1
|
Sakr AAE, Abd El-Hafiz DR, Elgabry O, Abdullah ES, Ebiad MA, Zaki T. Visible light photoreforming of greenhouse gases by nano Cu-Al LDH intercalated with urea-derived anions. RSC Adv 2023; 13:33541-33558. [PMID: 38020006 PMCID: PMC10652186 DOI: 10.1039/d3ra06190f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
The accumulation of anthropogenic greenhouse gases (GHGs) in the atmosphere causes global warming. Global efforts are carried out to prevent temperature overshooting and limit the increase in the Earth's surface temperature to 1.5 °C. Carbon dioxide and methane are the largest contributors to global warming. We have synthesized copper-aluminium layered double hydroxide (Cu-Al LDH) catalysts by urea hydrolysis under microwave (MW) irradiation. The effect of MW power, urea concentration, and MII/MIII ratios was studied. The physicochemical properties of the prepared LDH catalysts were characterized by several analysis techniques. The results confirmed the formation of the layered structure with the intercalation of urea-derived anions. The urea-derived anions enhanced the optical and photocatalytic properties of the nano Cu-Al LDH in the visible-light region. The photocatalytic activity of the prepared Cu-Al LDH catalysts was tested for greenhouse gas conversion (CH4, CO2, and H2O) under visible light. The dynamic gas mixture flow can pass through the reactor at room temperature under atmospheric pressure. The results show a high conversion percentage for both CO2 and CH4. The highest converted amounts were 7.48 and 1.02 mmol mL-1 g-1 for CH4 and CO2, respectively, under the reaction conditions. The main product was formaldehyde with high selectivity (>99%). The results also show the stability of the catalysts over several cycles. The current work represents a green chemistry approach for efficient photocatalyst synthesis, visible light utilization, and GHGs' conversion into a valuable product.
Collapse
Affiliation(s)
- Ayat A-E Sakr
- Gas Chromatogarphy Lab, Analysis & Evaluation Division, Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Dalia R Abd El-Hafiz
- Catalysis Lab, Petroleum Refining Division, Egyptian Petroleum Research Institute Nasr City P.B. 11727 Cairo Egypt
| | - Osama Elgabry
- Gas Chromatogarphy Lab, Analysis & Evaluation Division, Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Eman S Abdullah
- Gas Chromatogarphy Lab, Analysis & Evaluation Division, Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Mohamed A Ebiad
- Gas Chromatogarphy Lab, Analysis & Evaluation Division, Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Tamer Zaki
- Catalysis Lab, Petroleum Refining Division, Egyptian Petroleum Research Institute Nasr City P.B. 11727 Cairo Egypt
| |
Collapse
|
2
|
Cai D, Cai Y, Tan KB, Zhan G. Recent Advances of Indium Oxide-Based Catalysts for CO 2 Hydrogenation to Methanol: Experimental and Theoretical. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2803. [PMID: 37049097 PMCID: PMC10095753 DOI: 10.3390/ma16072803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Methanol synthesis from the hydrogenation of carbon dioxide (CO2) with green H2 has been proven as a promising method for CO2 utilization. Among the various catalysts, indium oxide (In2O3)-based catalysts received tremendous research interest due to the excellent methanol selectivity with appreciable CO2 conversion. Herein, the recent experimental and theoretical studies on In2O3-based catalysts for thermochemical CO2 hydrogenation to methanol were systematically reviewed. It can be found that a variety of steps, such as the synthesis method and pretreatment conditions, were taken to promote the formation of oxygen vacancies on the In2O3 surface, which can inhibit side reactions to ensure the highly selective conversion of CO2 into methanol. The catalytic mechanism involving the formate pathway or carboxyl pathway over In2O3 was comprehensively explored by kinetic studies, in situ and ex situ characterizations, and density functional theory calculations, mostly demonstrating that the formate pathway was extremely significant for methanol production. Additionally, based on the cognition of the In2O3 active site and the reaction path of CO2 hydrogenation over In2O3, strategies were adopted to improve the catalytic performance, including (i) metal doping to enhance the adsorption and dissociation of hydrogen, improve the ability of hydrogen spillover, and form a special metal-In2O3 interface, and (ii) hybrid with other metal oxides to improve the dispersion of In2O3, enhance CO2 adsorption capacity, and stabilize the key intermediates. Lastly, some suggestions in future research were proposed to enhance the catalytic activity of In2O3-based catalysts for methanol production. The present review is helpful for researchers to have an explicit version of the research status of In2O3-based catalysts for CO2 hydrogenation to methanol and the design direction of next-generation catalysts.
