1
|
Herzyk F, Piłakowska-Pietras D, Korzeniowska M. Supercritical Extraction Techniques for Obtaining Biologically Active Substances from a Variety of Plant Byproducts. Foods 2024; 13:1713. [PMID: 38890941 PMCID: PMC11171758 DOI: 10.3390/foods13111713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Supercritical fluid extraction (SFE) techniques have garnered significant attention as green and sustainable methods for obtaining biologically active substances from a diverse array of plant byproducts. This paper comprehensively reviews the use of supercritical fluid extraction (SFE) in obtaining bioactive compounds from various plant residues, including pomace, seeds, skins, and other agricultural byproducts. The main purpose of supercritical fluid extraction (SFE) is the selective isolation and recovery of compounds, such as polyphenols, essential oils, vitamins, and antioxidants, that have significant health-promoting properties. Using supercritical carbon dioxide as the solvent, supercritical fluid extraction (SFE) not only eliminates the need for hazardous organic solvents, e.g., ethanol, and methanol, but also protects heat-sensitive bioactive compounds. Moreover, this green extraction technique contributes to waste valorisation by converting plant byproducts into value-added extracts with potential applications in the food, pharmaceutical, and cosmetic industries. This review highlights the advantages of SFE, including its efficiency, eco-friendliness, and production of residue-free extracts, while discussing potential challenges and future prospects for the utilisation of SFE in obtaining biologically active substances from plant byproducts.
Collapse
Affiliation(s)
- Filip Herzyk
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Sciences, University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
- Wroclaw Technology Park, 54-413 Wrocław, Poland
| | | | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Sciences, University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| |
Collapse
|
2
|
Domínguez-Valencia R, Cittadini A, Pateiro M, Munekata PES, Lorenzo JM. Elderberry Lipophilic and Hydrophilic Bioactive Compounds: Characterization and Extract Encapsulation. Foods 2023; 12:4233. [PMID: 38231681 DOI: 10.3390/foods12234233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
There are few studies on the use of elderberry in the food industry, and its form of application differs between the different studies. Therefore, the objective of this study is to describe a procedure for obtaining a stabilized product with a high content of hydrophilic bioactive compounds (encapsulated elderberry extract). Moreover, the solid residue resulting from the extraction of the polyphenols was characterized, and the lipophilic compounds retained in this residue were analyzed. The results show an important antioxidant activity of the extracts obtained, mainly linked to the high content of anthocyanins, hydroxycinnamic acids, and flavonols. The lipophilic bioactive compounds were characterized by a high content of essential fatty acids and high proportions of tocopherols. The information and results of the present study provide novel information about both lipophilic and hydrophilic compounds for the integral valorization of elderberries to promote a circular economy strategy.
Collapse
Affiliation(s)
- Rubén Domínguez-Valencia
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Aurora Cittadini
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Instituto de Innovación y Sostenibilidad en la Cadena Agroalimentaria (IS-FOOD), Universidad Pública de Navarra (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
3
|
Evaluation of different blackcurrant seed ingredients in meatballs by using conventional quality assessment and untargeted metabolomics. Meat Sci 2023; 200:109160. [PMID: 36931151 DOI: 10.1016/j.meatsci.2023.109160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Blackcurrants are sources of phenolic compounds, such as anthocyanins, possessing strong antioxidant, antimicrobial and antifungal activity. Therefore, the addition of different blackcurrant pomace ingredients may affect the overall meat quality. The actual chemical profile and bioactivities of blackcurrant pomace ingredients may strongly depend on its preparation; for instance, in our study the highest values of the in vitro antioxidant capacity were determined for blackcurrant seeds after supercritical CO2 extraction. Starting from these background conditions, in this work, we evaluated the ability of three different concentrations (namely 1, 3, and 5% w/w) of blackcurrant (BC) seeds following EtOH/water extraction (BC-AE), before supercritical fluid CO2 extraction (BC-RS), and after supercritical fluid CO2 extraction (BC-ASC) to affect different quality parameters of pork meatballs. These latter were stored considering three different time-points, namely 1, 3 and 6 days at 4 °C packed under modified atmosphere (i.e., 70% N2 and 30% CO2). Untargeted metabolomics allowed to identify several lipid and protein-related oxidation products involved in redox reactions, such as 13-L-hydroperoxylinoleic acid, (12S,13S)-epoxylinolenic acid, 9,10-epoxyoctadecenoic acid, glutathione, glutathione disulfide, L-carnosine, l-ascorbic acid, and tocotrienols. Besides, multivariate statistics applied on the metabolomics dataset confirmed that the chemical profile of meatballs was an exclusive combination of both BC inclusion levels and type of BC-ingredients considered. Our findings showed that the higher the concentration of BC seed ingredients in meatballs, the lower the cooking loss and the higher the fibre content. Also, all the ingredients significantly affected the colour parameters.
