1
|
Wang J, Liu X, Zhou Y, Yang Z, Tegladza ID, Liu C. N-doped Porous Carbon Derived from the Pyrolysis of a Polydopamine-coated Hypercross-linked Polymer for Enhanced CO 2 Adsorption. Chemistry 2024; 30:e202402855. [PMID: 39375880 DOI: 10.1002/chem.202402855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Porous carbon materials can simultaneously capture and convert carbon dioxide, helping to reduce greenhouse gas emissions and using carbon dioxide as a feedstock for the production of valuable chemicals or fuel. In this work, a series of N-doped porous carbons (PDA@HCP(x:y)-T) was prepared; the CO2 adsorption capacity of the prepared PDA@HCP(x:y)-T was enhanced by coating polydopamine (PDA) on a hypercross-linked polymer (HCP) and then adjusting the mass ratio of PDA to HCP and the carbonization temperature. The results showed that the prepared PDA@HCP(1 : 1)-850 exhibited a high CO2 adsorption capacity due to abundant micropores (0.6762 cm3/g), a high specific surface area (1220.8 m2/g), and moderate surface nitrogen content (2.75 %). Notably, PDA@HCP(1 : 1)-850 exhibited the highest CO2 uptake of 6.46 mmol/g at 0 °C and 101 kPa. Critically, these N-doped porous carbons can also be used as catalysts for the reaction of CO2 with epichlorohydrin to form chloropropylene carbonate, with chloropropylene carbonate yielding up to 64 % and selectivity of the reaction reaching 94 %. As a result, these N-doped porous carbons could serve as potential candidates for CO2 capture and conversion due to their high reactivity, excellent CO2 uptake, and good catalytic performance.
Collapse
Affiliation(s)
- Jingtao Wang
- College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoyan Liu
- College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yang Zhou
- College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhuhong Yang
- College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Isaac D Tegladza
- College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chang Liu
- College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
2
|
Zhao Y, Zhang Q, Lei H, Zhou X, Du G, Pizzi A, Xi X. Preparation and fire resistance modification on tannin-based non-isocyanate polyurethane (NIPU) rigid foams. Int J Biol Macromol 2024; 258:128994. [PMID: 38157632 DOI: 10.1016/j.ijbiomac.2023.128994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Non-isocyanate polyurethane (NIPU) as a new type of polyurethane material has become a hot research topic in the polyurethane industry due to its no utilization of toxic isocyanates during the synthesis process. And the developing on recyclable biomass materials has also much attention in the industrial sector, hence the preparation and application of bio-based NIPU has also become a very meaningful study work. So, in this paper, tannin as a biomass material was used to synthesize tannin based non-isocyanate polyurethanes (TNIPU) resin, and then successfully prepared a self-blowing TNIPU foam at room temperature by using formic acid as initiator and glutaraldehyde as cross-linking agent. The compressive strength of this foam as high as 0.8 MPa, which is an excellent compressive performance. Meanwhile it will return to the state before compression when removing the pressure. This indicating that the foam has good toughness. In addition, formic acid can react with the amino groups in TNIPU to form amide substances, and generated enough heat to initiate the foaming process. Glutaraldehyde, as a crosslinking agent, reacts with the amino group in TNIPU to form a network structure system. By scanning electron microscope (SEM) observation of the cell shapes, it can be seen that the foam cells were uniform in size and shape, and the cell pores showed open and closed cells. The limiting oxygen index (LOI) tested value of this TNIPU foam is 24.45 % without any flame retardant added, but compared to the LOI value of polyurethane foam (17 %-19 %), TNIPU foam reveal a better fire resistance. It has a wider application prospect.
