• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4641567)   Today's Articles (2945)   Subscriber (50408)
For: Owen RE, Plucinski P, Mattia D, Torrente-Murciano L, Ting VP, Jones MD. Effect of support of Co-Na-Mo catalysts on the direct conversion of CO2 to hydrocarbons. J CO2 UTIL 2016. [DOI: 10.1016/j.jcou.2016.06.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Number Cited by Other Article(s)
1
Jiang Y, Wang K, Wang Y, Liu Z, Gao X, Zhang J, Ma Q, Fan S, Zhao TS, Yao M. Recent advances in thermocatalytic hydrogenation of carbon dioxide to light olefins and liquid fuels via modified Fischer-Tropsch pathway. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
2
Francis Kurisingal J, Kim H, Hyeak Choe J, Seop Hong C. Covalent organic framework-based catalysts for efficient CO2 utilization reactions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
3
Featherstone NS, van Steen E. Meta-analysis of the Thermo-catalytic Hydrogenation of CO₂. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
4
Cui L, Liu C, Yao B, Edwards PP, Xiao T, Cao F. A review of catalytic hydrogenation of carbon dioxide: From waste to hydrocarbons. Front Chem 2022;10:1037997. [PMID: 36304742 PMCID: PMC9592991 DOI: 10.3389/fchem.2022.1037997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 12/01/2022]  Open
5
Tavares M, Westphalen G, Araujo Ribeiro de Almeida JM, Romano PN, Sousa-Aguiar EF. Modified fischer-tropsch synthesis: A review of highly selective catalysts for yielding olefins and higher hydrocarbons. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.978358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]  Open
6
Zhou Z, Gao P. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64107-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
7
Okoye-Chine CG, Otun K, Shiba N, Rashama C, Ugwu SN, Onyeaka H, Okeke CT. Conversion of carbon dioxide into fuels—A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
8
Agwara JN, Bakas NJ, Neidig ML, Porosoff MD. Challenges and Opportunities of Fe‐based Core‐Shell Catalysts for Fischer‐Tropsch Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
9
Fedorov A, Linke D. Data analysis of CO2 hydrogenation catalysts for hydrocarbon production. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
10
Have ICT, Kromwijk JJG, Monai M, Ferri D, Sterk EB, Meirer F, Weckhuysen BM. Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nat Commun 2022;13:324. [PMID: 35031615 PMCID: PMC8760247 DOI: 10.1038/s41467-022-27981-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]  Open
11
Wang Y, Jiang Q, Xu L, Han ZK, Guo S, Li G, Baiker A. Effect of the Configuration of Copper Oxide-Ceria Catalysts in NO Reduction with CO: Superior Performance of a Copper-Ceria Solid Solution. ACS APPLIED MATERIALS & INTERFACES 2021;13:61078-61087. [PMID: 34905687 DOI: 10.1021/acsami.1c17807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
12
Zhang L, Dang Y, Zhou X, Gao P, Petrus van Bavel A, Wang H, Li S, Shi L, Yang Y, Vovk EI, Gao Y, Sun Y. Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts. ACTA ACUST UNITED AC 2021;2:100170. [PMID: 34704085 PMCID: PMC8523875 DOI: 10.1016/j.xinn.2021.100170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022]
13
Recent Advances in the Mitigation of the Catalyst Deactivation of CO2 Hydrogenation to Light Olefins. Catalysts 2021. [DOI: 10.3390/catal11121447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]  Open
14
Tan X, Li H, Yang S. Single‐Atom Catalysts‐Enabled Reductive Upgrading of CO 2. ChemCatChem 2021. [DOI: 10.1002/cctc.202100966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
15
Direct Synthesis of Liquefied Petroleum Gas from Carbon Dioxide Using a Copper/Zinc Oxide/Zirconia/Alumina and HY Zeolite Hybrid Catalyst. ChemistrySelect 2021. [DOI: 10.1002/slct.202101531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
16
Forsythe RC, Cox CP, Wilsey MK, Müller AM. Pulsed Laser in Liquids Made Nanomaterials for Catalysis. Chem Rev 2021;121:7568-7637. [PMID: 34077177 DOI: 10.1021/acs.chemrev.0c01069] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
