1
|
Jiang Y, Wang K, Wang Y, Liu Z, Gao X, Zhang J, Ma Q, Fan S, Zhao TS, Yao M. Recent advances in thermocatalytic hydrogenation of carbon dioxide to light olefins and liquid fuels via modified Fischer-Tropsch pathway. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
2
|
Francis Kurisingal J, Kim H, Hyeak Choe J, Seop Hong C. Covalent organic framework-based catalysts for efficient CO2 utilization reactions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Featherstone NS, van Steen E. Meta-analysis of the Thermo-catalytic Hydrogenation of CO₂. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Cui L, Liu C, Yao B, Edwards PP, Xiao T, Cao F. A review of catalytic hydrogenation of carbon dioxide: From waste to hydrocarbons. Front Chem 2022; 10:1037997. [PMID: 36304742 PMCID: PMC9592991 DOI: 10.3389/fchem.2022.1037997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 12/01/2022] Open
Abstract
With the rapid development of industrial society and humankind’s prosperity, the growing demands of global energy, mainly based on the combustion of hydrocarbon fossil fuels, has become one of the most severe challenges all over the world. It is estimated that fossil fuel consumption continues to grow with an annual increase rate of 1.3%, which has seriously affected the natural environment through the emission of greenhouse gases, most notably carbon dioxide (CO2). Given these recognized environmental concerns, it is imperative to develop clean technologies for converting captured CO2 to high-valued chemicals, one of which is value-added hydrocarbons. In this article, environmental effects due to CO2 emission are discussed and various routes for CO2 hydrogenation to hydrocarbons including light olefins, fuel oils (gasoline and jet fuel), and aromatics are comprehensively elaborated. Our emphasis is on catalyst development. In addition, we present an outlook that summarizes the research challenges and opportunities associated with the hydrogenation of CO2 to hydrocarbon products.
Collapse
Affiliation(s)
- Lingrui Cui
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
| | - Cao Liu
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
| | - Benzhen Yao
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
| | - Peter P. Edwards
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
| | - Tiancun Xiao
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
- *Correspondence: Fahai Cao, ; Tiancun Xiao,
| | - Fahai Cao
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
- *Correspondence: Fahai Cao, ; Tiancun Xiao,
| |
Collapse
|
5
|
Tavares M, Westphalen G, Araujo Ribeiro de Almeida JM, Romano PN, Sousa-Aguiar EF. Modified fischer-tropsch synthesis: A review of highly selective catalysts for yielding olefins and higher hydrocarbons. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.978358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Global warming, fossil fuel depletion, climate change, as well as a sudden increase in fuel price have motivated scientists to search for methods of storage and reduction of greenhouse gases, especially CO2. Therefore, the conversion of CO2 by hydrogenation into higher hydrocarbons through the modified Fischer–Tropsch Synthesis (FTS) has become an important topic of current research and will be discussed in this review. In this process, CO2 is converted into carbon monoxide by the reverse water-gas-shift reaction, which subsequently follows the regular FTS pathway for hydrocarbon formation. Generally, the nature of the catalyst is the main factor significantly influencing product selectivity and activity. Thus, a detailed discussion will focus on recent developments in Fe-based, Co-based, and bimetallic catalysts in this review. Moreover, the effects of adding promoters such as K, Na, or Mn on the performance of catalysts concerning the selectivity of olefins and higher hydrocarbons are assessed.
Collapse
|
6
|
Zhou Z, Gao P. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64107-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Okoye-Chine CG, Otun K, Shiba N, Rashama C, Ugwu SN, Onyeaka H, Okeke CT. Conversion of carbon dioxide into fuels—A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Agwara JN, Bakas NJ, Neidig ML, Porosoff MD. Challenges and Opportunities of Fe‐based Core‐Shell Catalysts for Fischer‐Tropsch Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jane N. Agwara
- University of Rochester Department of Chemical Engineering UNITED STATES
| | - Nikki J. Bakas
- University of Rochester Department of Chemistry UNITED STATES
| | | | - Marc D. Porosoff
- University of Rochester Department of Chemical Engineering 4305 Wegmans HallBox 270166 14627 Rochester UNITED STATES
| |
Collapse
|
9
|
Fedorov A, Linke D. Data analysis of CO2 hydrogenation catalysts for hydrocarbon production. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Have ICT, Kromwijk JJG, Monai M, Ferri D, Sterk EB, Meirer F, Weckhuysen BM. Uncovering the reaction mechanism behind CoO as active phase for CO 2 hydrogenation. Nat Commun 2022; 13:324. [PMID: 35031615 PMCID: PMC8760247 DOI: 10.1038/s41467-022-27981-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Transforming carbon dioxide into valuable chemicals and fuels, is a promising tool for environmental and industrial purposes. Here, we present catalysts comprising of cobalt (oxide) nanoparticles stabilized on various support oxides for hydrocarbon production from carbon dioxide. We demonstrate that the activity and selectivity can be tuned by selection of the support oxide and cobalt oxidation state. Modulated excitation (ME) diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that cobalt oxide catalysts follows the hydrogen-assisted pathway, whereas metallic cobalt catalysts mainly follows the direct dissociation pathway. Contrary to the commonly considered metallic active phase of cobalt-based catalysts, cobalt oxide on titania support is the most active catalyst in this study and produces 11% C2+ hydrocarbons. The C2+ selectivity increases to 39% (yielding 104 mmol h-1 gcat-1 C2+ hydrocarbons) upon co-feeding CO and CO2 at a ratio of 1:2 at 250 °C and 20 bar, thus outperforming the majority of typical cobalt-based catalysts.
Collapse
Affiliation(s)
- Iris C Ten Have
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Josepha J G Kromwijk
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Matteo Monai
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Davide Ferri
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Ellen B Sterk
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Wang Y, Jiang Q, Xu L, Han ZK, Guo S, Li G, Baiker A. Effect of the Configuration of Copper Oxide-Ceria Catalysts in NO Reduction with CO: Superior Performance of a Copper-Ceria Solid Solution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61078-61087. [PMID: 34905687 DOI: 10.1021/acsami.1c17807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Various copper-ceria-based composites have attracted attention as efficient catalysts for the reduction of NO with CO. In this comparative study, we have examined the catalytic potential of different configurations of copper oxide-ceria catalysts, including catalysts based on a copper-ceria solid solution, copper oxide particles supported on ceria, and ball-milled copper oxide-ceria. The structurally different interfaces between the constituents of these catalysts afforded very different catalytic performances. The solid solution catalyst outperformed the corresponding ceria-supported and ball-milled CuO-CeO2 catalysts. The copper cations incorporated into the ceria lattice strongly improved the activity, N2 selectivity, and water vapor tolerance compared to the other catalyst configurations. The experimental observations are supported by first-principles density functional theory (DFT) studies of the reaction pathway, which indicate that the incorporation of Cu cations into the ceria matrix lowers the energy required for activating the lattice oxygen, thereby enhancing the formation and healing of oxygen vacancies, and thus promoting NO reduction with CO.
Collapse
Affiliation(s)
- Yuhang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qike Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Liangliang Xu
- Department of Electrical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Zhong-Kang Han
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 143026, Russia
| | - Song Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alfons Baiker
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Hönggerberg, HCl, CH-8093 Zurich, Switzerland
| |
Collapse
|
12
|
Zhang L, Dang Y, Zhou X, Gao P, Petrus van Bavel A, Wang H, Li S, Shi L, Yang Y, Vovk EI, Gao Y, Sun Y. Direct conversion of CO 2 to a jet fuel over CoFe alloy catalysts. ACTA ACUST UNITED AC 2021; 2:100170. [PMID: 34704085 PMCID: PMC8523875 DOI: 10.1016/j.xinn.2021.100170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022]
Abstract
