1
|
Kshirsagar SD, Shelake SP, Biswas B, Ramesh K, Gaur R, Abraham BM, Sainath AVS, Pal U. Emerging ZnO Semiconductors for Photocatalytic CO 2 Reduction to Methanol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407318. [PMID: 39367556 DOI: 10.1002/smll.202407318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Carbon recycling is poised to emerge as a prominent trend for mitigating severe climate change and meeting the rising demand for energy. Converting carbon dioxide (CO2) into green energy and valuable feedstocks through photocatalytic CO2 reduction (PCCR) offers a promising solution to global warming and energy needs. Among all semiconductors, zinc oxide (ZnO) has garnered considerable interest due to its ecofriendly nature, biocompatibility, abundance, exceptional semiconducting and optical properties, cost-effectiveness, easy synthesis, and durability. This review thoroughly discusses recent advances in mechanistic insights, fundamental principles, experimental parameters, and modulation of ZnO catalysts for direct PCCR to C1 products (methanol). Various ZnO modification techniques are explored, including atomic size regulation, synthesis strategies, morphology manipulation, doping with cocatalysts, defect engineering, incorporation of plasmonic metals, and single atom modulation to boost its photocatalytic performance. Additionally, the review highlights the importance of photoreactor design, reactor types, geometries, operating modes, and phases. Future research endeavors should prioritize the development of cost-effective catalyst immobilization methods for solid-liquid separation and catalyst recycling, while emphasizing the use of abundant and non-toxic materials to ensure environmental sustainability and economic viability. Finally, the review outlines key challenges and proposes novel directions for further enhancing ZnO-based photocatalytic CO2 conversion processes.
Collapse
Affiliation(s)
- Switi Dattatraya Kshirsagar
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sandip Prabhakar Shelake
- Polymers and Functional Materials and Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bapan Biswas
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Kanaparthi Ramesh
- Catalysis Department, Hindustan Petroleum Green R&D Centre, Bangalore, 560067, India
| | - Rashmi Gaur
- Catalysis Department, Hindustan Petroleum Green R&D Centre, Bangalore, 560067, India
| | - B Moses Abraham
- A.J. Drexel Nanomaterials Institute, Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Annadanam V Sesha Sainath
- Polymers and Functional Materials and Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Souza E, de Oliveira MA, Santana JDJ, Łukasik N, Madeiro da Costa OMM, Almeida LC, Barros BS, Kulesza J. Fabrication of Gold and Silver Nanoparticles Supported on Zinc Imidazolate Metal-Organic Frameworks as Active Catalysts for Hydrogen Release from Ammonia Borane. ACS OMEGA 2024; 9:41084-41096. [PMID: 39371989 PMCID: PMC11447819 DOI: 10.1021/acsomega.4c07068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024]
Abstract
Well-dispersed Au and Ag nanoparticles (NPs) have been immobilized on a zinc imidazolate metal-organic framework, Zn(mim), using the "one-pot" method and tested as catalysts in ammonia borane hydrolysis. The AuNPs@Zn(mim) and AgNPs@Zn(mim) materials were characterized by FTIR, XRD, ICP-OES, TGA, BET, SEM, and TEM. The AgNPs@Zn(mim) catalyst showed a high yield (98.5%) and high hydrogen generation rate (3352.71 mL min-1 gAg -1) in NH3BH3 dehydrogenation. The determined activation energies (19.6 kJ mol-1 for AuNPs@Zn(mim) and 38.13 kJ mol-1 for AgNPs@Zn(mim)) are lower than those for most reported catalysts containing Au/Ag-MOF used in the hydrolysis of NH3BH3. Moreover, the catalysts tested here revealed good stability and reusability, preserving 71.42% (AuNPs@Zn(mim)) and 88.23% (AgNPs@Zn(mim)) of their initial catalytic activities after five consecutive cycles. In the case of AgNPs@Zn(mim), the combination of the simple and green synthesis method, low active metal content, relatively low cost, and moderate dehydrogenation conditions makes the material an excellent candidate to produce hydrogen from ammonia borane.