De S, Dokania A, Ramirez A, Gascon J. Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO2 Utilization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04273] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
18
Gao P, Zhang L, Li S, Zhou Z, Sun Y. Novel Heterogeneous Catalysts for CO2 Hydrogenation to Liquid Fuels. ACS CENTRAL SCIENCE 2020;6:1657-1670. [PMID: 33145406 PMCID: PMC7596863 DOI: 10.1021/acscentsci.0c00976] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 05/27/2023]
19
Owen RE, Cortezon‐Tamarit F, Calatayud DG, Evans EA, Mitchell SIJ, Mao B, Palomares FJ, Mitchels J, Plucinski P, Mattia D, Jones MD, Pascu SI. Shedding Light Onto the Nature of Iron Decorated Graphene and Graphite Oxide Nanohybrids for CO2 Conversion at Atmospheric Pressure. ChemistryOpen 2020;9:242-252. [PMID: 32149034 PMCID: PMC7020623 DOI: 10.1002/open.201900368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 12/12/2022]  Open
20
Jiang J, Wen C, Tian Z, Wang Y, Zhai Y, Chen L, Li Y, Liu Q, Wang C, Ma L. Manganese-Promoted Fe3O4 Microsphere for Efficient Conversion of CO2 to Light Olefins. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05342] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
21
Konsolakis M, Lykaki M, Stefa S, Carabineiro SAC, Varvoutis G, Papista E, Marnellos GE. CO2 Hydrogenation over Nanoceria-Supported Transition Metal Catalysts: Role of Ceria Morphology (Nanorods versus Nanocubes) and Active Phase Nature (Co versus Cu). NANOMATERIALS (BASEL, SWITZERLAND) 2019;9:E1739. [PMID: 31817667 PMCID: PMC6955880 DOI: 10.3390/nano9121739] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
22
Ronda-Lloret M, Rothenberg G, Shiju NR. A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins. CHEMSUSCHEM 2019;12:3896-3914. [PMID: 31166079 DOI: 10.1002/cssc.201900915] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/31/2019] [Indexed: 05/12/2023]
23
Hatami B, Tavasoli A, Asghari A, Zamani Y, Zamaniyan A. Kinetics Modeling of Fischer–Tropsch Synthesis on the Cobalt Catalyst Supported on Functionalized Carbon Nanotubes. KINETICS AND CATALYSIS 2019. [DOI: 10.1134/s0023158418060046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
24
Guo L, Cui Y, Zhang P, Peng X, Yoneyama Y, Yang G, Tsubaki N. Enhanced Liquid Fuel Production from CO2 Hydrogenation: Catalytic Performance of Bimetallic Catalysts over a Two-Stage Reactor System. ChemistrySelect 2018. [DOI: 10.1002/slct.201803335] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
25
Facet effect on CO2 adsorption, dissociation and hydrogenation over Fe catalysts: Insight from DFT. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
26
Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts. Commun Chem 2018. [DOI: 10.1038/s42004-018-0012-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]  Open
27
Direct synthesis of dimethyl carbonate from CO 2 and methanol by supported bimetallic Cu–Ni/ZIF-8 MOF catalysts. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.07.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
28
Macaskie LE, Mikheenko IP, Omajai JB, Stephen AJ, Wood J. Metallic bionanocatalysts: potential applications as green catalysts and energy materials. Microb Biotechnol 2017;10:1171-1180. [PMID: 28834386 PMCID: PMC5609244 DOI: 10.1111/1751-7915.12801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/08/2017] [Accepted: 07/12/2017] [Indexed: 11/29/2022]  Open
29
Prieto G. Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis. CHEMSUSCHEM 2017;10:1056-1070. [PMID: 28247481 DOI: 10.1002/cssc.201601591] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/09/2017] [Indexed: 06/06/2023]
30
Advances in Catalysis for Syngas Conversion to Hydrocarbons. ADVANCES IN CATALYSIS 2017. [DOI: 10.1016/bs.acat.2017.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
31
Yang H, Zhang C, Gao P, Wang H, Li X, Zhong L, Wei W, Sun Y. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01403a] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA