1
|
Dong W, Fu D, Zhang Z, Wu Z, Zhao H, Liu W. Efficient electrocatalytic CO 2 reduction to ethylene using cuprous oxide derivatives. Front Chem 2024; 12:1482168. [PMID: 39469416 PMCID: PMC11514382 DOI: 10.3389/fchem.2024.1482168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Copper-based materials play a vital role in the electrochemical transformation of CO2 into C2/C2+ compounds. In this study, cross-sectional octahedral Cu2O microcrystals were prepared in situ on carbon paper electrodes via electrochemical deposition. The morphology and integrity of the exposed crystal surface (111) were meticulously controlled by adjusting the deposition potential, time, and temperature. These cross-sectional octahedral Cu2O microcrystals exhibited high electrocatalytic activity for ethylene (C2H4) production through CO2 reduction. In a 0.1 M KHCO3 electrolyte, the Faradaic efficiency for C2H4 reached 42.0% at a potential of -1.376 V vs. RHE. During continuous electrolysis over 10 h, the FE (C2H4) remained stable around 40%. During electrolysis, the fully exposed (111) crystal faces of Cu2O microcrystals are reduced to Cu0, which enhances C-C coupling and could serve as the main active sites for catalyzing the conversion of CO2 to C2H4.
Collapse
Affiliation(s)
- Wenfei Dong
- Ningxia Key Laboratory of Green Catalytic Materials and Technology, College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, China
| | - Dewen Fu
- Ningxia Key Laboratory of Green Catalytic Materials and Technology, College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, China
| | - Zhifeng Zhang
- Ningxia Key Laboratory of Green Catalytic Materials and Technology, College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, China
| | - Zhiqiang Wu
- Ningxia Key Laboratory of Green Catalytic Materials and Technology, College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, China
| | - Hongjian Zhao
- Ningxia Key Laboratory of Green Catalytic Materials and Technology, College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, China
| | - Wangsuo Liu
- Department of Chemical and Environmental Engineering, Hetao College, Bayannur, Inner Mongolia, China
| |
Collapse
|
2
|
Wang J, Shi M, Tang LP, Ruan SN, Chao YY, Chen P, Shen FC. Customizing Ionic Liquids Functionalized MOFs Composites with Hydrophobic Interface for Electrochemical CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53775-53784. [PMID: 39315993 DOI: 10.1021/acsami.4c10640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2RR) to generate feedstocks for chemical products (e.g., carbon monoxide, CO) offers a highly attractive method for achieving the closure of the carbon cycle. Ionic liquids (ILs)-functionalized Cu-based catalyst Cu2O-HKUST-1/IL1/PTFE was developed, configuring metal-organic frameworks(MOFs) based materials with high adsorption and multiple active sites. The modified electrocatalysts exhibited high specific surface area, strong CO2 adsorption capacity, abundant active sites, and fast charge transfer rate. The nucleophilic active site of deprotonation at the C2 site in imidazole ILs further improved the selectivity of proton migration and CO product generation, which was verified through DFT calculations for the low Gibbs free energy of the generated intermediate interactions. In addition, the hydrophobic interface constructed by PTFE facilitated the inhibition of the hydrogen evolution reaction (HER) and significantly improved the efficiency of CO2 electroreduction. The Cu2O-HKUST-1/IL1/PTFE catalyst manifested a high C1 Faraday efficiency (FE) up to 96.5% and in particular 92.7% for FECO at -1.7 V vs RHE. The present work provides an efficient strategy for configuring ILs-functionalized MOFs-based materials with good hydrophobic interfaces to enhance the efficiency of CO2 electroreduction to C1 products.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu Anhui 241000, P. R. China
| | - Meng Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu Anhui 241000, P. R. China
| | - Li-Ping Tang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu Anhui 241000, P. R. China
| | - Sheng-Nan Ruan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu Anhui 241000, P. R. China
| | - Ying-Ying Chao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu Anhui 241000, P. R. China