Collapse
|
4
|
Hashemi B, Shiri F, Švec F, Nováková L. Green solvents and approaches recently applied for extraction of natural bioactive compounds. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Bioactive Compounds from Elderberry: Extraction, Health Benefits, and Food Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10112288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elderberries are appreciated for their antioxidant properties. Sambucus nigra L. is an extremely abundant plant in the wild flora of Romania, but it is underutilized. Elderberry is used in modern and traditional medicine due to the complex chemical composition of the fruit. The content of phenolic compounds is high (516–8974 mg/100 g DW), of which the most abundant are anthocyanins. Phenolic compounds are known for their beneficial effects on the body. Numerous studies have demonstrated the antioxidant capacity, antibacterial, antiviral, antidiabetic, and anticancer properties of the fruit. It is considered that most of the therapeutic properties of elderberries can be correlated with the antioxidant activity they have. S. nigra fruits are also used in the food industry. Some studies have shown that the therapeutic properties of elderberries can also be found in the products obtained from them. Therefore, this review aimed to describe the chemical composition of elderberries and products obtained from them, the positive effects on the body, and the methods by which the bioactive compounds can be extracted from the fruits and analyzed. This manuscript is useful for extraction optimization and characterization in order to valorize new functional foods, food supplements, and also in new pharmaceutical products.
Collapse
|
6
|
Supercritical CO2 extraction of caraway (Carum carvi L.) seed: Optimization and parametric interaction studies using design of experiments. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Black Elderberry Press Cake as a Source of Bioactive Ingredients Using Green-Based Extraction Approaches. BIOLOGY 2022; 11:biology11101465. [PMID: 36290369 PMCID: PMC9598939 DOI: 10.3390/biology11101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
To study the efficiency of two green-based extraction techniques for the isolation of bioactive constituents from black elderberry press cake, changes in phenolic compounds and main anthocyanin contents were analyzed. Polyphenolic content was correlated with antioxidant and antidiabetic potential by radical-scavenging activity and monitoring of α-amylase inhibition. Black elderberry press-cake extracts were obtained by ultrasound-assisted (UAE) and microwave-assisted (MAE) extractions under different extraction conditions. High-performance liquid chromatography (HPLC) analysis revealed that cyanidin-3-sambubioside and cyanidin-3-glucoside were the principal anthocyanins in all the obtained extracts, with their content being highest in MAE obtained at 80 °C over 5 min. The same extract induced two-fold higher antioxidant activity (IC50 6.89 μg/mL) and α-amylase inhibitory potential (IC50 2.18 mg/mL) in comparison to UAE extracts. The main compositional differences between extracts obtained by the same extraction technique were assigned to the extraction temperature. A principal component analysis confirmed that the antidiabetic feature is to be attributed to the rich content of anthocyanins in black elderberry press cake. Our results indicate the great potential of underutilized black elderberry press cake for the development of novel food and herbal formulations due to notable anthocyanin contents highly correlated with antidiabetic activity.