Collapse
Affiliation(s)
- Yunsen Zhao
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, College of Material science and Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Qianyu Zhang
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, College of Material science and Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Hong Lei
- College of Chemistry and Material Engineering, Zhejiang A&F University, 311300 Hangzhou, China.
| | - Xiaojian Zhou
- International Joint Research Center for Biomass materials, Southwest Forestry University, 650224 Kunming, China
| | - Guanben Du
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, College of Material science and Engineering, Southwest Forestry University, 650224 Kunming, China
| | - Antonio Pizzi
- LERMAB, University of Lorraine, 88000 Epinal, France
| | - Xuedong Xi
- Yunnan Key Laboratory of Wood Adhesives and Glue Products, College of Material science and Engineering, Southwest Forestry University, 650224 Kunming, China; Key Laboratory of Plant Fiber Functional Materials, National Forestry and Grassland Administration, Fujian Agriculture and Forestry University, 350108 Fuzhou, China.
| |
Collapse
|
3
|
Jung HJ, Nyamayaro K, Baalbaki HA, Goonesinghe C, Mehrkhodavandi P. Cooperative Initiation in a Dinuclear Indium Complex for CO 2 Epoxide Copolymerization. Inorg Chem 2023; 62:1968-1977. [PMID: 36688644 DOI: 10.1021/acs.inorgchem.2c03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dinuclear indium complexes have been synthesized and characterized. These include neutral and cationic indium complexes supported by a Schiff base ligand bearing a binaphthol linker. The new compounds were investigated for alternating copolymerization of CO2 and cyclohexene oxide. In particular, the neutral indium chloride complex (±)-[(ONapNiN)InCl2]2 (4) showed high conversion of cyclohexene oxide and selectivity for poly(cyclohexene carbonate) formation without cocatalysts at 80 °C under various CO2 pressures (2-30 bar). Importantly, the reactivity of the dinuclear indium chloride complex 4 is drastically different from that of the mononuclear indium chloride complex (±)-(NNiOtBu)InCl2 (5), suggesting a cooperative initiation mechanism involving the two indium centers in 4.
Collapse
Affiliation(s)
- Hyuk-Joon Jung
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Kudzanai Nyamayaro
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Hassan A Baalbaki
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Chatura Goonesinghe
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Parisa Mehrkhodavandi
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| |
Collapse
|
4
|
Kessaratikoon T, Theerathanagorn T, Crespy D, D'Elia V. Organocatalytic Polymers from Affordable and Readily Available Building Blocks for the Cycloaddition of CO 2 to Epoxides. J Org Chem 2023; 88:4894-4924. [PMID: 36692489 DOI: 10.1021/acs.joc.2c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The catalytic cycloaddition of CO2 to epoxides to afford cyclic carbonates as useful monomers, intermediates, solvents, and additives is a continuously growing field of investigation as a way to carry out the atom-economic conversion of CO2 to value-added products. Metal-free organocatalytic compounds are attractive systems among various catalysts for such transformations because they are inexpensive, nontoxic, and readily available. Herein, we highlight and discuss key advances in the development of polymer-based organocatalytic materials that match these requirements of affordability and availability by considering their synthetic routes, the monomers, and the supports employed. The discussion is organized according to the number (monofunctional versus bifunctional materials) and type of catalytically active moieties, including both halide-based and halide-free systems. Two general synthetic approaches are identified based on the postsynthetic functionalization of polymeric supports or the copolymerization of monomers bearing catalytically active moieties. After a review of the material syntheses and catalytic activities, the chemical and structural features affecting catalytic performance are discussed. Based on such analysis, some strategies for the future design of affordable and readily available polymer-based organocatalysts with enhanced catalytic activity under mild conditions are considered.
Collapse
Affiliation(s)
- Tanika Kessaratikoon
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Tharinee Theerathanagorn
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Valerio D'Elia
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| |
Collapse
|
5
|
Casti F, Basoccu F, Mocci R, De Luca L, Porcheddu A, Cuccu F. Appealing Renewable Materials in Green Chemistry. Molecules 2022; 27:1988. [PMID: 35335350 PMCID: PMC8955003 DOI: 10.3390/molecules27061988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
In just a few years, chemists have significantly changed their approach to the synthesis of organic molecules in the laboratory and industry. Researchers are encouraged to approach "greener" reagents, solvents, and methodologies, to go hand in hand with the world's environmental matter, such as water, soil, and air pollution. The employment of plant and animal derivates that are commonly regarded as "waste material" has paved the way for the development of new green strategies. In this review, the most important innovations in this field have been highlighted, paying due attention to those materials that have played a crucial role in organic reactions: wool, silk, and feather. Moreover, we decided to focus on the other most important supports and catalysts in green syntheses, such as proteins and their derivates. Different materials have shown prominent activity in the adsorption of metals and organic dyes, which has constituted a relevant scope in the last two decades. We intend to furnish a complete screening of the application given to these materials and contribute to their potential future utilization.
