1
|
Shen M, Guo W, Tong L, Wang L, Chu PK, Kawi S, Ding Y. Behavior, mechanisms, and applications of low-concentration CO 2 in energy media. Chem Soc Rev 2025. [PMID: 39866134 DOI: 10.1039/d4cs00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
This review explores the behavior of low-concentration CO2 (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO2 catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO2 capture, storage, and conversion technologies, as well as guidance for the development and application of new materials. By summarizing recent advancements in LCC separation techniques (e.g., cryogenic air separation and direct air carbon capture) and catalytic conversion technologies (including thermal catalysis, electrochemical catalysis, photocatalysis, plasma catalysis, and biocatalysis), this review highlights their importance in achieving carbon neutrality. It also discusses the challenges and future directions of these technologies. The findings emphasize that advancing the efficient utilization of LCC not only enhances CO2 reduction and resource utilization efficiency, promoting the development of clean energy technologies, but also provides an economically and environmentally viable solution for addressing global climate change.
Collapse
Affiliation(s)
- Minghai Shen
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Wei Guo
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Lige Tong
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Li Wang
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Yulong Ding
- Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.
| |
Collapse
|
2
|
Zhu W, Wang Y, Yao F, Wang X, Zheng H, Ye G, Cheng H, Wu J, Huang H, Ye D. One-pot synthesis of N-doped petroleum coke-based microporous carbon for high-performance CO 2 adsorption and supercapacitors. J Environ Sci (China) 2024; 139:93-104. [PMID: 38105081 DOI: 10.1016/j.jes.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 12/19/2023]
Abstract
Waste resource utilization of petroleum coke is crucial for achieving global carbon emission reduction. Herein, a series of N-doped microporous carbons were fabricated from petroleum coke using a one-pot synthesis method. The as-prepared samples had a large specific surface area (up to 2512 m2/g), a moderate-high N content (up to 4.82 at.%), and high population (55%) of ultra-micropores (<0.7 nm). Regulating the N content and ultra-microporosity led to efficient CO2 adsorption and separation. At ambient pressure, the optimal N-doped petroleum coke-based microporous carbon exhibited the highest CO2 uptake of 4.25 mmol/g at 25°C and 6.57 mmol/g at 0°C. These values are comparable or even better than those of numerous previously reported adsorbents prepared by multistep synthesis, primarily due to the existence of ultra-micropores. The sample exhibited excellent CO2/N2 selectivity at 25°C owing to the abundant basic pyridinic and pyrrolic N species; and showed superior CO2 adsorption-desorption cycling performance, which was maintained at 97% after 10 cycles at 25°C. Moreover, petroleum coke-based microporous carbon, with a considerably high specific surface area and hierarchical pore structure, exhibited excellent electrochemical performance over the N-doped sample, maintaining a favorable specific capacitance of 233.25 F/g at 0.5 A/g in 6 mol/L KOH aqueous electrolyte. This study provides insight into the influence of N-doping on the porous properties of petroleum coke-based carbon. Furthermore, the as-prepared carbons were found to be promising adsorbents for CO2 adsorption, CO2/N2 separation and electrochemical application.
Collapse
Affiliation(s)
- Wenfu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuqin Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Fan Yao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaohong Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Haoming Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Guangzheng Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hairong Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Junliang Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, China
| | - Haomin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, China.
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Zhang T, Li J. Mild and Efficient One-Step Synthesis of Nitrogen-Doped Multistage Porous Carbon for High-Performance Supercapacitors. Molecules 2023; 28:8136. [PMID: 38138624 PMCID: PMC10745835 DOI: 10.3390/molecules28248136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Biomass-derived carbon materials have broad application prospects in energy storage, but still face problems such as complex synthesis paths and the massive use of corrosive activators. In this study, we proposed a mild and efficient pathway to prepare nitrogen-doped porous carbon material (N-YAC) using one-step pyrolysis with solid K2CO3, tobacco straw, and melamine. The optimized material (N-YAC0.5) was not only enriched with nitrogen, but also exhibited a high specific surface area (2367 m2/g) and a reasonable pore size distribution (46.49% mesopores). When utilized in electrodes, N-YAC0.5 exhibited an excellent capacitance performance (338 F/g at 1 A/g) in the three-electrode system, and benefitted from a high mesopore distribution that maintained a capacitance of 85.2% (288 F/g) at high current densities (20 A/g). Furthermore, the composed symmetric capacitor achieved an energy density of 14.78 Wh/kg at a power density of 400 W/kg. In summary, our work provides a novel and eco-friendly approach for converting biomass into high-performance energy-storage materials.