| | - Peng Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu Anhui 241000, P. R. China
| | - Feng-Cui Shen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu Anhui 241000, P. R. China
| |
Collapse
|
3
|
Zhang X, Sun H, Wang YR, Shi Z, Zhong RL, Sun CY, Liu JY, Su ZM, Lan YQ. Dynamic Control of Asymmetric Charge Distribution for Electrocatalytic Urea Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408510. [PMID: 39155823 DOI: 10.1002/adma.202408510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Constructing dual catalytic sites with charge density differences is an efficient way to promote urea electrosynthesis from parallelNO 3 - ${\mathrm{NO}}_3^ - $ and CO2 reduction yet still challenging in static system. Herein, a dynamic system is constructed by precisely controlling the asymmetric charge density distribution in an Au-doped coplanar Cu7 clusters-based 3D framework catalyst (Au@cpCu7CF). In Au@cpCu7CF, the redistributed charge between Au and Cu atoms changed periodically with the application of pulse potentials switching between -0.2 and -0.6 V and greatly facilitated the electrosynthesis of urea. Compared with the static condition of pristine cpCu7CF (FEurea = 5.10%), the FEurea of Au@cpCu7CF under pulsed potentials is up to 55.53%. Theoretical calculations demonstrated that the high potential of -0.6 V improved the adsorption of *HNO2 and *NH2 on Au atoms and inhibited the reaction pathways of by-products. While at the low potential of -0.2 V, the charge distribution between Au and Cu atomic sites facilitated the thermodynamic C-N coupling step. This work demonstrated the important role of asymmetric charge distribution under dynamic regulation for urea electrosynthesis, providing a new inspiration for precise control of electrocatalysis.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, P. R. China
| | - Hao Sun
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, P. R. China
| | - Yi-Rong Wang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhan Shi
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, P. R. China
| | - Rong-Lin Zhong
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, P. R. China
| | - Chun-Yi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Jing-Yao Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, P. R. China
| | - Zhong-Min Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, P. R. China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Senthilkumar AK, Kumar M, Samuel MS, Ethiraj S, Shkir M, Chang JH. Recent advancements in carbon/metal-based nano-catalysts for the reduction of CO 2 to value-added products. CHEMOSPHERE 2024; 364:143017. [PMID: 39103104 DOI: 10.1016/j.chemosphere.2024.143017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/11/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Due to the increased human activities in burning of fossil fuels and deforestation, the CO2 level in the atmosphere gets increased up to 415 ppm; although it is an essential component for plant growth, an increased level of CO2 in the atmosphere leads to global warming and catastrophic climate change. Various conventional methods are used to capture and utilize CO2, among that a feasible and eco-friendly technique for creating value-added products is the CO2RR. Photochemical, electrochemical, thermochemical, and biochemical approaches can be used to decrease the level of CO2 in the atmosphere. The introduction of nano-catalysts in the reduction process helps in the efficient conversion of CO2 with improved selectivity, increased efficiency, and also enhanced stability of the catalyst materials. Thus, in this mini-review of nano-catalysts, some of the products formed during the reduction process, like CH3OH, C2H5OH, CO, HCOOH, and CH4, are explained. Among different types of metal catalysts, carbonaceous, single-atom catalysts, and MOF based catalysts play a significant role in the CO2 RR process. The effects of the catalyst material on the surface area, composition, and structural alterations are covered in depth. To aid in the design and development of high-performance nano-catalysts for value-added products, the current state, difficulties, and future prospects are provided.