The direct conversion of carbon dioxide (CO2) using green hydrogen is a sustainable approach to jet fuel production. However, achieving a high level of performance remains a formidable challenge due to the inertness of CO2 and its low activity for subsequent C–C bond formation. In this study, we prepared a Na-modified CoFe alloy catalyst using layered double-hydroxide precursors that directly transforms CO2 to a jet fuel composed of C8–C16 jet-fuel-range hydrocarbons with very high selectivity. At a temperature of 240°C and pressure of 3 MPa, the catalyst achieves an unprecedentedly high C8–C16 selectivity of 63.5% with 10.2% CO2 conversion and a low combined selectivity of less than 22% toward undesired CO and CH4. Spectroscopic and computational studies show that the promotion of the coupling reaction between the carbon species and inhibition of the undesired CO2 methanation occur mainly due to the utilization of the CoFe alloy structure and addition of the Na promoter. This study provides a viable technique for the highly selective synthesis of eco-friendly and carbon-neutral jet fuel from CO2. An alloy is developed for the direct CO2 hydrogenation to jet-fuel-range hydrocarbons The selectivity of the hydrocarbons (63.5%) exceeds the theoretical maximum value The CoFe alloy is the active phase in the coupling reaction between surface carbons The CoFe alloy is a highly efficient catalyst in the presence of a sodium promoter
Collapse
Affiliation(s)
- Lei Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Yaru Dang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peng Gao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Hao Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lei Shi
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yong Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Evgeny I Vovk
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yihao Gao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Institute of Clean Technology, Shanghai 201620, China
| |
Collapse
|
13
|
Recent Advances in the Mitigation of the Catalyst Deactivation of CO2 Hydrogenation to Light Olefins. Catalysts 2021. [DOI: 10.3390/catal11121447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The catalytic conversion of CO2 to value-added chemicals and fuels has been long regarded as a promising approach to the mitigation of CO2 emissions if green hydrogen is used. Light olefins, particularly ethylene and propylene, as building blocks for polymers and plastics, are currently produced primarily from CO2-generating fossil resources. The identification of highly efficient catalysts with selective pathways for light olefin production from CO2 is a high-reward goal, but it has serious technical challenges, such as low selectivity and catalyst deactivation. In this review, we first provide a brief summary of the two dominant reaction pathways (CO2-Fischer-Tropsch and MeOH-mediated pathways), mechanistic insights, and catalytic materials for CO2 hydrogenation to light olefins. Then, we list the main deactivation mechanisms caused by carbon deposition, water formation, phase transformation and metal sintering/agglomeration. Finally, we detail the recent progress on catalyst development for enhanced olefin yields and catalyst stability by the following catalyst functionalities: (1) the promoter effect, (2) the support effect, (3) the bifunctional composite catalyst effect, and (4) the structure effect. The main focus of this review is to provide a useful resource for researchers to correlate catalyst deactivation and the recent research effort on catalyst development for enhanced olefin yields and catalyst stability.
Collapse
|
14
|
Affiliation(s)
- Xiang Tan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education School of Public Health Guizhou Medical University Guiyang 550025 P. R. China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for R&D of Fine Chemicals Guizhou University Guiyang 550025 P. R. China
| |
Collapse
|
15
|
Direct Synthesis of Liquefied Petroleum Gas from Carbon Dioxide Using a Copper/Zinc Oxide/Zirconia/Alumina and HY Zeolite Hybrid Catalyst. ChemistrySelect 2021. [DOI: 10.1002/slct.202101531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Forsythe RC, Cox CP, Wilsey MK, Müller AM. Pulsed Laser in Liquids Made Nanomaterials for Catalysis. Chem Rev 2021; 121:7568-7637. [PMID: 34077177 DOI: 10.1021/acs.chemrev.0c01069] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catalysis is essential to modern life and has a huge economic impact. The development of new catalysts critically depends on synthetic methods that enable the preparation of tailored nanomaterials. Pulsed laser in liquids synthesis can produce uniform, multicomponent, nonequilibrium nanomaterials with independently and precisely controlled properties, such as size, composition, morphology, defect density, and atomistic structure within the nanoparticle and at its surface. We cover the fundamentals, unique advantages, challenges, and experimental solutions of this powerful technique and review the state-of-the-art of laser-made electrocatalysts for water oxidation, oxygen reduction, hydrogen evolution, nitrogen reduction, carbon dioxide reduction, and organic oxidations, followed by laser-made nanomaterials for light-driven catalytic processes and heterogeneous catalysis of thermochemical processes. We also highlight laser-synthesized nanomaterials for which proposed catalytic applications exist. This review provides a practical guide to how the catalysis community can capitalize on pulsed laser in liquids synthesis to advance catalyst development, by leveraging the synergies of two fields of intensive research.