Collapse
|
3
|
Lim AMH, Zeng HC. Controlling Nanosheet Spacing of ZnAl-Layered Double Hydroxide Assemblages for High-Efficiency Hydrogenation of CO 2 to Methanol. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Alvin M. H. Lim
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd., 1 Create Way, CREATE Tower #05-05, Singapore 138602, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd., 1 Create Way, CREATE Tower #05-05, Singapore 138602, Singapore
| |
Collapse
|
4
|
Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Ortner N, Zhao D, Mena H, Weiß J, Lund H, Bartling S, Wohlrab S, Armbruster U, Kondratenko EV. Revealing Origins of Methanol Selectivity Loss in CO 2 Hydrogenation over CuZn-Containing Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nils Ortner
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | - Dan Zhao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | - Hesham Mena
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | - Jana Weiß
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | - Henrik Lund
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | - Udo Armbruster
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, 18059Rostock, Germany
| | | |
Collapse
|
6
|
Sánchez A. Biogas improvement as renewable energy through conversion into methanol: A perspective of new catalysts based on nanomaterials and metal organic frameworks. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1012384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In recent years, the high cost and availability of energy sources have boosted the implementation of strategies to obtain different types of renewable energy. Among them, methane contained in biogas from anaerobic digestion has gained special relevance, since it also permits the management of a big amount of organic waste and the capture and long-term storage of carbon. However, methane from biogas presents some problems as energy source: 1) it is a gas, so its storage is costly and complex, 2) it is not pure, being carbon dioxide the main by-product of anaerobic digestion (30%–50%), 3) it is explosive with oxygen under some conditions and 4) it has a high global warming potential (27–30 times that of carbon dioxide). Consequently, the conversion of biogas to methanol is as an attractive way to overcome these problems. This process implies the conversion of both methane and carbon dioxide into methanol in one oxidation and one reduction reaction, respectively. In this dual system, the use of effective and selective catalysts for both reactions is a critical issue. In this regard, nanomaterials embedded in metal organic frameworks have been recently tested for both reactions, with very satisfactory results when compared to traditional materials. In this review paper, the recent configurations of catalysts including nanoparticles as active catalysts and metal organic frameworks as support materials are reviewed and discussed. The main challenges for the future development of this technology are also highlighted, that is, its cost in environmental and economic terms for its development at commercial scale.