Collapse
Affiliation(s)
- Arun Kumar Senthilkumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan; Department of Applied Chemistry, Chaoyang University of Technology, Taichung City, 413310, Taiwan
| | - Mohanraj Kumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| | - Melvin S Samuel
- Department of Civil, Construction & Environmental Engineering, Marquette University, 1637 W Wisconsin Ave, Milwaukee, WI, 53233, USA
| | - Selvarajan Ethiraj
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Mohd Shkir
- Department of Physics, College of Science, King Khalid University, P.O Box-9004, Abha, 61413, Saudi Arabia
| | - Jih-Hsing Chang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| |
Collapse
|
5
|
Yang S, Chen XM, Shao T, Wei Z, Chen ZN, Cao R, Cao M. Engineering highly selective CO 2 electroreduction in Cu-based perovskites through A-site cation manipulation. Phys Chem Chem Phys 2024; 26:17769-17776. [PMID: 38873788 DOI: 10.1039/d4cp00845f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Perovskites exhibit considerable potential as catalysts for various applications, yet their performance modulation in the carbon dioxide reduction reaction (CO2RR) remains underexplored. In this study, we report a strategy to enhance the electrocatalytic carbon dioxide (CO2) reduction activity via Ce-doped La2CuO4 (LCCO) and Sr-doped La2CuO4 (LSCO) perovskite oxides. Specifically, compared to pure phase La2CuO4 (LCO), the Faraday efficiency (FE) for CH4 of LCCO at -1.4 V vs. RHE (reversible hydrogen electrode) is improved from 38.9% to 59.4%, and the FECO2RR of LSCO increased from 68.8% to 85.4%. In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy spectra results indicate that the doping of A-site ions promotes the formation of *CHO and *HCOO, which are key intermediates in the production of CH4, compared to the pristine La2CuO4. X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and double-layer capacitance (Cdl) outcomes reveal that heteroatom-doped perovskites exhibit more oxygen vacancies and higher electrochemical active surface areas, leading to a significant improvement in the CO2RR performance of the catalysts. This study systematically investigates the effect of A-site ion doping on the catalytic activity center Cu and proposes a strategy to improve the catalytic performance of perovskite oxides.
Collapse
Affiliation(s)
- Shuaibing Yang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Xiao-Min Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Tao Shao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Zongnan Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Zhe-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Minna Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Ma J, Huang F, Xu A, Wei D, Chen X, Zhao W, Chen Z, Yin X, Zhu J, He H, Xu J. Three-Phase-Heterojunction Cu/Cu 2O-Sb 2O 3 Catalyst Enables Efficient CO 2 Electroreduction to CO and High-Performance Aqueous Zn-CO 2 Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306858. [PMID: 38414314 DOI: 10.1002/advs.202306858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Indexed: 02/29/2024]
Abstract
Zn-CO2 batteries are excellent candidates for both electrical energy output and CO2 utilization, whereas the main challenge is to design electrocatalysts for electrocatalytic CO2 reduction reactions with high selectivity and low cost. Herein, the three-phase heterojunction Cu-based electrocatalyst (Cu/Cu2O-Sb2O3-15) is synthesized and evaluated for highly selective CO2 reduction to CO, which shows the highest faradaic efficiency of 96.3% at -1.3 V versus reversible hydrogen electrode, exceeding the previously reported best values for Cu-based materials. In situ spectroscopy and theoretical analysis indicate that the Sb incorporation into the three-phase heterojunction Cu/Cu2O-Sb2O3-15 nanomaterial promotes the formation of key *COOH intermediates compared with the normal Cu/Cu2O composites. Furthermore, the rechargeable aqueous Zn-CO2 battery assembled with Cu/Cu2O-Sb2O3-15 as the cathode harvests a peak power density of 3.01 mW cm-2 as well as outstanding cycling stability of 417 cycles. This research provides fresh perspectives for designing advanced cathodic electrocatalysts for rechargeable Zn-CO2 batteries with high-efficient electricity output together with CO2 utilization.
Collapse
Affiliation(s)
- Junjie Ma
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Fang Huang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Aihao Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Dong Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Xiangyu Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Wencan Zhao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Zhengjun Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Xucai Yin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Jinliang Zhu
- School of Resources, Environment, and Materials, Collaborative Innovation Center of Sustainable Energy Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Huibing He
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
7
|
Xu C, Shi Y, Zou X, Xu H, Zeng L, Li Z, Huang Q. Elaborate tree-like Cu-Ag clusters from green electrodeposition for efficiently electrocatalyzing CO 2 conversion into syngas. Dalton Trans 2023; 52:16018-16026. [PMID: 37850314 DOI: 10.1039/d3dt02861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The electrocatalytic carbon dioxide reduction (CO2RR) is one of the emerging technologies that can effectively transform carbon dioxide (CO2) into valuable products. Electrocatalysts deriving from green synthesis methods will significantly help to establish a new green carbon cycle. Herein, a green electrodeposition method without additional reducing agents was used to synthesize Cu-Ag bimetallic catalysts, and it is shown that the combination of Cu and Ag obviously affects the morphology of the Cu-Ag catalysts, resulting in the formation of elaborate tree-like Cu-Ag clusters. An as-deposited Cu-Ag/carbon fiber (Cu-Ag/CF) catalyst exhibits high activity, selectivity and stability toward the CO2RR; in particular, the elaborate dendritic Cu-Ag/CF can efficiently reduce CO2 to syngas with high selectivity (Faradaic efficiency (FE) > 95%) at a low onset potential (-0.5 V). This work provides a rational strategy to overcome the significantly different reaction capacities during the reduction of Ag+ and Cu2+, leading to the formation of a controlled morphology of Cu-Ag, which is favourable for the design and development of highly efficient Cu or Ag catalysts via green methods for electrocatalyzing the CO2RR.
