Ya‐Hui Lin
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
- Brain Research CenterNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Wei‐Jie Zhao
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Hsiu‐Ching Liu
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Ru‐Siou Hsu
- Department of ChemistryStanford UniversityStanfordCA94305USA
| | - Tsu‐Chin Chou
- Institute of Analytical and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Tsai‐Te Lu
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchu300044Taiwan
- Department of ChemistryNational Tsing Hua UniversityHsinchu300044Taiwan
- Department of ChemistryChung Yuan Christian UniversityTaoyuan320314Taiwan
| | - I‐Chi Lee
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Lun‐De Liao
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesMiaoli County35053Taiwan
| | - Shih‐Hwa Chiou
- Institute of PharmacologyCollege of MedicineNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112201Taiwan
| | - Li‐An Chu
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
- Brain Research CenterNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Shang‐Hsiu Hu
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| |
Collapse
|