Collapse
Affiliation(s)
- Federico Casti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy; (F.C.); (F.B.); (R.M.)
| | - Francesco Basoccu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy; (F.C.); (F.B.); (R.M.)
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy; (F.C.); (F.B.); (R.M.)
| | - Lidia De Luca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy; (F.C.); (F.B.); (R.M.)
| | - Federico Cuccu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy; (F.C.); (F.B.); (R.M.)
| |
Collapse
|
6
|
Hao Y, Yan X, Liu X, Qin S, Zhu Z, Panchal B, Chang T. Urea-based covalent organic crown polymers and KI electrostatic synergy in CO2 fixation reaction: A combined experimental and theoretical study. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Yuan G, Lei Y, Meng X, Ge B, Ye Y, Song X, Liang Z. Metal-assisted synthesis of salen-based porous organic polymer for highly efficient fixation of CO2 into cyclic carbonates. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01643a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of metal–salen-based porous organic polymers was synthesized using a simple metal-assisted synthetic method, among which Co-salen-POP exhibited highly efficient performance in the fixation of CO2 into cyclic carbonates.
Collapse
Affiliation(s)
- Gang Yuan
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yin Lei
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xianyu Meng
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bangdi Ge
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yu Ye
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaowei Song
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhiqiang Liang
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
8
|
Mujmule RB, Jadhav HS, Kim H. Synergetic effect of ZnCo 2O 4/inorganic salt as a sustainable catalyst system for CO 2 utilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113433. [PMID: 34352483 DOI: 10.1016/j.jenvman.2021.113433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Currently, it is essential to consider the rapidly increasing emission of CO2 into the atmosphere, causing major environmental issues such as climate change and global warming. In this work, we have developed the binary catalyst system (ZnCo2O4/inorganic salt) for chemical fixation of CO2 with epoxides into cyclic carbonates without solvent, and all reactions were performed on a large scale using a 100 ml batch reactor. Two mesoporous catalysts of ZnCo2O4 with different architecture, such as flakes (ZnCo-F) and spheres (ZnCo-S) were synthesized and utilized as a heterogeneous catalyst for cycloaddition reaction. The bifunctional property of catalysts is mainly attributed to strong acidic and basic properties confirmed by TPD (NH3 & CO2) analysis. The ZnCo-F catalyst exhibited excellent conversion of propylene oxide (99.9%) with good corresponding selectivity of propylene carbonate (≥99%) in the presence of inorganic salt (KI) at 120 °C, 2 MPa, 3 h. In addition, ZnCo-F catalyst demonstrated good catalytic applicability towards the various substrates scope of the epoxide. Furthermore, the catalytic properties were examined by evaluating the reaction parameter such as catalyst loading, pressure, temperature and time. The proposed catalyst exhibited good reusability for cycloaddition reaction without significant change in its catalytic activity and proposed a possible reaction mechanism for chemical fixation of CO2 with epoxide into cyclic carbonate over ZnCo-F/KI.