Collapse
|
8
|
Milovanovic S, Lukic I, Kamiński P, Dębczak A, Klimkowska K, Tyśkiewicz K, Konkol M. Green manufacturing of high-value extracts from milk thistle seeds: Parameters that affect the supercritical CO2 extraction process. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Wei X, Yao J, Wang F, Wu D, Zhang R. Extraction, isolation, structural characterization, and antioxidant activity of polysaccharides from elderberry fruit. Front Nutr 2022; 9:947706. [PMID: 35928842 PMCID: PMC9343709 DOI: 10.3389/fnut.2022.947706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
The isolation, purification, and antioxidant activity of polysaccharides extracted from elderberry fruits were studied. Two neutral polysaccharides (EFP-0 and EFP-1) and three acidic polysaccharides (EFP-2, EFP-3, and EFP-4) were isolated from elderberry. EFP-0, EFP-1, EFP-2, EFP-3, and EFP-4 all contain arabinose, galactose, glucose, and mannose, with molecular weights of 1.7981 × 106, 7.0523 × 106, 7.7638 × 106, 4.3855 × 105, and 7.3173 × 105 Da, respectively. Structural characterization showed that the backbone of EFP-2 consisted of →4)-Manp (1→4)-β-D-Glcp (1→ and →4)-β-D-Glcp (1→5)-α-L-Araf (1→units, and T-α-L-Araf (1→ and T-β-D-Galp (1→ residues were detected by methylation analysis and NMR analysis. In addition, the MTT assay and zebrafish oxidative damage assay showed that EFP-2 had a protective effect on H2O2-damaged RAW264.7 cells in a dose-dependent manner, and zebrafish with the addition of EFP-2 would have low levels of ROS in vivo which showed significant antioxidant activity. Therefore, the results showed that the elderberry polysaccharides have antioxidant activity and can be used as potential antioxidants in functional foods.
Collapse
Affiliation(s)
- Xinxin Wei
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Junxiu Yao
- Key Laboratory for Genetics and Breeding in Forest Trees of Shandong Province, Shandong Academy of Forestry Science, Jinan, China
| | - Fangzhou Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
- Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Dejun Wu
- Key Laboratory for Genetics and Breeding in Forest Trees of Shandong Province, Shandong Academy of Forestry Science, Jinan, China
- *Correspondence: Dejun Wu,
| | - Rentang Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
- Rentang Zhang,
| |
Collapse
|
10
|
Anusha Siddiqui S, Redha AA, Esmaeili Y, Mehdizadeh M. Novel insights on extraction and encapsulation techniques of elderberry bioactive compounds. Crit Rev Food Sci Nutr 2022; 63:5937-5952. [PMID: 35021911 DOI: 10.1080/10408398.2022.2026290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Elderberry (Sambucus nigra L.) has been used in traditional medicine and as a supplement in many beverages and meals. Elderberry is a good source of bioactive flavonoids like quercetin, kaempferol, and rutin, as well as other phenolic compounds. Extraction techniques significantly influence the efficiency of extraction of bioactive compounds. Green chemistry elements such as safety, environmental friendliness, run-down or at least minimal contaminants, efficiency, and economic criteria should all be addressed by an effective bioactive extraction process. Furthermore, micro/nanoencapsulation technologies are particularly effective for increasing bioavailability and bioactive component stability. SCOPE AND APPROACH This review article comprehensively describes new developments in elderberry extraction and encapsulation. Elderberry is largely employed in the food and pharmaceutical industries due to its health-promoting and sensory characteristics. Elderberry has traditionally been used as a diaphoretic, antipyretic, diuretic, antidepressant, and antitumor agent in folk medicine. KEY FINDINGS AND CONCLUSIONS Conventional extraction methods (e.g. maceration and Soxhelt extraction) as well as advanced green techniques (e.g. supercritical fluids, pulsed electric field, emulsion liquid extraction, microwave, and ultrasonic extraction) have been used to extract bioactives from elderberry. Over the other protective measures, encapsulation techniques are particularly recommended to protect the bioactive components found in elderberry. Microencapsulation (spray drying, freeze drying, extrusion, emulsion systems) and nanoencapsulation (nanoemulsions, solid lipid nanoparticles and nanodispersions, nanohydrogels, electrospinning, nano spray drying) approaches for elderberry bioactives have been examined in this regard.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Ali Ali Redha
- Chemistry Department, School of Science, Loughborough University, Loughborough, United Kingdom
| | - Yasaman Esmaeili
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Mehdizadeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
11
|
Supercritical Fluid Extraction Kinetics of Cherry Seed Oil: Kinetics Modeling and ANN Optimization. Foods 2021; 10:foods10071513. [PMID: 34209239 PMCID: PMC8307763 DOI: 10.3390/foods10071513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
This study was primarily focused on the supercritical fluid extraction (SFE) of cherry seed oil and the optimization of the process using sequential extraction kinetics modeling and artificial neural networks (ANN). The SFE study was organized according to Box-Behnken design of experiment, with additional runs. Pressure, temperature and flow rate were chosen as independent variables. Five well known empirical kinetic models and three mass-transfer kinetics models based on the Sovová’s solution of SFE equations were successfully applied for kinetics modeling. The developed mass-transfer models exhibited better fit of experimental data, according to the calculated statistical tests (R2, SSE and AARD). The initial slope of the SFE curve was evaluated as an output variable in the ANN optimization. The obtained results suggested that it is advisable to lead SFE process at an increased pressure and CO2 flow rate with lower temperature and particle size values to reach a maximal initial slope.