Collapse
Affiliation(s)
- Cuiping Xu
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Yuande Shi
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fuqing 350300, China
| | - Xiaohuan Zou
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Hongyang Xu
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Lingxing Zeng
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Zhongshui Li
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fuqing 350300, China
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, China
- Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Qiufeng Huang
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China.
- Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
8
|
Yin L, Li Z, Feng J, Zhou P, Qiao L, Liu D, Yi Z, Ip WF, Luo G, Pan H. Facile and Stable CuInO 2 Nanoparticles for Efficient Electrochemical CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47135-47144. [PMID: 37782682 DOI: 10.1021/acsami.3c11342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Searching for electrocatalysts for the electrochemical CO2 reduction reaction (e-CO2RR) with high selectivity and stability remains a significant challenge. In this study, we design a Cu-CuInO2 composite with stable states of Cu0/Cu+ by electrochemically depositing indium onto CuCl-decorated Cu foil. The catalyst displays superior selectivity toward the CO product, with a maximal Faraday efficiency of 89% at -0.9 V vs the reversible hydrogen electrode, and maintains impressive stability up to 27 h with a retention rate of >76% in Faraday efficiency. Our systematical characterizations reveal that the catalyst's high performance is attributed to CuInO2 nanoparticles. First-principles calculations further confirm that CuInO2(012) is more conducive to CO generation than Cu(111) under applied potential and presents a higher energy barrier than Cu(111) for the hydrogen evolution reaction. These theoretical predictions are consistent with our experimental observations, suggesting that CuInO2 nanoparticles offer a facile catalyst with a high selectivity and stability for e-CO2RR.
Collapse
Affiliation(s)
- Lihong Yin
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, P. R. China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zhiqiang Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Jinxian Feng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, P. R. China
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, P. R. China
| | - Lulu Qiao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, P. R. China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, P. R. China
| | - Zhibin Yi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao 999078, P. R. China
| | - Guangfu Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, P. R. China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao 999078, P. R. China
| |
Collapse
|
9
|
Pérez-Sequera AC, Diaz-Perez MA, Lara Angulo MA, Holgado JP, Serrano-Ruiz JC. Facile Synthesis of Heterogeneous Indium Nanoparticles for Formate Production via CO 2 Electroreduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1304. [PMID: 37110888 PMCID: PMC10142922 DOI: 10.3390/nano13081304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
In this study, a simple and scalable method to obtain heterogeneous indium nanoparticles and carbon-supported indium nanoparticles under mild conditions is described. Physicochemical characterization by X-ray diffraction (XRD), X-ray photoelectron microscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed heterogeneous morphologies for the In nanoparticles in all cases. Apart from In0, XPS revealed the presence of oxidized In species on the carbon-supported samples, whereas these species were not observed for the unsupported samples. The best-in-class catalyst (In50/C50) exhibited a high formate Faradaic efficiency (FE) near the unit (above 97%) at -1.6 V vs. Ag/AgCl, achieving a stable current density around -10 mA·cmgeo-2, in a common H-cell. While In0 sites are the main active sites for the reaction, the presence of oxidized In species could play a role in the improved performance of the supported samples.