Collapse
Affiliation(s)
- Rajendra B Mujmule
- Environmental Waste Recycle Institute, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Harsharaj S Jadhav
- Environmental Waste Recycle Institute, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - Hern Kim
- Environmental Waste Recycle Institute, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| |
Collapse
|
9
|
Sun L, Tang S. Task-specific ionic liquid-grafted mesoporous alumina for chemical fixation of carbon dioxide into cyclic carbonate. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Anchored PdCl2 on fish scale: an efficient and recyclable catalyst for Suzuki coupling reaction in aqueous media. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Wang Y, Shen Y, Wang Z. Rapid conversion of CO 2 and propylene oxide into propylene carbonate over acetic acid/KI under relatively mild conditions. NEW J CHEM 2021. [DOI: 10.1039/d1nj04387k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic system of acetic acid/KI was studied to demonstrate high activity for completely converting propylene oxide into propylene carbonate within a quite short time of 15 min under the relatively mild conditions of 0.9 MPa CO2 and 90 °C.
Collapse
Affiliation(s)
- Yajun Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi’an, Shaanxi, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi’an, Shaanxi, China
| | - Zheng Wang
- College of Food Science and Engineering, Northwest University, 710069 Xi’an, Shaanxi, China
| |
Collapse
|
12
|
Błażek K, Beneš H, Walterová Z, Abbrent S, Eceiza A, Calvo-Correas T, Datta J. Synthesis and structural characterization of bio-based bis(cyclic carbonate)s for the preparation of non-isocyanate polyurethanes. Polym Chem 2021. [DOI: 10.1039/d0py01576h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Full chemical structure characterization of cyclic carbonates from diepoxides synthesized using sustainable bio-based polyols with different molecular weights and carbon dioxide.
Collapse
Affiliation(s)
- Kamila Błażek
- Gdansk University of Technology
- Faculty of Chemistry
- Department of Polymers Technology
- 80-233 Gdansk
- Poland
| | - Hynek Beneš
- Institute of Macromolecular Chemistry
- CAS
- Praque 162 06
- Czech Republic
| | - Zuzana Walterová
- Institute of Macromolecular Chemistry
- CAS
- Praque 162 06
- Czech Republic
| | - Sabina Abbrent
- Institute of Macromolecular Chemistry
- CAS
- Praque 162 06
- Czech Republic
| | - Arantxa Eceiza
- Materials+Technologies’ Research Group (GMT)
- Department of Chemical and Environmental Engineering
- Polytechnic School
- University of the Basque Country
- Donostia-San Sebastian 20018
| | - Tamara Calvo-Correas
- Materials+Technologies’ Research Group (GMT)
- Department of Chemical and Environmental Engineering
- Polytechnic School
- University of the Basque Country
- Donostia-San Sebastian 20018
| | - Janusz Datta
- Gdansk University of Technology
- Faculty of Chemistry
- Department of Polymers Technology
- 80-233 Gdansk
- Poland
| |
Collapse
|
13
|
Abstract
In this study, a special core–shell structured wool-TiO2 (WT) hybrid composite powder also having TiO2 nanoparticles incorporated inside cortical cells was reported. The wool pallets were pulverized from wool fibers using vibration-assisted ball milling technique and the WT powders having mesopores and macropores were produced in hydrothermal process. Experimental results indicated that the infiltrated TiO2 nanoparticles were amorphous structure, while the coated TiO2 nanoparticles were anatase phase structure. The crystallized TiO2 nanoparticles were grafted with wool pallets by the N−Ti4+/S−Ti4+/O−Ti4+ bonds. The BET surface area was measured as 153.5 m2/g and the particle sizes were in the 600–3600 nm and 4000–6500 nm ranges. The main reactive radical species of the WT powders were holes, and •O2−, 1O2, and •OH were also involved in the photodegradation of MB dye under visible light irradiation. The experimental parameters for photodegradation of MB dye solution were optimized as follows: 0.25 g/L of WT powders was added in 40 mL of 3 mg/L MB dye solution containing 50 mL/L H2O2, which resulted in the increases of COD value of degraded MB dye solution up to 916.9 mg/L at 120 min. The WT powders could be used for repeatedly photodegradation of both anionic and cationic dyes.