Collapse
Affiliation(s)
- Ryland C Forsythe
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Connor P Cox
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Astrid M Müller
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
17
|
De S, Dokania A, Ramirez A, Gascon J. Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO2 Utilization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04273] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sudipta De
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Abhay Dokania
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Adrian Ramirez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
18
|
Gao P, Zhang L, Li S, Zhou Z, Sun Y. Novel Heterogeneous Catalysts for CO 2 Hydrogenation to Liquid Fuels. ACS CENTRAL SCIENCE 2020; 6:1657-1670. [PMID: 33145406 PMCID: PMC7596863 DOI: 10.1021/acscentsci.0c00976] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 05/27/2023]
Abstract
Carbon dioxide (CO2) hydrogenation to liquid fuels including gasoline, jet fuel, diesel, methanol, ethanol, and other higher alcohols via heterogeneous catalysis, using renewable energy, not only effectively alleviates environmental problems caused by massive CO2 emissions, but also reduces our excessive dependence on fossil fuels. In this Outlook, we review the latest development in the design of novel and very promising heterogeneous catalysts for direct CO2 hydrogenation to methanol, liquid hydrocarbons, and higher alcohols. Compared with methanol production, the synthesis of products with two or more carbons (C2+) faces greater challenges. Highly efficient synthesis of C2+ products from CO2 hydrogenation can be achieved by a reaction coupling strategy that first converts CO2 to carbon monoxide or methanol and then conducts a C-C coupling reaction over a bifunctional/multifunctional catalyst. Apart from the catalytic performance, unique catalyst design ideas, and structure-performance relationship, we also discuss current challenges in catalyst development and perspectives for industrial applications.
Collapse
Affiliation(s)
- Peng Gao
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
- Dalian
National Laboratory for Clean Energy, Dalian 116023, PR China
| | - Lina Zhang
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
| | - Shenggang Li
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P.R. China
- Dalian
National Laboratory for Clean Energy, Dalian 116023, PR China
| | - Zixuan Zhou
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuhan Sun
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P.R. China
- Shanghai
Institute of Clean Technology, Shanghai 201620, P.R.
China
| |
Collapse
|
19
|
Owen RE, Cortezon‐Tamarit F, Calatayud DG, Evans EA, Mitchell SIJ, Mao B, Palomares FJ, Mitchels J, Plucinski P, Mattia D, Jones MD, Pascu SI. Shedding Light Onto the Nature of Iron Decorated Graphene and Graphite Oxide Nanohybrids for CO 2 Conversion at Atmospheric Pressure. ChemistryOpen 2020; 9:242-252. [PMID: 32149034 PMCID: PMC7020623 DOI: 10.1002/open.201900368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
We report on the design and testing of new graphite and graphene oxide-based extended π-conjugated synthetic scaffolds for applications in sustainable chemistry transformations. Nanoparticle-functionalised carbonaceous catalysts for new Fischer Tropsch and Reverse GasWater Shift (RGWS) transformations were prepared: functional graphene oxides emerged from graphite powders via an adapted Hummer's method and subsequently impregnated with uniform-sized nanoparticles. Then the resulting nanomaterials were imaged by TEM, SEM, EDX, AFM and characterised by IR, XPS and Raman spectroscopies prior to incorporation of Pd(II) promoters and further microscopic and spectroscopic analysis. Newly synthesised 2D and 3D layered nanostructures incorporating carbon-supported iron oxide nanoparticulate pre-catalysts were tested, upon hydrogen reduction in situ, for the conversion of CO2 to CO as well as for the selective formation of CH4 and longer chain hydrocarbons. The reduction reaction was also carried out and the catalytic species isolated and fully characterised. The catalytic activity of a graphene oxide-supported iron oxide pre-catalyst converted CO2 into hydrocarbons at different temperatures (305, 335, 370 and 405 °C), and its activity compared well with that of the analogues supported on graphite oxide, the 3-dimensional material precursor to the graphene oxide. Investigation into the use of graphene oxide as a framework for catalysis showed that it has promising activity with respect to reverse gas water shift (RWGS) reaction of CO2 to CO, even at the low levels of catalyst used and under the rather mild conditions employed at atmospheric pressure. Whilst the γ-Fe2O3 decorated graphene oxide-based pre-catalyst displays fairly constant activity up to 405 °C, it was found by GC-MS analysis to be unstable with respect to decomposition at higher temperatures. The addition of palladium as a promoter increased the activity of the iron functionalised graphite oxide in the RWGS. The activity of graphene oxide supported catalysts was found to be enhanced with respect to that of iron-functionalised graphite oxide with, or without palladium as a promoter, and comparable to that of Fe@carbon nanotube-based systems tested under analogous conditions. These results display a significant step forward for the catalytic activity estimations for the iron functionalised and rapidly processable and scalable graphene oxide. The hereby investigated phenomena are of particular relevance for the understanding of the intimate surface morphologies and the potential role of non-covalent interactions in the iron oxide-graphene oxide networks, which could inform the design of nano-materials with performance in future sustainable catalysis applications.