Collapse
Affiliation(s)
- Ana Cristina Pérez-Sequera
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avda. de las Universidades s/n, 41704 Dos Hermanas, Spain
| | - Manuel Antonio Diaz-Perez
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avda. de las Universidades s/n, 41704 Dos Hermanas, Spain
| | - Mayra Anabel Lara Angulo
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avda. de las Universidades s/n, 41704 Dos Hermanas, Spain
| | - Juan P. Holgado
- Instituto de Ciencia de Materiales de Sevilla and Departamento de Química Inorgánica, CSIC-Univ de Sevilla, Av. Américo Vespucio, 49, 41092 Seville, Spain
| | - Juan Carlos Serrano-Ruiz
- Materials and Sustainability Group, Department of Engineering, Universidad Loyola Andalucía, Avda. de las Universidades s/n, 41704 Dos Hermanas, Spain
| |
Collapse
|
10
|
Rusdan NA, Timmiati SN, Isahak WNRW, Yaakob Z, Lim KL, Khaidar D. Recent Application of Core-Shell Nanostructured Catalysts for CO 2 Thermocatalytic Conversion Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3877. [PMID: 36364653 PMCID: PMC9655136 DOI: 10.3390/nano12213877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Carbon-intensive industries must deem carbon capture, utilization, and storage initiatives to mitigate rising CO2 concentration by 2050. A 45% national reduction in CO2 emissions has been projected by government to realize net zero carbon in 2030. CO2 utilization is the prominent solution to curb not only CO2 but other greenhouse gases, such as methane, on a large scale. For decades, thermocatalytic CO2 conversions into clean fuels and specialty chemicals through catalytic CO2 hydrogenation and CO2 reforming using green hydrogen and pure methane sources have been under scrutiny. However, these processes are still immature for industrial applications because of their thermodynamic and kinetic limitations caused by rapid catalyst deactivation due to fouling, sintering, and poisoning under harsh conditions. Therefore, a key research focus on thermocatalytic CO2 conversion is to develop high-performance and selective catalysts even at low temperatures while suppressing side reactions. Conventional catalysts suffer from a lack of precise structural control, which is detrimental toward selectivity, activity, and stability. Core-shell is a recently emerged nanomaterial that offers confinement effect to preserve multiple functionalities from sintering in CO2 conversions. Substantial progress has been achieved to implement core-shell in direct or indirect thermocatalytic CO2 reactions, such as methanation, methanol synthesis, Fischer-Tropsch synthesis, and dry reforming methane. However, cost-effective and simple synthesis methods and feasible mechanisms on core-shell catalysts remain to be developed. This review provides insights into recent works on core-shell catalysts for thermocatalytic CO2 conversion into syngas and fuels.
Collapse
Affiliation(s)
- Nisa Afiqah Rusdan
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | | | - Wan Nor Roslam Wan Isahak
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Univesiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Zahira Yaakob
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Univesiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Kean Long Lim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Dalilah Khaidar
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Univesiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
11
|
Kim J, Kim H, Han GH, Hong S, Park J, Bang J, Kim SY, Ahn SH. Electrodeposition: An efficient method to fabricate self-supported electrodes for electrochemical energy conversion systems. EXPLORATION (BEIJING, CHINA) 2022; 2:20210077. [PMID: 37323706 PMCID: PMC10190982 DOI: 10.1002/exp.20210077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/09/2022] [Indexed: 06/17/2023]
Abstract
The development of electrocatalysts for energy conversion systems is essential for alleviating environmental problems and producing useful energy sources as alternatives to fossil fuels. Improving the catalytic performance and stability of electrocatalysts is a major challenge in the development of energy conversion systems. Moreover, understanding their electrode structure is important for enhancing the energy efficiency. Recently, binder-free self-supported electrodes have been investigated because the seamless contact between the electrocatalyst and substrate minimizes the contact resistance as well as facilitates fast charge transfer at the catalyst/substrate interface and high catalyst utilization. Electrodeposition is an effective and facile method for fabricating self-supported electrodes in aqueous solutions under mild conditions. Facile fabrication without a polymer binder and controlability of the compositional and morphological properties of the electrocatalyst make electrodeposition methods suitable for enhancing the performance of energy conversion systems. Herein, we summarize recent research on self-supported electrodes fabricated by electrodeposition for energy conversion reactions, particularly focusing on cathodic reactions of electrolyzer system such as hydrogen evolution, electrochemical CO2 reduction, and electrochemical N2 reduction reactions. The deposition conditions, morphological and compositional properties, and catalytic performance of the electrocatalyst are reviewed. Finally, the prospective directions of electrocatalyst development for energy conversion systems are discussed.