Collapse
|
12
|
Nagybákay NE, Syrpas M, Vilimaitė V, Tamkutė L, Pukalskas A, Venskutonis PR, Kitrytė V. Optimized Supercritical CO 2 Extraction Enhances the Recovery of Valuable Lipophilic Antioxidants and Other Constituents from Dual-Purpose Hop ( Humulus lupulus L.) Variety Ella. Antioxidants (Basel) 2021; 10:antiox10060918. [PMID: 34204047 PMCID: PMC8228826 DOI: 10.3390/antiox10060918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
The article presents the optimization of supercritical CO2 extraction (SFE-CO2) parameters using response surface methodology (RSM) with central composite design (CCD) in order to produce single variety hop (cv. Ella) extracts with high yield and strong in vitro antioxidant properties. Optimized SFE-CO2 (37 MPa, 43 °C, 80 min) yielded 26.3 g/100 g pellets of lipophilic fraction. This extract was rich in biologically active α- and β-bitter acids (522.8 and 345.0 mg/g extract, respectively), and exerted 1481 mg TE/g extract in vitro oxygen radical absorbance capacity (ORAC). Up to ~3-fold higher extraction yield, antioxidant recovery (389.8 mg TE/g pellets) and exhaustive bitter acid extraction (228.4 mg/g pellets) were achieved under the significantly shorter time compared to the commercially used one-stage SFE-CO2 at 10–15 MPa and 40 °C. Total carotenoid and chlorophyll content was negligible, amounting to <0.04% of the total extract mass. Fruity, herbal, spicy and woody odor of extracts could be attributed to the major identified volatiles, namely β-pinene, β-myrcene, β-humulene, α-humulene, α-selinene and methyl-4-decenoate. Rich in valuable bioactive constituents and flavor compounds, cv. Ella hop SFE-CO2 extracts could find multipurpose applications in food, pharmaceutical, nutraceutical and cosmetics industries.
Collapse
|
13
|
The Application of Supercritical Fluids Technology to Recover Healthy Valuable Compounds from Marine and Agricultural Food Processing By-Products: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9020357] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Food by-products contain a remarkable source of bioactive molecules with many benefits for humans; therefore, their exploitation can be an excellent opportunity for the food sector. Moreover, the revalorization of these by-products to produce value-added compounds is considered pivotal for sustainable growth based on a circular economy. Traditional extraction technologies have several drawbacks mainly related to the consumption of hazardous organic solvents, and the high temperatures maintained for long extraction periods which cause the degradation of thermolabile compounds as well as a low extraction efficiency of desired compounds. In this context, supercritical fluid extraction (SFE) has been explored as a suitable green technology for the recovery of a broad range of bioactive compounds from different types of agri-food wastes. This review describes the working principle and development of SFE technology to valorize by-products from different origin (marine, fruit, vegetable, nuts, and other plants). In addition, the potential effects of the extracted active substances on human health were also approached.
Collapse
|
14
|
Chaouch MA, Benvenuti S. The Role of Fruit by-Products as Bioactive Compounds for Intestinal Health. Foods 2020; 9:E1716. [PMID: 33266454 PMCID: PMC7700329 DOI: 10.3390/foods9111716] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
The fruit processing industry generates large amounts of wastes (pomace, seeds, peels) that causes negative environmental impact with considerable treatment expenses. Nevertheless, various studies demonstrated that these by-products are still rich in bioactive compounds, especially dietary fibres and phenolic compounds, thus leading to significant chemical, physical and biological properties. These characteristics make fruits by-products a good source for new supplements in food products having important effect on intestinal function. Thus, the aim of this review is to evaluate the different bioactive compounds isolated from fruit by-products and to analyse their application in various formulations for the food and nutraceutical industries. In consideration of the biological properties of these compounds, their role in the functioning and action on intestine and gut flora was discussed.