Collapse
Affiliation(s)
- Rhodri E. Owen
- Department of ChemistryUniversity of BathClaverton DownBA2 7AYUK
| | | | - David G. Calatayud
- Department of ElectroceramicsInstituto de Cerámica y Vidrio – CSICKelsen 5, Campus de CantoblancoMadrid28049Spain
| | - Enid A. Evans
- Department of ChemistryUniversity of BathClaverton DownBA2 7AYUK
| | | | - Boyang Mao
- Department of ChemistryUniversity of BathClaverton DownBA2 7AYUK
| | - Francisco J. Palomares
- Department of Nanostructures and SurfacesInstituto de Ciencia de Materiales de Madrid – CSICSor Juana Inés de la Cruz 3, Campus de CantoblancoMadrid28049Spain
| | - John Mitchels
- Department of ChemistryUniversity of BathClaverton DownBA2 7AYUK
| | - Pawel Plucinski
- Department of Chemical EngineeringUniversity of BathClaverton DownBA2 7AYUK
| | - Davide Mattia
- Department of Chemical EngineeringUniversity of BathClaverton DownBA2 7AYUK
| | - Matthew D. Jones
- Department of ChemistryUniversity of BathClaverton DownBA2 7AYUK
| | - Sofia I. Pascu
- Department of ChemistryUniversity of BathClaverton DownBA2 7AYUK
| |
Collapse
|
20
|
Jiang J, Wen C, Tian Z, Wang Y, Zhai Y, Chen L, Li Y, Liu Q, Wang C, Ma L. Manganese-Promoted Fe3O4 Microsphere for Efficient Conversion of CO2 to Light Olefins. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05342] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiandong Jiang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Chengyan Wen
- Southeast University, School of Energy and Environment, Nanjing 210009, P.R. China
| | - Zhipeng Tian
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yachen Wang
- Research Academy of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Science Rd., Zhengzhou 450001, Henan, P.R. China
| | - Yunpu Zhai
- Research Academy of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Science Rd., Zhengzhou 450001, Henan, P.R. China
| | - Lungang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yuping Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qiying Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Longlong Ma
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Southeast University, School of Energy and Environment, Nanjing 210009, P.R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
21
|
Konsolakis M, Lykaki M, Stefa S, Carabineiro SAC, Varvoutis G, Papista E, Marnellos GE. CO 2 Hydrogenation over Nanoceria-Supported Transition Metal Catalysts: Role of Ceria Morphology (Nanorods versus Nanocubes) and Active Phase Nature (Co versus Cu). NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1739. [PMID: 31817667 PMCID: PMC6955880 DOI: 10.3390/nano9121739] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
In this work we report on the combined impact of active phase nature (M: Co or Cu) and ceria nanoparticles support morphology (nanorods (NR) or nanocubes (NC)) on the physicochemical characteristics and CO2 hydrogenation performance of M/CeO2 composites at atmospheric pressure. It was found that CO2 conversion followed the order: Co/CeO2 > Cu/CeO2 > CeO2, independently of the support morphology. Co/CeO2 catalysts demonstrated the highest CO2 conversion (92% at 450 °C), accompanied by 93% CH4 selectivity. On the other hand, Cu/CeO2 samples were very selective for CO production, exhibiting 52% CO2 conversion and 95% CO selectivity at 380 °C. The results obtained in a wide range of H2:CO2 ratios (1-9) and temperatures (200-500 °C) are reaching in both cases the corresponding thermodynamic equilibrium conversions, revealing the superiority of Co- and Cu-based samples in methanation and reverse water-gas shift (rWGS) reactions, respectively. Moreover, samples supported on ceria nanocubes exhibited higher specific activity (µmol CO2·m-2·s-1) compared to samples of rod-like shape, disclosing the significant role of support morphology, besides that of metal nature (Co or Cu). Results are interpreted on the basis of different textural and redox properties of as-prepared samples in conjunction to the different impact of metal entity (Co or Cu) on CO2 hydrogenation process.