Collapse
Affiliation(s)
| | - Jun Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China;
| |
Collapse
|
4
|
Khosrowshahi MS, Mashhadimoslem H, Shayesteh H, Singh G, Khakpour E, Guan X, Rahimi M, Maleki F, Kumar P, Vinu A. Natural Products Derived Porous Carbons for CO 2 Capture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304289. [PMID: 37908147 PMCID: PMC10754147 DOI: 10.1002/advs.202304289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Indexed: 11/02/2023]
Abstract
As it is now established that global warming and climate change are a reality, international investments are pouring in and rightfully so for climate change mitigation. Carbon capture and separation (CCS) is therefore gaining paramount importance as it is considered one of the powerful solutions for global warming. Sorption on porous materials is a promising alternative to traditional carbon dioxide (CO2 ) capture technologies. Owing to their sustainable availability, economic viability, and important recyclability, natural products-derived porous carbons have emerged as favorable and competitive materials for CO2 sorption. Furthermore, the fabrication of high-quality value-added functional porous carbon-based materials using renewable precursors and waste materials is an environmentally friendly approach. This review provides crucial insights and analyses to enhance the understanding of the application of porous carbons in CO2 capture. Various methods for the synthesis of porous carbon, their structural characterization, and parameters that influence their sorption properties are discussed. The review also delves into the utilization of molecular dynamics (MD), Monte Carlo (MC), density functional theory (DFT), and machine learning techniques for simulating adsorption and validating experimental results. Lastly, the review provides future outlook and research directions for progressing the use of natural products-derived porous carbons for CO2 capture.
Collapse
Affiliation(s)
- Mobin Safarzadeh Khosrowshahi
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Hossein Mashhadimoslem
- Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Hadi Shayesteh
- Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Elnaz Khakpour
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Mohammad Rahimi
- Department of Biosystems EngineeringFaculty of AgricultureFerdowsi University of MashhadMashhad9177948974Iran
| | - Farid Maleki
- Department of Polymer Engineering and Color TechnologyAmirkabir University of TechnologyNo. 424, Hafez StTehran15875‐4413Iran
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| |
Collapse
|
5
|
Moradi MR, Torkashvand A, Ramezanipour Penchah H, Ghaemi A. Amine functionalized benzene based hypercrosslinked polymer as an adsorbent for CO 2/N 2 adsorption. Sci Rep 2023; 13:9214. [PMID: 37280347 DOI: 10.1038/s41598-023-36434-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/03/2023] [Indexed: 06/08/2023] Open
Abstract
In this work, benzene based hypercrosslinked polymer (HCP) as an adsorbent was modified using amine group to enhance CO2 uptake capability and selectivity. Based on BET analysis result, the HCP and the modified HCP provide surface area of 806 (m2 g-1) and micropore volume of 453 (m2 g-1) and 0.19 (cm3 g-1) and 0.14 (cm3 g-1), respectively. The CO2 and N2 gases adsorption were performed in a laboratory scale reactor at a temperature between 298 and 328 K and pressure up to 9 bar. The experimental data were evaluated using isotherm, kinetic and thermodynamic models to identify the absorbent behavior. The maximum CO2 adsorption capacity at 298 K and 9 bar was obtained 301.67 (mg g-1) for HCP and 414.41 (mg g-1) for amine modified HCP. The CO2 adsorption thermodynamic parameters assessment including enthalpy changes, entropy changes, and Gibbs free energy changes at 298 K were resulted - 14.852 (kJ mol-1), - 0.024 (kJ mol-1 K-1), - 7.597 (kJ mol-1) for HCP and - 17.498 (kJ mol-1), - 0.029(kJ mol-1 K-1), - 8.9 (kJ mol-1) for amine functionalized HCP, respectively. Finally, the selectivity of the samples were calculated at a CO2/N2 composition of 15:85 (v/v) and 43% enhancement in adsorption selectivity at 298 K was obtained for amine modified HCP.