Collapse
|
7
|
Li R, Xiao G, Chen C, Chen C, Shang S, Li Y, Yang Z, Liu Q. High-efficiency graphene oxide membranes intercalated by hollow TiO2 nanospheres and CNS@LDH composite spheres for enhancing dye separation from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Gómez D, Candia C, Jiménez R, Karelovic A. Isotopic transient kinetic analysis of CO2 hydrogenation to methanol on Cu/SiO2 promoted by Ga and Zn. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Cai Z, Huang M, Dai J, Zhan G, Sun FL, Zhuang GL, Wang Y, Tian P, Chen B, Ullah S, Huang J, Li Q. Fabrication of Pd/In2O3 Nanocatalysts Derived from MIL-68(In) Loaded with Molecular Metalloporphyrin (TCPP(Pd)) Toward CO2 Hydrogenation to Methanol. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zhongjie Cai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
| | - Meng Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
| | - Jiajun Dai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Fu-li Sun
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Gui-Lin Zhuang
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Yiying Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
| | - Pan Tian
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
| | - Bin Chen
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Shafqat Ullah
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
- College of Food and Biology Engineering, Jimei University, 185 Yinjiang Road, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
10
|
Wang K, Wang T, Islam QA, Wu Y. Layered double hydroxide photocatalysts for solar fuel production. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63861-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Usman M, Helal A, Abdelnaby MM, Alloush AM, Zeama M, Yamani ZH. Trends and Prospects in UiO-66 Metal-Organic Framework for CO 2 Capture, Separation, and Conversion. CHEM REC 2021; 21:1771-1791. [PMID: 33955166 DOI: 10.1002/tcr.202100030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
Among thousands of known metal-organic frameworks (MOFs), the University of Oslo's MOF (UiO-66) exhibits unique structure topology, chemical and thermal stability, and intriguing tunable properties, that have gained incredible research interest. This paper summarizes the structural advancement of UiO-66 and its role in CO2 capture, separation, and transformation into chemicals. The first part of the review summarizes the fast-growing literature related to the CO2 capture reported by UiO-66 during the past ten years. The second part provides an overview of various advancements in UiO-66 membranes in CO2 purification. The third part describes the role of UiO-66 and its composites as catalysts for CO2 conversion into useful products. Despite many achievements, significant challenges associated with UiO-66 are addressed, and future perspectives are comprehensively presented to forecast how UiO-66 might be used further for CO2 management.
Collapse
Affiliation(s)
- Muhammad Usman
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Aasif Helal
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Mahmoud M Abdelnaby
- King Abdulaziz City for Science and Technology - Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at, KFUPM, Dhahran, 31261, Saudi Arabia
| | - Ahmed M Alloush
- King Abdulaziz City for Science and Technology - Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at, KFUPM, Dhahran, 31261, Saudi Arabia
| | - Mostafa Zeama
- King Abdulaziz City for Science and Technology - Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at, KFUPM, Dhahran, 31261, Saudi Arabia
| | - Zain H Yamani
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
12
|
|
13
|
Prospects for a green methanol thermo-catalytic process from CO2 by using MOFs based materials: A mini-review. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101361] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Cai Z, Dai J, Li W, Tan KB, Huang Z, Zhan G, Huang J, Li Q. Pd Supported on MIL-68(In)-Derived In2O3 Nanotubes as Superior Catalysts to Boost CO2 Hydrogenation to Methanol. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03372] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhongjie Cai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jiajun Dai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Wen Li
- Department of Ecological Engineering for Environmental Sustainability, College of the Environment and Ecology, Xiamen University, Xiamen 361102, P. R. China
| | - Kok Bing Tan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhongliang Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- College of Food and Biology Engineering, Jimei University, Xiamen 361021, P. R. China
| |
Collapse
|
15
|
Recent progress on layered double hydroxide (LDH) derived metal-based catalysts for CO2 conversion to valuable chemicals. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.06.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Liu J, Wu Y, Fu C, Li B, Li L, Zhang R, Xu T, Xu ZP. Charge Reversion Simultaneously Enhances Tumor Accumulation and Cell Uptake of Layered Double Hydroxide Nanohybrids for Effective Imaging and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002115. [PMID: 32608187 DOI: 10.1002/smll.202002115] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/18/2020] [Indexed: 05/19/2023]
Abstract
Nanotheranostics have been actively sought in precision nanomedicine in recent years. However, insufficient tumor accumulation and limited cell uptake often impede the nanotheranostic efficacy. Herein, pH-sensitive charge-reversible polymer-coated layered double hydroxide (LDH) nanohybrids are devised to possess long circulation in blood but reserve surface charges in the weakly acidic tumor tissue to re-expose therapeutic LDH nanoparticles for enhanced tumor accumulation and cell uptake. In vitro experimental data demonstrate that charge-reversible nanohybrids mitigate the cell uptake in physiological conditions (pH 7.4), but remarkably facilitate internalization by tumor cells after charge reversion in the weakly acidic environment (pH 6.8). More significantly, about 6.0% of injected charge-reversible nanohybrids accumulate in the tumor tissue at 24 h post injection, far higher than the average accumulation (0.7%) reported elsewhere for nanoparticles. This high tumor accumulation clearly shows the tumor tissues in T1 -weighted magnetic resonance imaging. As a consequence, >95% inhibition of tumor growth in the B16F0-bearing mouse model is achieved via only one treatment combining RNAi and photothermal therapy under very mild irradiation (808 nm laser, 0.3 W cm-2 for 180 s). The current research thus demonstrates a new strategy to functionalize nanoparticles and simultaneously enhance their tumor accumulation and cell internalization for effective cancer theranostics.