Collapse
Affiliation(s)
- Michalis Konsolakis
- School of Production Engineering and Management, Technical University of Crete, GR-73100 Chania, Greece; (M.L.); (S.S.)
| | - Maria Lykaki
- School of Production Engineering and Management, Technical University of Crete, GR-73100 Chania, Greece; (M.L.); (S.S.)
| | - Sofia Stefa
- School of Production Engineering and Management, Technical University of Crete, GR-73100 Chania, Greece; (M.L.); (S.S.)
| | - Sόnia A. C. Carabineiro
- Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE-LCM, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Georgios Varvoutis
- Department of Mechanical Engineering, University of Western Macedonia, GR-50100 Kozani, Greece; (G.V.); (E.P.); (G.E.M.)
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, GR-57001 Thermi, Thessaloniki, Greece
| | - Eleni Papista
- Department of Mechanical Engineering, University of Western Macedonia, GR-50100 Kozani, Greece; (G.V.); (E.P.); (G.E.M.)
| | - Georgios E. Marnellos
- Department of Mechanical Engineering, University of Western Macedonia, GR-50100 Kozani, Greece; (G.V.); (E.P.); (G.E.M.)
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, GR-57001 Thermi, Thessaloniki, Greece
| |
Collapse
|
22
|
Ronda-Lloret M, Rothenberg G, Shiju NR. A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins. CHEMSUSCHEM 2019; 12:3896-3914. [PMID: 31166079 DOI: 10.1002/cssc.201900915] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/31/2019] [Indexed: 05/12/2023]
Abstract
One of the main initiatives for fighting climate change is to use carbon dioxide as a resource instead of waste. In this respect, thermocatalytic carbon dioxide hydrogenation to high-added-value chemicals is a promising process. Among the products of this reaction (alcohols, alkanes, olefins, or aromatics), light olefins are interesting because they are building blocks for making polymers, as well as other important chemicals. Olefins are mainly produced from fossil fuel sources, but the increasing demand of plastics boosts the need to develop more sustainable synthetic routes. This review gives a critical overview of the most recent achievements in direct carbon dioxide hydrogenation to light olefins, which can take place through two competitive routes: the modified Fischer-Tropsch synthesis and methanol-mediated synthesis. Both routes are compared in terms of catalyst development, reaction performance, and reaction mechanisms. Furthermore, practical aspects of the commercialization of this reaction, such as renewable hydrogen production and carbon dioxide capture, compression, and transport, are discussed. It is concluded that, to date, the catalysts used in the carbon dioxide hydrogenation reaction give a wide product distribution, which reduces the specific selectivity to lower olefins. More efforts are needed to reach better control of the C/H surface ratio and interactions within the functionalities of the catalyst, as well as understanding the reaction mechanism and avoiding deactivation. Renewable H2 production and carbon dioxide capture and transport technologies are being developed, although they are currently still too expensive for industrial application.
Collapse
Affiliation(s)
- Maria Ronda-Lloret
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD, Amsterdam, The Netherlands
| | - Gadi Rothenberg
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD, Amsterdam, The Netherlands
| | - N Raveendran Shiju
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Hatami B, Tavasoli A, Asghari A, Zamani Y, Zamaniyan A. Kinetics Modeling of Fischer–Tropsch Synthesis on the Cobalt Catalyst Supported on Functionalized Carbon Nanotubes. KINETICS AND CATALYSIS 2019. [DOI: 10.1134/s0023158418060046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Guo L, Cui Y, Zhang P, Peng X, Yoneyama Y, Yang G, Tsubaki N. Enhanced Liquid Fuel Production from CO2
Hydrogenation: Catalytic Performance of Bimetallic Catalysts over a Two-Stage Reactor System. ChemistrySelect 2018. [DOI: 10.1002/slct.201803335] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lisheng Guo
- Department of Applied Chemistry, School of Engineering; University of Toyama Gofuku 3190; Toyama 930-8555 Japan
| | - Yu Cui
- Department of Applied Chemistry, School of Engineering; University of Toyama Gofuku 3190; Toyama 930-8555 Japan
| | - Peipei Zhang
- Department of Applied Chemistry, School of Engineering; University of Toyama Gofuku 3190; Toyama 930-8555 Japan
| | - Xiaobo Peng
- National Institute for Materials Science, Tsukuba; Japan
| | - Yoshiharu Yoneyama
- Department of Applied Chemistry, School of Engineering; University of Toyama Gofuku 3190; Toyama 930-8555 Japan
| | - Guohui Yang
- Department of Applied Chemistry, School of Engineering; University of Toyama Gofuku 3190; Toyama 930-8555 Japan