Collapse
|
14
|
Riva L, Punta C, Sacchetti A. Co‐Polymeric Nanosponges from Cellulose Biomass as Heterogeneous Catalysts for amine‐catalyzed Organic Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.202001157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura Riva
- Department of Chemistry Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano 20131 Milano Italy
| | - Carlo Punta
- Department of Chemistry Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano 20131 Milano Italy
- C. N. R. Istituto di Chimica del Riconoscimento Molecolare (ICRM) 20131 Milano Italy
| | - Alessandro Sacchetti
- Department of Chemistry Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano 20131 Milano Italy
| |
Collapse
|
15
|
Wang G, Guo R, Wang W, Liu W. Natural porous nanorods used for high-efficient capture and chemical conversion of CO2. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Wang X, Yang L, Chen Y, Yang C, Lan J, Sun J. Metal-Free Triazine-Incorporated Organosilica Framework Catalyst for the Cycloaddition of CO2 to Epoxide under Solvent-Free Conditions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Li Yang
- State Key Lab of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yanglin Chen
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Chaokun Yang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jianwen Lan
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
17
|
Recent advances in the catalytic fixation of carbon dioxide to value-added chemicals over alkali metal salts. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101252] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Sun L, Luo J, Gao M, Tang S. Bi-functionalized ionic liquid porous copolymers for CO2 adsorption and conversion under ambient pressure. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Pyridyl Ionic Liquid Functionalized ZIF-90 for Catalytic Conversion of CO2 into Cyclic Carbonates. Catal Letters 2020. [DOI: 10.1007/s10562-020-03259-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Abstract
This work concerns recent advances (mainly in the last five years) in the challenging conversion of carbon dioxide (CO2) into fine chemicals, in particular to cyclic carbonates, as a meaningful measure to reduce CO2 emissions in the atmosphere and subsequent global warming effects. Thus, efficient catalysts and catalytic processes developed to convert CO2 into different chemicals towards a more sustainable chemical industry are addressed. Cyclic carbonates can be produced by different routes that directly, or indirectly, use carbon dioxide. Thus, recent findings on CO2 cycloaddition to epoxides as well as on its reaction with diols are reviewed. In addition, indirect sources of carbon dioxide, such as urea, considered a sustainable process with high atom economy, are also discussed. Reaction mechanisms for the transformations involved are also presented.
Collapse
|
21
|
Li Q, Yang H, Li M, Zhao K, Duan B, Zhang C, Wang H, Qiao C, Chang H, Lin T. Highly Efficient Solvent-free Conversion of CO2 into Cyclic Carbonates by Acrylamide–KI. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qingshuo Li
- Institute of Functional Polymer Composites, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Hao Yang
- Institute of Functional Polymer Composites, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Mengqing Li
- Institute of Functional Polymer Composites, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Kexin Zhao
- Institute of Functional Polymer Composites, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Baogen Duan
- Suzhou Yacoo Science Company Ltd., Suzhou 215123, China
| | - Chen Zhang
- Institute of Functional Polymer Composites, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Hongxia Wang
- Institute of Functional Polymer Composites, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Congzhen Qiao
- Institute of Functional Polymer Composites, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Haibo Chang
- Institute of Functional Polymer Composites, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Tong Lin
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
22
|
Monteiro WF, Vieira MO, Laschuk EF, Livotto PR, Einloft SM, de Souza MO, Ligabue RA. Experimental-theoretical study of the epoxide structures effect on the CO2 conversion to cyclic carbonates catalyzed by hybrid titanate nanostructures. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Zhu X, Song M, Ling B, Wang S, Luo X. The Highly Efficient Absorption of CO2 by a Novel DBU Based Ionic Liquid. J SOLUTION CHEM 2020. [DOI: 10.1007/s10953-020-00958-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Yang C, Chen Y, Xu P, Yang L, Zhang J, Sun J. Facile synthesis of zinc halide-based ionic liquid for efficient conversion of carbon dioxide to cyclic carbonates. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: Catalyst design, performances and reaction mechanism. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Pawar AA, Kim H. Reaction parameters dependence of the CO2/epoxide coupling reaction catalyzed by tunable ionic liquids, optimization of comonomer-alternating enhancement pathway. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Wu Y, Song X, Xu S, Yu T, Zhang J, Qi Q, Gao L, Zhang J, Xiao G. [(CH3)2NH2][M(COOH)3] (M=Mn, Co, Ni, Zn) MOFs as highly efficient catalysts for chemical fixation of CO2 and DFT studies. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