Collapse
Affiliation(s)
- Junhyeong Kim
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoulRepublic of Korea
| | - Hyunki Kim
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoulRepublic of Korea
| | - Gyeong Ho Han
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoulRepublic of Korea
| | - Seokjin Hong
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoulRepublic of Korea
| | - Juhae Park
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoulRepublic of Korea
| | - Junbeom Bang
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoulRepublic of Korea
| | - Soo Young Kim
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Sang Hyun Ahn
- School of Chemical Engineering and Material ScienceChung‐Ang UniversitySeoulRepublic of Korea
| |
Collapse
|
12
|
Wang F, Zhang W, Wan H, Li C, An W, Sheng X, Liang X, Wang X, Ren Y, Zheng X, Lv D, Qin Y. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Zhang W, Jin Z, Chen Z. Rational-Designed Principles for Electrochemical and Photoelectrochemical Upgrading of CO 2 to Value-Added Chemicals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105204. [PMID: 35072349 PMCID: PMC8948570 DOI: 10.1002/advs.202105204] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Indexed: 05/25/2023]
Abstract
The chemical transformation of carbon dioxide (CO2 ) has been considered as a promising strategy to utilize and further upgrade it to value-added chemicals, aiming at alleviating global warming. In this regard, sustainable driving forces (i.e., electricity and sunlight) have been introduced to convert CO2 into various chemical feedstocks. Electrocatalytic CO2 reduction reaction (CO2 RR) can generate carbonaceous molecules (e.g., formate, CO, hydrocarbons, and alcohols) via multiple-electron transfer. With the assistance of extra light energy, photoelectrocatalysis effectively improve the kinetics of CO2 conversion, which not only decreases the overpotentials for CO2 RR but also enhances the lifespan of photo-induced carriers for the consecutive catalytic process. Recently, rational-designed catalysts and advanced characterization techniques have emerged in these fields, which make CO2 -to-chemicals conversion in a clean and highly-efficient manner. Herein, this review timely and thoroughly discusses the recent advancements in the practical conversion of CO2 through electro- and photoelectrocatalytic technologies in the past 5 years. Furthermore, the recent studies of operando analysis and theoretical calculations are highlighted to gain systematic insights into CO2 RR. Finally, the challenges and perspectives in the fields of CO2 (photo)electrocatalysis are outlined for their further development.
Collapse
Affiliation(s)
- Wenjun Zhang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsJiangsu Province Key Laboratory of Green Biomass‐based Fuels and ChemicalsCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic ChemistryMOE Key Laboratory of High Performance Polymer Materials and TechnologyJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Zupeng Chen
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsJiangsu Province Key Laboratory of Green Biomass‐based Fuels and ChemicalsCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037China
| |
Collapse
|
14
|
Zhang W, Zhao X, Niu W, Yu H, Wan T, Liu G, Zhang D, Wang Y. ZIF-67-derived N-doped double layer carbon cage as efficient catalyst for oxygen reduction reaction. NANOTECHNOLOGY 2021; 33:065409. [PMID: 34724648 DOI: 10.1088/1361-6528/ac3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The slow kinetic of oxygen reduction reaction (ORR) hampers the practical application of energy conversion devices, such as fuel cells, metal-air batteries. Here, an efficient ORR electrocatalyst consists of Co, Ni co-decorated nitrogen-doped double shell hollow carbon cage (Ni-Co@NHC) was fabricated by pyrolyzing Ni-doped polydopamine wrapped ZIF-67. During the preparation, polydopamine served as a protective layer can effectively prevent the aggregation of Co and Ni nanoparticles during the pyrolysis process, and at the same time forming a carbon layer to grow a double layer carbon cage. This unique hollow structure endows the catalyst with a high specific surface area as well as more exposed active sites. Also benefited from the synergistic effect between Ni and Co nanoparticles, the Ni-Co@NHC catalyst leads to an outstanding ORR performance of half-wave potential (E1/2, 0.862 V), outperforms that of commercial Pt/C catalyst. Additionally, when Ni-Co@NHC was used in the cathode for the zinc-air battery, the cell exhibits high power density (108 mW cm-2) and high specific capacity (806 mAh g-1) at 20 mA cm-2outperforming Pt/C. This work offers a promising design strategy for the development of high-performance ORR electrocatalysts.