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering; University of Toyama Gofuku 3190; Toyama 930-8555 Japan
| |
Collapse
|
25
|
Facet effect on CO2 adsorption, dissociation and hydrogenation over Fe catalysts: Insight from DFT. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
|
27
|
Direct synthesis of dimethyl carbonate from CO 2 and methanol by supported bimetallic Cu–Ni/ZIF-8 MOF catalysts. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.07.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Macaskie LE, Mikheenko IP, Omajai JB, Stephen AJ, Wood J. Metallic bionanocatalysts: potential applications as green catalysts and energy materials. Microb Biotechnol 2017; 10:1171-1180. [PMID: 28834386 PMCID: PMC5609244 DOI: 10.1111/1751-7915.12801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/08/2017] [Accepted: 07/12/2017] [Indexed: 11/29/2022] Open
Abstract
Microbially generated or supported nanocatalysts have potential applications in green chemistry and environmental application. However, precious (and base) metals biorefined from wastes may be useful for making cheap, low-grade catalysts for clean energy production. The concept of bionanomaterials for energy applications is reviewed with respect to potential fuel cell applications, bio-catalytic upgrading of oils and manufacturing 'drop-in fuel' precursors. Cheap, effective biomaterials would facilitate progress towards dual development goals of sustainable consumption and production patterns and help to ensure access to affordable, reliable, sustainable and modern energy.
Collapse
Affiliation(s)
- Lynne E. Macaskie
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Iryna P. Mikheenko
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Jacob B. Omajai
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Present address:
Department of Biological SciencesFaculty of Sciences, Thompson Rivers University805 TRU WayV2C 0C8Kamloops, British ColumbiaCanada
| | - Alan J. Stephen
- School of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Joseph Wood
- School of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| |
Collapse
|
29
|
Prieto G. Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis. CHEMSUSCHEM 2017; 10:1056-1070. [PMID: 28247481 DOI: 10.1002/cssc.201601591] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Under specific scenarios, the catalytic hydrogenation of CO2 with renewable hydrogen is considered a suitable route for the chemical recycling of this environmentally harmful and chemically refractory molecule into added-value energy carriers and chemicals. The hydrogenation of CO2 into C1 products, such as methane and methanol, can be achieved with high selectivities towards the corresponding hydrogenation product. More challenging, however, is the selective production of high (C2+ ) hydrocarbons and oxygenates. These products are desired as energy vectors, owing to their higher volumetric energy density and compatibility with the current fuel infrastructure than C1 compounds, and as entry platform chemicals for existing value chains. The major challenge is the optimal integration of catalytic functionalities for both reductive and chain-growth steps. This Minireview summarizes the progress achieved towards the hydrogenation of CO2 to C2+ hydrocarbons and oxygenates, covering both solid and molecular catalysts and processes in the gas and liquid phases. Mechanistic aspects are discussed with emphasis on intrinsic kinetic limitations, in some cases inevitably linked to thermodynamic bounds through the concomitant reverse water-gas-shift reaction, which should be considered in the development of advanced catalysts and processes.
Collapse
Affiliation(s)
- Gonzalo Prieto
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
30
|
|
31
|
Yang H, Zhang C, Gao P, Wang H, Li X, Zhong L, Wei W, Sun Y. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01403a] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We review the indirect and direct routes for CO2 hydrogenation to hydrocarbons and recent developments in catalyst design, performance and mechanism.
Collapse
Affiliation(s)
- Haiyan Yang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- China
| | - Chen Zhang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- China
| | - Peng Gao
- CAS Key Lab of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- China
| | - Hui Wang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- China
| | - Xiaopeng Li
- CAS Key Lab of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- China
| | - Liangshu Zhong
- CAS Key Lab of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- China
| | - Wei Wei
- CAS Key Lab of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- China
| | - Yuhan Sun
- CAS Key Lab of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- China
| |
Collapse
|