Collapse
Affiliation(s)
- Mohammad Reza Moradi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Alireza Torkashvand
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Hamid Ramezanipour Penchah
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran.
| |
Collapse
|
6
|
Shang M, Peng X, Zhang J, Liu X, Yuan Z, Zhao X, Liu S, Yu S, Yi X, Filatov S. Sodium Alginate-Based Carbon Aerogel-Supported ZIF-8-Derived Porous Carbon as an Effective Adsorbent for Methane Gas. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36912820 DOI: 10.1021/acsami.2c19929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Adsorption natural gas (ANG) is a technology in which natural gas is stored on the surface of porous materials at relatively low pressures, which are promising candidates for adsorption of natural gas. Adsorbent materials with a large surface area and porous structure plays a significant role in the ANG technology, which holds promise in increasing the storage density for natural gas while decreasing the operating pressure. Here, we demonstrate a facile synthetic method for rational construction of a sodium alginate (SA)/ZIF-8 composite carbon aerogel (AZSCA) by incorporating ZIF-8 particles into SA aerogel through a directional freeze-drying method followed by the carbonization process. The structure characterization shows that AZSCA has a hierarchical porous structure, in which the micropores originated from MOF while the mesopores are derived from the three-dimensional network of the aerogel. The experimental results show that AZSCA achieved high methane adsorption of 181 cm3·g-1 at 65 bar and 298 K, along with higher isosteric heat of adsorption (Qst) throughout the adsorption range. Thus, the combination of MOF powders with aerogel can find potential applications in other gas adsorption.
Collapse
Affiliation(s)
- Mengge Shang
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xiaoqian Peng
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Jing Zhang
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xiaochan Liu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Zhipeng Yuan
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xinfu Zhao
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Sijia Liu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Shimo Yu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xibin Yi
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Serguei Filatov
- Laboratory of Hydrogen Energy, Institute of Heat and Mass Transfer of the National Academy of Sciences of Belarus, Minsk 220072, Belarus
| |
Collapse
|
7
|
Muhammad R, Nah YC, Oh H. Spider silk-derived nanoporous activated carbon fiber for CO2 capture and CH4 and H2 storage. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Composite micelle induced biomass self-assembly into N, S co-doped hierarchical porous carbon spheres with tunable properties for energy storage. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Rehman A, Nazir G, Rhee KY, Park SJ. Valorization of orange peel waste to tunable heteroatom-doped hydrochar-derived microporous carbons for selective CO 2 adsorption and separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157805. [PMID: 35944625 DOI: 10.1016/j.scitotenv.2022.157805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Constrained by the extortionately expensive carbon sources, low carbon yields, inadequate adsorption capacities, and corrosive chemical activating agents, the commercialization of carbonaceous CO2 adsorbents remains a challenging task. Herein, potassium oxalate (K2C2O4), an activating agent with less corrosive properties, was used for the synthesis of activated carbons from inexhaustibly available "orange peel biowaste." For the first time, a comprehensive report is presented on the effect of hydrothermal treatment, hydrochar/K2C2O4 ratio, activation temperature, and melamine modification in tailoring the porosity and surface functionalization of activated carbons. The optimized sample, OPMK-900, exhibited large specific surface area ~2130 m2/g; micropore volume ~1.1166 cm3/g, and a high pyrrolic nitrogen content (~ 46.1 %). Notably, melamine played the dual role as a promoter to K2C2O4 porosity generation and a nitrogen dopant, which synergistically led to an efficient CO2 uptake of ~6.67 mmol/g at 273 K/ 1 bar via micropore-filling mechanism and Lewis acid-base interactions. Moreover, remarkably high IAST CO2/N2 selectivity (105 at 273 K and 96 at 298 K) surpasses most of the biomass-derived carbons. Furthermore, the moderately high isosteric heat of adsorption (∆Hads ~ 38.9 kJ/mol) revealed the physisorption mechanism of adsorption with a limited energy requirement for the regeneration of the spent adsorbents.