Collapse
Affiliation(s)
- Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Yilun Wu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bei Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Tiefeng Xu
- The First Affiliated Hospital of Hainan Medical University, Cancer Institute of Hainan Medical University, Haikou, Hainan, 570102, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
17
|
Zhao F, Zhan G, Zhou SF. Intercalation of laminar Cu-Al LDHs with molecular TCPP(M) (M = Zn, Co, Ni, and Fe) towards high-performance CO 2 hydrogenation catalysts. NANOSCALE 2020; 12:13145-13156. [PMID: 32584354 DOI: 10.1039/d0nr01916j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A confined space is broadly applied to enhance the dispersion and limit the aggregation of catalytically active sites, especially at high temperatures. In this work, we provided an efficient approach to immobilize transition metal ions (e.g., Zn2+, Co2+, Ni2+, and Fe2+) into the confined space of laminar Cu-Al layered double hydroxides (LDHs) using a range of molecular metalloporphyrins (viz., TCPP(M)) as shuttles. The deprotonated TCPP(M) not only provides nitrogen-based coordination sites to anchor a series of transition metal ions, but also intercalates and diffuses facilely into the interlayer gallery of LDHs by ion exchange. The obtained TCPP(M)@Cu-Al LDHs were then used as solid precursors for the fabrication of a series of heterogeneous catalysts for CO2 hydrogenation via high-temperature calcination. Two restriction forces contributed to the enhanced dispersion of the active species over the catalyst surface structures. Remarkably, the transition metals positioned within the confined space of LDHs significantly affected the catalytic performance of CO2 hydrogenation. Mainly CO, methanol, and methane were found as the C1 products, and their selectivities are highly dependent on the reaction intermediates, as suggested by the in situ DRIFTS study. Moreover, the designed catalysts fabricated via molecular TCPP(M) intercalation exhibited much better performance than the conventional catalysts derived from surface-supported CA-LDHs, due to their better metal dispersion and smaller particle size.
Collapse
Affiliation(s)
- Feigang Zhao
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China.
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China.
| | - Shu-Feng Zhou
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China.
| |
Collapse
|
18
|
Wu Z, Gao L, Wang J, Zhao F, Fan L, Hua D, Japip S, Xiao J, Zhang X, Zhou SF, Zhan G. Preparation of glycine mediated graphene oxide/g-C3N4 lamellar membranes for nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117948] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Hong Y, Wang D, Lin C, Luo S, Pan Q, Li L, Shi K. Room-temperature efficient NO 2 gas sensors fabricated by porous 3D flower-like ZnAl-layered double hydroxides. NEW J CHEM 2020. [DOI: 10.1039/d0nj04263c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Three-dimensional (3D) flower-like zinc and aluminum-sodium dodecyl sulfate-layered double hydroxides (ZnAl-SDS-LDHs) intercalated by anions were prepared using a simple one-step hydrothermal method.
Collapse
Affiliation(s)
- Ye Hong
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry and Material Science
- Heilongjiang University
- Harbin
| | - Di Wang
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry and Material Science
- Heilongjiang University
- Harbin
| | - Chong Lin
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry and Material Science
- Heilongjiang University
- Harbin
| | - Shuiting Luo
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry and Material Science
- Heilongjiang University
- Harbin
| | - Qingjiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry and Material Science
- Heilongjiang University
- Harbin
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry and Material Science
- Heilongjiang University
- Harbin
| | - Keying Shi
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- School of Chemistry and Material Science
- Heilongjiang University
- Harbin
| |
Collapse
|