Collapse
Affiliation(s)
- Mohamed Aymen Chaouch
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | | |
Collapse
|
15
|
Extraction of anthocyanins from grape pomace by using supercritical carbon dioxide. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Tamkutė L, Pukalskas A, Syrpas M, Urbonavičienė D, Viškelis P, Venskutonis PR. Fractionation of cranberry pomace lipids by supercritical carbon dioxide extraction and on-line separation of extracts at low temperatures. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
High-Pressure Extraction of Antioxidant-Rich Fractions from Shrubby Cinquefoil ( Dasiphora fruticosa L. Rydb.) Leaves: Process Optimization and Extract Characterization. Antioxidants (Basel) 2020; 9:antiox9060457. [PMID: 32466350 PMCID: PMC7346160 DOI: 10.3390/antiox9060457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
Dasiphora fruticosa (basionym Potentilla fruticosa) is a shrub, known in traditional medicine for centuries. Due to the wide range of pharmacological effects, interest and applications of D. fruticosa extracts are continually increasing; however, reports on optimization of extraction conditions are scarce. Herein, a multi-step high-pressure extraction process with increasing polarity solvents was developed to isolate valuable fractions from D. fruticosa leaves. Supercritical CO2 extraction recovered 2.46 g/100 g of lipophilic fraction, rich in polyunsaturated fatty acids. Further, pressurized liquid extractions (PLE) with acetone, ethanol, and water were applied to obtain antioxidant-rich higher polarity extracts. Under optimized PLE conditions, the cumulative polar fraction yield was 29.98 g/100 g. Ethanol fraction showed the highest yield (15.3 g/100 g), TPC values (148.4 mg GAE/g), ABTS•+, and DPPH• scavenging capacity (161.1 and 151.8 mg TE/g, respectively). PLE was more efficient than conventional solid–liquid extraction in terms of extraction time, extract yields, and in vitro antioxidant capacity. Phytochemical characterization of PLE extracts by UPLC-Q-TOF-MS revealed the presence of hyperoside, ellagic acid, among other health beneficial phenolic substances. Τhis study highlights the potential of high-pressure extraction techniques to isolate antioxidant-rich fractions from D. fruticosa leaves with multipurpose applications, including the prevention and treatment of chronic diseases.
Collapse
|
18
|
Phytochemical Composition, Antioxidant and Antiproliferative Activities of Defatted Sea Buckthorn ( Hippophaë rhamnoides L.) Berry Pomace Fractions Consecutively Recovered by Pressurized Ethanol and Water. Antioxidants (Basel) 2020; 9:antiox9040274. [PMID: 32218308 PMCID: PMC7222216 DOI: 10.3390/antiox9040274] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed at valorisation of sea buckthorn pomace (SBP) for the production of extracts containing valuable bioactive compounds. For this purpose, SBP defatted by supercritical CO2 was subjected to consecutive fractionation with pressurized ethanol and water, which yielded 11.9% and 4.8% of extracts, respectively. The extracts were evaluated for their antioxidant potential, phytochemical composition and antiproliferative effects against cancer cells. Water extracts exhibited remarkably higher values in Folin-Ciocalteu assay of total phenolic content, oxygen radical absorbance capacity (ORAC), ABTS●+/DPPH● scavenging and cellular antioxidant activity (CAA) assays and more efficiently inhibited proliferation of HT29 cells at non-cytotoxic concentrations measured in non-tumoral Caco2 cells. Among 28 detected and 21 quantified phytochemicals, flavonols with the structures of isorhamnetin (five compounds), quercetin (three compounds), kaempferol (three compounds) glycosides and catechin (six compounds) were the most abundant in the extracts. In conclusion, the applied method of fractionation of SBP produces promising natural antioxidant complexes with antiproliferative properties that could find potential applications in nutraceuticals, functional foods and cosmeceuticals.
Collapse
|