Collapse
Affiliation(s)
- Adeela Rehman
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea; Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 445-701, South Korea
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 445-701, South Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea.
| |
Collapse
|
10
|
Li A, Xie H, Qiu Y, Liu L, Lu T, Wang W, Qiu G. Resource utilization of rice husk biomass: Preparation of MgO flake-modified biochar for simultaneous removal of heavy metals from aqueous solution and polluted soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119869. [PMID: 35926734 DOI: 10.1016/j.envpol.2022.119869] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
In general, the remediation performance of heavy metals can be further improved by metal-oxide modified biochar. This work used MgO-modified rice husk biochar (MgO-5%@RHB-450 and MgO-5%@RHB-600) with high surface activity for simultaneous remediation and removal of heavy metals in soil and wastewater. The adsorption of MgO-5%@RHB-450/MgO-5%@RHB-600 for Cd(II), Cu(II), Zn(II) and Cr(VI) followed the pseudo-second order, with the adsorption capacities reaching 91.13/104.68, 166.68/173.22, 80.12/104.38 and 38.88/47.02 mg g-1, respectively. The addition of 1.0% MgO-5%@RHB-450 and MgO-5%@RHB-600 could effectively decrease the CaCl2-extractable Cd concentration (CaCl2-Cd) by 66.2% and 70.0%, respectively. Moreover, MgO-5%@RHB-450 and MgO-5%@RHB-600 facilitated the transformation of exchangeable fractions to carbonate-bound and residual fractions, and reduced the exchangeable fractions by 8.1% and 9.6%, respectively. The mechanisms for the removal of heavy metals from wastewater by MgO-5%@RHB-450 and MgO-5%@RHB-600 mainly included complexation, ion exchange and precipitation, and the immobilization mechanisms in soil may be precipitation, complexation and pore filling. In general, this study provides high-efficiency functional materials for the remediation of heavy metal pollution.
Collapse
Affiliation(s)
- Anyu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Shenzhen Institute of Nutrition and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hanquan Xie
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Shenzhen Institute of Nutrition and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ying Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Shenzhen Institute of Nutrition and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Shenzhen Institute of Nutrition and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Shenzhen Institute of Nutrition and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weihua Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Shenzhen Institute of Nutrition and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Shenzhen Institute of Nutrition and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
11
|
Jiao F, Sang H, Guo P, Miao P, Wang X. Efficient adsorption and porous features from activated carbon felts activated by the eutectic of Na2CO3 and K2CO3 with vapor. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Li DQ, Meng YJ, Li J, Song YJ, Xu F. TiO2/carbonaceous nanocomposite from titanium-alginate coordination compound. Carbohydr Polym 2022; 288:119400. [DOI: 10.1016/j.carbpol.2022.119400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
|
13
|
Different loading of Ni2P nanoparticles supported on Co-N-doped ordered macro-/mesoporous carbon for hydrogen evolution reaction. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Alenezi GT, Rajendran N, Abdel Nazeer A, Makhseed S. Development of Uniform Porous Carbons From Polycarbazole Phthalonitriles as Durable CO 2 Adsorbent and Supercapacitor Electrodes. Front Chem 2022; 10:879815. [PMID: 35548674 PMCID: PMC9081769 DOI: 10.3389/fchem.2022.879815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in new porous materials have recognized great consideration in CO2 capture and electrochemical energy storage (EES) applications. In this study, we reported a synthesis of two nitrogen-enriched KOH-activated porous carbons prepared from polycarbazole phthalonitrile networks through direct pyrolysis protocol. The highest specific surface area of the carbon material prepared by pyrolysis of p-4CzPN polymer reaches 1,279 m2 g-1. Due to the highly rigid and reticular structure of the precursor, the obtained c-4CzPN-KOH carbon material exhibits high surface area, uniform porosity, and shows excellent CO2 capture performance of 19.5 wt% at 0°C. Moreover, the attained porous carbon c-4CzPN-KOH showed high energy storage capacities of up to 451 F g-1 in aqueous electrolytes containing 6.0 M KOH at a current density of 1 A g-1. The prepared carbon material also exhibits excellent charge/discharge cycle stability and retains 95.9% capacity after 2000 cycles, indicating promising electrode materials for supercapacitors.
