1
|
Chang X, Wang Y, Li YX. Biomimetic mineralization of hydrated magnesium carbonate for hydrogel reinforcement and heavy metal adsorption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124644. [PMID: 39098641 DOI: 10.1016/j.envpol.2024.124644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
With excessive Mn(Ⅱ) and Cu(Ⅱ) pollution in aquatic environments posing potential health risks to inhabitants, the emergence of carbon capture, utilization and storage (CCUS) technology has promoted the improvement of heavy metal remediation technologies. Using hydrothermal sediment as a crystal seed, rhamnolipid was used to mediate biomimetic mineralization to prepare hydrated magnesium carbonate (HMC) composites to enhance the Mn(Ⅱ)/Cu(Ⅱ) adsorption performance of alginate hydrogels. Hydrothermal sediment is beneficial for accelerating biomimetic mineralization, while rhamnolipid can induce a crystalline phase transformation from dypingite to nesquehonite. The addition of sediment significantly enhanced the compressive mechanical properties and thermal stability of the hydrogels. The adsorption performances of the nesquehonite and dypingite hydrogels were better for Mn(II) and Cu(II), respectively. An increase in the amount of sediment improved the adsorption of Cu(II) by the hydrogels appropriately, resulting in stronger selectivity for Cu(II). The adsorption of Mn(II) and Cu(II) on the hydrogel beads was thermodynamically spontaneous. The inhibitory effects of sodium dodecyl benzene sulfonate (SDBS), fulvic acid (FA) and alginate on Cu(II) adsorption were more obvious than those of bovine serum albumin (BSA). Both the complexation of functional groups on alginate and mineralization by HMC participated in the adsorption of Mn(II) and Cu(II).
Collapse
Affiliation(s)
- Xuan Chang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
| | - Yang Wang
- College of Land Science and Technology, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Ying-Xia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China.
| |
Collapse
|
4
|
Chen T, Bi J, Zhao Y, Du Z, Guo X, Yuan J, Ji Z, Liu J, Wang S, Li F, Wang J. Carbon dioxide capture coupled with magnesium utilization from seawater by bipolar membrane electrodialysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153272. [PMID: 35074375 DOI: 10.1016/j.scitotenv.2022.153272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Carbon dioxide (CO2) capture coupled with further mineralization in high value-added form is a great challenge for carbon capture utilization and storage (CCUS) processes. In this work, a bipolar membrane electrodialysis (BMED) technique integrated with crystallization chamber was proposed to utilize CO2-derived carbonates and the residual magnesium resource from seawater to produce functional nesquehonite. To ensure the stable CO2 storage and magnesium extraction by BMED process, the metastable zone during nesquehonite crystallizing was first measured to modulate crystallization rate, obtain high-quality crystal products and inhibit membrane fouling states. Subsequently, the effects of current density, temperature, and CO2 flow rate during the whole BMED-crystallization process were further investigated. The increase in current density and temperature was conducive for the extraction of magnesium while the enlarged gas flow rate induced higher absorption of CO2. Under the current density at 22 A/m2, CO2 flow rate at 50 mL/min and temperature at 30 °C, the optimal carbon absorption ratio and the magnesium extraction ratio reached 50.85% and 56.71%, respectively. Under this condition, the explosion nucleation of the nesquehonite was effectively avoided to inhibit membrane fouling and the generation of magnesium hydroxide was depressed to obtain the target product nesquehonite. This study on simultaneous carbon capture and magnesium utilization provides theoretical guidance for the industrial green storage of CO2 and development of valuable magnesium products.
Collapse
Affiliation(s)
- Tianyi Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Jingtao Bi
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Yingying Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Tianjin Key Laboratory of Chemical Process Safety, Tianjin 300130, China.
| | - Zhongte Du
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Xiaofu Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Junsheng Yuan
- Quanzhou Normal University, 398 Donghai Dajie, Fengze District, Fujian 362000, China
| | - Zhiyong Ji
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Jie Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Shizhao Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Fei Li
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China
| | - Jing Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Engineering Research Center of Seawater Utilization of Ministry of Education, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China; Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, No.8, Guangrong Road, Hongqiao District, Tianjin 300130, China
| |
Collapse
|
5
|
Yang Q, Tabish M, Wang J, Zhao J. Enhanced Corrosion Resistance of Layered Double Hydroxide Films on Mg Alloy: The Key Role of Cationic Surfactant. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2028. [PMID: 35329481 PMCID: PMC8955468 DOI: 10.3390/ma15062028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
In this study, dense anticorrosion magnesium-aluminum layered double hydroxide (MgAl-LDH) films were prepared for the first time by introducing a cationic surfactant tetradecyltrimethyl ammonium bromide (TTAB) in the process of in situ hydrothermal synthesis of Mg-Al LDH films on an AZ31 magnesium alloy. Results of XRD, FTIR, and SEM confirmed that TTAB forms the MgAl-LDH-TTAB, although TTAB cannot enter into LDH layers, and MgAl-LDH-TTAB powders are much smaller and more homogenous than MgAl-CO32--LDH powders. Results of SEM, EDS, mapping, and XPS confirmed that TTAB forms the MgAl-LDH-TTAB films and endows LDH films with denser structure, which provides films with better shielding efficiency. Results of potentiodynamic polarization curves (PDP) and electrochemical impedance spectroscopy (EIS) confirmed that MgAl-LDH-TTABx g films have better corrosion resistance than an MgAl-CO32--LDH film. The corrosion current density (icorr) of the MgAl-LDH-TTAB0.35 g film in 3.5 wt.% NaCl solution was reduced to 1.09 × 10-8 A.cm-2 and the |Z|f = 0.05 Hz value was increased to 4.48 × 105 Ω·cm2. Moreover, the increasing concentration of TTAB in MgAl-LDH-TTABx g (x = 0.025, 0.05, 0.1, 0.2 and 0.35) provided denser outer layer LDH films and thereby increased the corrosion resistance of the AZ31 Mg alloy. Additionally, the |Z|f = 0.05 Hz values of the MgAl-LDH-TTAB0.35 g film still remained at 105 Ω·cm2 after being immersed in 3.5 wt.% NaCl solution for 168 h, implying the good long-term corrosion resistance of MgAl-LDH-TTABx g films. Therefore, introducing cationic surfactant in the process of in situ hydrothermal synthesis can be seen as a novel approach to creating efficient anticorrosion LDH films for Mg alloys.
Collapse
Affiliation(s)
- Qiuxiang Yang
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Q.Y.); (M.T.); (J.W.)
| | - Mohammad Tabish
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Q.Y.); (M.T.); (J.W.)
| | - Jingbao Wang
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Q.Y.); (M.T.); (J.W.)
| | - Jingmao Zhao
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (Q.Y.); (M.T.); (J.W.)
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing 100029, China
| |
Collapse
|