Collapse
Affiliation(s)
- Wenwen Zhang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy, Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering, and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Ximeng Zhao
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy, Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering, and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Weixing Niu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy, Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering, and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Hang Yu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy, Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering, and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Tongtao Wan
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy, Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering, and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Guihua Liu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy, Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering, and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Dongsheng Zhang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy, Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering, and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Yanji Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy, Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering, and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| |
Collapse
|
15
|
Core-Shell ZnO@Cu2O as Catalyst to Enhance the Electrochemical Reduction of Carbon Dioxide to C2 Products. Catalysts 2021. [DOI: 10.3390/catal11050535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The copper-based catalyst is considered to be the only catalyst for electrochemical carbon dioxide reduction to produce a variety of hydrocarbons, but its low selectivity and low current density to C2 products restrict its development. Herein, a core-shell xZnO@yCu2O catalysts for electrochemical CO2 reduction was fabricated via a two-step route. The high selectivity of C2 products of 49.8% on ZnO@4Cu2O (ethylene 33.5%, ethanol 16.3%) with an excellent total current density of 140.1 mA cm−2 was achieved over this core-shell structure catalyst in a flow cell, in which the C2 selectivity was twice that of Cu2O. The high electrochemical activity for ECR to C2 products was attributed to the synergetic effects of the ZnO core and Cu2O shell, which not only enhanced the selectivity of the coordinating electron, improved the HER overpotential, and fastened the electron transfer, but also promoted the multielectron involved kinetics for ethylene and ethanol production. This work provides some new insights into the design of highly efficient Cu-based electrocatalysts for enhancing the selectivity of electrochemical CO2 reduction to produce high-value C2 products.
Collapse
|
16
|
Interface engineering of earth-abundant Cu/In(OH)3 catalysts towards electrochemical reduction of CO2 favoring CO selectivity. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev 2021; 50:4993-5061. [DOI: 10.1039/d0cs00071j] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This timely and comprehensive review mainly summarizes advances in heterogeneous electroreduction of CO2: from fundamentals to value-added products.
Collapse
|
18
|
Ma X, Tian J, Wang M, Jin X, Shen M, Zhang L. Metal–organic framework derived carbon supported Cu–In nanoparticles for highly selective CO 2 electroreduction to CO. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00843a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The designed Cu–In bimetal exhibits much higher CO2-to-CO selectivity than monometallic Cu and In.
Collapse
Affiliation(s)
- Xia Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jianjian Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Min Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xixiong Jin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Meng Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Lingxia Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
19
|
Yan Z, Wang X, Tan Y, Liu A, Luo F, Zhang M, Zeng L, Zhang Y. The in situ growth of Cu 2O with a honeycomb structure on a roughed graphite paper for the efficient electroreduction of CO 2 to C 2H 4. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01099a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A Cu2O/NGP self-supporting electrocatalyst is used for the electrocatalytic reduction of CO2 to ethylene to solve environmental and energy problems.
Collapse
Affiliation(s)
- Zuoyu Yan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xiuxiu Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yang Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Fenqiang Luo
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Miaorong Zhang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lingxing Zeng
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yan Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
20
|
Li J, Zhu M, Han Y. Recent Advances in Electrochemical CO
2
Reduction on Indium‐Based Catalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202001350] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jiayu Li
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 P.R. China
| | - Yi‐Fan Han
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 P.R. China
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education Zhengzhou University Zhengzhou 450001 P.R. China
| |
Collapse
|
21
|
Sheelam A, Muneeb A, Talukdar B, Ravindranath R, Huang SJ, Kuo CH, Sankar R. Flexible and free-standing polyvinyl alcohol-reduced graphene oxide-Cu2O/CuO thin films for electrochemical reduction of carbon dioxide. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01450-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|