Collapse
Affiliation(s)
| | - Narendran Rajendran
- Department of Chemistry, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Ahmed Abdel Nazeer
- Petroleum Refining and Petrochemicals Research Center, College of Engineering and Petroleum, Kuwait University, Kuwait City, Kuwait
| | - Saad Makhseed
- Department of Chemistry, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
15
|
Khan T, Akhter Z, Gul A, Bhatti AS, Rehman A. Facile Synthesis of Ferrocene-Based Polyamides and Their Organic Analogues Terpolyamides: Influence of Aliphatic and Aromatic Sequences on Physico-Chemical Characteristics. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02318-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Enhanced water permeability and rejection of As(III) in groundwater by nanochannels and active center formed in nanofibrillated celluloses UF membranes with ZIF-8. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
The dealuminated zeolites via acid leaching and followed calcination method for removal of hydrophobic bisphenol A. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Nazir G, Rehman A, Park SJ. Valorization of shrimp shell biowaste for environmental remediation: Efficient contender for CO 2 adsorption and separation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113661. [PMID: 34481373 DOI: 10.1016/j.jenvman.2021.113661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/07/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Over the years, single heteroatom-doped biowaste-derived activated carbons were studied for effective CO2 adsorption. However, binary or ternary heteroatoms-doping is equally important and could significantly affect the CO2 adsorption and flue gas (i.e., CO2/N2) separation. Herein, for the first time, shrimp shell-derived chitosan was used to design a series of ternary (N, S, O)-doped hierarchically porous carbons. The resultant carbons exhibit a large specific surface area (up to 2095 m2/g), micropore volume (up to 1.2647 cm3/g), and high heteroatoms content i.e., N up to 4.1 at. %, S up to 4.6 at. %, and O up to 13.4 at. %. Consequently, high CO2 uptake of 236.80 mg/g at 273 K/1 bar and an excellent CO2/N2 gas selectivity (84.3) was observed, attributed to the synergistic role of narrow micropores (<1 nm) and optimum heteroatom content. Furthermore, the stable CO2 adsorption-desorption cyclic behavior under flue gas conditions i.e., 15% CO2/85% N2 reveals the physisorption mechanism of CO2 adsorption and appears to be an energy-efficient regeneration process. Concluding, our work demonstrates a facile route of valorization of biowaste for environmental remediation to combat biowaste accumulation and mitigating atmospheric CO2 levels, simultaneously.
Collapse
Affiliation(s)
- Ghazanfar Nazir
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea
| | - Adeela Rehman
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| |
Collapse
|
19
|
The vertically aligned graphene/graphite/PPy composites electrode and its PPy thickness-dependent electrochemical performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Heteroatoms-doped hierarchical porous carbons: Multifunctional materials for effective methylene blue removal and cryogenic hydrogen storage. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127554] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Zhang Y, Sun J, Tan J, Ma C, Luo S, Li W, Liu S. Hierarchical porous graphene oxide/carbon foam nanocomposites derived from larch for enhanced CO2 capture and energy storage performance. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Highly efficient CO2 adsorption of corn kernel-derived porous carbon with abundant oxygen functional groups. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Nazir G, Rehman A, Park SJ. Role of heteroatoms (nitrogen and sulfur)-dual doped corn-starch based porous carbons for selective CO2 adsorption and separation. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101641] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Cheng M, Yao C, Su Y, Liu J, Xu L, Hou S. Synthesis of membrane-type graphene oxide immobilized manganese dioxide adsorbent and its adsorption behavior for lithium ion. CHEMOSPHERE 2021; 279:130487. [PMID: 33865165 DOI: 10.1016/j.chemosphere.2021.130487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Recently, there has been an urgent need to develop new materials and technologies for extracting lithium ions. Herein, the membrane-type adsorbent of manganese dioxide (MnO2) is prepared by a vacuum filtration method using graphene oxide (GO) as a binder and amino-β-cyclodextrin (amino-β-CD) as an adjuvant. The results of thermogravimetric analysis show that MnO2 is successfully immobilized on GO layers with a content of about 24 wt%, which enabled rapid adsorb lithium ions from the ionic solution. In addition, the permeation experiment shows the membrane has specific selectivity for lithium ion transport and adsorption, which is manifested in the selectivity ratios of K+/Li+, Na+/Li+ and K+/Na+ to 2.5, 3.2 and 0.8, respectively. Adsorption experiments show that GO-β-CD/MnO2 membrane has a high adsorption capacity for lithium ions (37.5 mg g-1). The adsorption kinetic curve indicates that the lithium adsorption process is controlled by the chemical adsorption mechanism. In the enrichment experiment, the concentration of lithium ions from seawater can be enriched to 1.2 mg L-1 after 100 cycles. The results suggest that the developed GO-β-CD/MnO2 membrane could effectively extract lithium ions from seawater.