2-Methylimidazole Modified Co-BTC MOF as an Efficient Catalyst for Chemical Fixation of Carbon Dioxide. Catal Letters 2019. [DOI: 10.1007/s10562-019-02874-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Li Q, Chang H, Li R, Wang H, Liu J, Liu S, Qiao C, Lin T. Succinimide-KI: An efficient binary catalyst system for mild, solvent-free cycloaddition of CO2 to epoxides. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Li P, Cao Z. Catalytic coupling of CO 2 with epoxide by metal macrocycles functionalized with imidazolium bromide: insights into the mechanism and activity regulation from density functional calculations. Dalton Trans 2019; 48:1344-1350. [PMID: 30608088 DOI: 10.1039/c8dt04684k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cycloaddition of CO2 and epoxide catalysed by metalloporphyrins (IL-M(TPP)) and metallocorroles (IL-M(Cor)) containing imidazolium bromide has been studied extensively using density functional theory calculations. Possible mechanisms and catalytic effects of the hydrogen substitution on the imidazolium ring and the metal replacement in the macrocycles have been investigated. The results showed that the synergistic effect between the electrophilic metal centre and the flexible nucleophilic Br- of the bifunctional catalysts was responsible for the high catalytic activity. The coupling reaction of CO2 and ethylene oxide catalysed by IL-Al(Cor) experiences a free energy barrier of 9.7 kcal mol-1 for the rate-determining ring-opening step, which is much lower than ∼20 kcal mol-1 for that catalysed by IL-Zn(TPP). The metallocorrole-based bifunctional catalyst seems quite promising for the catalytic conversion of CO2 into five-membered heterocyclic compounds.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China.
| | | |
Collapse
|
31
|
Wu PX, Cheng HY, Shi RH, Jiang S, Wu QF, Zhang C, Arai M, Zhao FY. Synthesis of Polyurea via the Addition of Carbon Dioxide to a Diamine Catalyzed by Organic and Inorganic Bases. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801134] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pei-Xuan Wu
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Science and Technology of China, Hefei; Anhui 230026 People's Republic of China
- Jilin Province Key Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Hai-Yang Cheng
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- Jilin Province Key Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Ru-Hui Shi
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Science and Technology of China, Hefei; Anhui 230026 People's Republic of China
- Jilin Province Key Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Shan Jiang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- Jilin Province Key Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Qi-Fan Wu
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- University of Science and Technology of China, Hefei; Anhui 230026 People's Republic of China
- Jilin Province Key Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Chao Zhang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- Jilin Province Key Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Masahiko Arai
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- Jilin Province Key Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Feng-Yu Zhao
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
- Jilin Province Key Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| |
Collapse
|
32
|
Li MR, Zhang MC, Yue TJ, Lu XB, Ren WM. Highly efficient conversion of CO2 to cyclic carbonates with a binary catalyst system in a microreactor: intensification of “electrophile–nucleophile” synergistic effect. RSC Adv 2018; 8:39182-39186. [PMID: 35558338 PMCID: PMC9090913 DOI: 10.1039/c8ra07236a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022] Open
Abstract
An intensification of the “electrophile–nucleophile” synergistic effect was achieved in a microreactor for the coupling reaction of CO2 and epoxides mediated by the binary Al complex/ternary ammonium salt catalyst system. The microreactor technology is proven to be a powerful tool for the preparation of cyclic carbonates with an improved reaction rate and a wide substrate scope. An intensification of the “electrophile–nucleophile” synergistic effect was achieved in a microreactor for the coupling reaction of CO2 and epoxides mediated by the binary Al complex/ternary ammonium salt catalyst system.![]()
Collapse
Affiliation(s)
- Ming-Ran Li
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- China
| | - Ming-Chao Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- China
| | - Tian-Jun Yue
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- China
| |
Collapse
|