Collapse
Affiliation(s)
- Mengmeng Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Chenxue Yao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Yan Su
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Jinglei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Lijian Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Shifeng Hou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China; National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
25
|
Eskusson J, Thomberg T, Romann T, Lust K, Lust E, Jänes A. Zn(ClO4)2 aqueous solution–based Zn thin foil|carbon cloth two-electrode single-cell characteristics. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05028-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Lopes TJ, Benincá C, Zanoelo EF, Grande CA, da Silva Lopes FV, Moreira RDFPM, Quadri MB, Rodrigues AE. CO2 capture by ethanolamines functionalized resins: amination and kinetics of adsorption in a fixed bed. ADSORPTION 2021. [DOI: 10.1007/s10450-021-00340-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Tahazadeh S, Karimi H, Mohammadi T, Emrooz HBM, Tofighy MA. Fabrication of biodegradable cellulose acetate/MOF-derived porous carbon nanocomposite adsorbent for methylene blue removal from aqueous solutions. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Kodchakorn K, Nimmanpipug P, Phongtamrug S, Tashiro K. Experimental confirmation of proton conductivity predicted from intermolecular hydrogen-bonding in spatially-confined novel histamine derivatives. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Pi SY, Wang Y, Pu C, Mao X, Liu GL, Wu HM, Liu H. Cr(VI) reduction coupled with Cr(III) adsorption/ precipitation for Cr(VI) removal at near neutral pHs by polyaniline nanowires-coated polypropylene filters. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
30
|
dos Santos TC, Mancera RC, Rocha MV, da Silva AF, Furtado IO, Barreto J, Stavale F, Archanjo BS, de M. Carneiro JW, Costa LT, Ronconi CM. CO2 and H2 adsorption on 3D nitrogen-doped porous graphene: Experimental and theoretical studies. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Yue T, Huang H, Chang Y, Jia J, Jia M. Controlled assembly of nitrogen-doped iron carbide nanoparticles on reduced graphene oxide for electrochemical reduction of carbon dioxide to syngas. J Colloid Interface Sci 2021; 601:877-885. [PMID: 34116474 DOI: 10.1016/j.jcis.2021.05.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/28/2023]
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) decreases the amount of greenhouse gas in the atmosphere while enabling a closed carbon cycle. Herein, iron oleate was used as a precursor to produce oleic acid-coated triiron tetraoxide nanoparticles (Fe3O4@OA NPs) by pyrolysis, which was then assembled with reduced graphene oxide (rGO) and doped with dicyandiamide as a nitrogen source to obtain nitrogen-doped iron carbide nanoparticles assembled on rGO (N-Fe3C/rGO NPs). The catalyst prepared by nitrogen doping at 800 °C with an Fe3O4@OA NPs to rGO weight ratio of 20:1 showed good activity and stability for the CO2RR. At -0.3 to -0.4 V, the H2/CO ratio of the product from the catalyzed CO2RR was close to 2; thus, the product can be used for Fischer-Tropsch synthesis. The results of a series of experiments and X-ray photoelectron spectroscopy analysis showed that the synergy between the CN and FeN groups in the catalyst can promote the reduction of CO2 to CO. This work demonstrates a facile method for improving the catalytic reduction of CO2.
Collapse
Affiliation(s)
- Tingting Yue
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China
| | - Haitao Huang
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China
| | - Ying Chang
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China; Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Jingchun Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China.
| | - Meilin Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot 010022, China.
| |
Collapse
|
32
|
Sari NH, Suteja S, Fudholi A, Zamzuriadi A, Sulistyowati ED, Pandiatmi P, Sinarep S, Zainuri A. Morphology and mechanical properties of coconut shell powder-filled untreated cornhusk fibre-unsaturated polyester composites. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Wu B, Xiao L, Zhang M, Yang C, Li Q, Li G, He Q, Liu J. Facile synthesis of dendritic-like CeO2/rGO composite and application for detection of uric acid and tryptophan simultaneously. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Xu H, Li Y, Jia M, Cui L, Chen C, Yang Y, Jin X. Design and synthesis of a 3D flexible film electrode based on a sodium carboxymethyl cellulose–polypyrrole@reduced graphene oxide composite for supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj00204j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A novel, environmentally friendly and freestanding 3D flexible film electrode (CMC–PPy@RGO) was prepared by a simple vacuum filtration method.
Collapse
Affiliation(s)
- Hanping Xu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Yue Li
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Mengying Jia
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Linlin Cui
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Cheng Chen
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Yupeng Yang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Xiaojuan Jin
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| |
Collapse
|