Collapse
Affiliation(s)
- Elibe
S. Souza
- Programa
de Pós-Graduação em Ciência de Materiais,
Centro de Ciências Exatas e da Natureza-CCEN, Universidade Federal de Pernambuco, Cidade Universitária, Avenida Jornalista Aníbal
Fernandes, s/n°, Recife, Pernambuco 50740-560, Brazil
| | - Maria Alaide de Oliveira
- Programa
de Pós-Graduação em Química, Centro de
Ciências Exatas e da Natureza-CCEN, Universidade Federal de Pernambuco, Cidade Universitária, Avenida Jornalista Aníbal
Fernandes, s/n°, Recife, Pernambuco 50740-560, Brazil
| | - Jildimara de Jesus Santana
- Programa
de Pós-Graduação em Ciência de Materiais,
Centro de Ciências Exatas e da Natureza-CCEN, Universidade Federal de Pernambuco, Cidade Universitária, Avenida Jornalista Aníbal
Fernandes, s/n°, Recife, Pernambuco 50740-560, Brazil
| | - Natalia Łukasik
- Programa
de Pós-Graduação em Química, Centro de
Ciências Exatas e da Natureza-CCEN, Universidade Federal de Pernambuco, Cidade Universitária, Avenida Jornalista Aníbal
Fernandes, s/n°, Recife, Pernambuco 50740-560, Brazil
| | - Ohanna Maria Menezes Madeiro da Costa
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian Center for Research
in Energy and Materials (CNPEM), Cidade
Universitária, Rua Giuseppe Máximo Scolfaro, Campinas, São Paulo 13083-100, Brazil
| | - Luciano Costa Almeida
- Departamento
de Engenharia Química, Centro de Tecnologia e Geociências
- CTG, Universidade Federal de Pernambuco,
Cidade Universitária, Rua Artur de Sá, Recife, Pernambuco 50740-521, Brazil
| | - Bráulio Silva Barros
- Departamento
de Engenharia Mecânica, Centro de Tecnologia e Geociências
- CTG, Universidade Federal de Pernambuco,
Cidade Universitária, Av. Prof. Morais Rego, 1235, Recife, Pernambuco 50670-901, Brazil
| | - Joanna Kulesza
- Departamento
de Química Fundamental, Centro de Ciências Exatas e
da Natureza-CCEN, Universidade Federal de
Pernambuco, Cidade Universitária, Av. Prof. Morais Rego, 1235, Recife, Pernambuco 50670-901, Brazil
| |
Collapse
|
3
|
Akbari Beni F, Izadpanah Ostad M, Niknam Shahrak M, Ayati A. Unveiling the remarkable simultaneous adsorption-photocatalytic potential of Ag nanoparticles-anchored phosphotungestic acid loaded ZIF-8 for Congo red removal. ENVIRONMENTAL RESEARCH 2024; 252:119049. [PMID: 38704003 DOI: 10.1016/j.envres.2024.119049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
This research paper presents a direct approach to synthesize AgNPs deposited on polyoxometalate/ZIF-8 on-site (referred to as AgNPS@PW@ZIF-8) to develop a highly efficient photocatalyst in the water treatment. Phosphotungestic acid (PW) serves a multi-purpose in this context: it acts as a bridge layer between AgNPs and Zeolitic Imidazolate Framework-8 (ZIF-8), a local reducing agent, and a catalyst for electron transfer during the photocatalysis process. A comprehensive characterization of the resulting nanostructure was performed utilizing an array of techniques, such as XRD, FTIR, EDX, TEM, BET, Raman, and TGA. The nanostructure that was created exhibited effective removal of Congo red at different pH levels via a combination of simultaneous adsorption and photocatalysis. After 60 min at pH 7, the dye molecules were completely eliminated in the presence of 0.5 g/L AgNPS@PW@ZIF-8 at room temperature. The charge transfer can be facilitated by the PW bridge layer connecting AgNPs and ZIF-8, owing to the photoactive characteristics and strong electron transfer capabilities of PW molecules. Strong electron transferability of PW between Ag nanoparticles and ZIF-8 facilitates charge transfer and significantly improves the photocatalytic performance of ZIF-8. Moreover, the nanostructure demonstrated great structural stability and recyclability, sustaining a high efficiency of removal throughout five consecutive cycles through the implementation of a simple procedure. Widespread applications of the developed nanostructure in aquatic environments for adsorption and photocatalytic reactions are possible.
Collapse
Affiliation(s)
- Faeze Akbari Beni
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, P.O. Box 84686-94717, Iran
| | - Mohammad Izadpanah Ostad
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, P.O. Box 84686-94717, Iran
| | - Mahdi Niknam Shahrak
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, P.O. Box 84686-94717, Iran.
| | - Ali Ayati
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, P.O. Box 84686-94717, Iran; EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russian Federation.
| |
Collapse
|
4
|
Zhao Y, Li Y, Chang L, He W, Liu K, Cui M, Wang S, Zhao Y, Tan X. Bimetal doped Cu-Fe-ZIF-8/g-C 3N 4 nanocomposites for the adsorption of tetracycline hydrochloride from water. RSC Adv 2024; 14:4861-4870. [PMID: 38323017 PMCID: PMC10844844 DOI: 10.1039/d3ra08225c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Bimetal doped Cu-Fe-zeolitic imidazole framework-8 (ZIF-8)/graphitic carbon nitride (GCN) (Cu-Fe-ZIF-8/GCN) nanocomposites were prepared via one-pot and ion-exchange methods. The main influencing factors, such as adsorbent concentration, TC concentration, initial pH, and coexisting ions, were evaluated in detail. Due to the suitable pore structures and the presence of multiple interactions on the surface, the nanocomposite showed a high adsorption capacity up to 932 mg g-1 for tetracycline hydrochloride (TC), outperforming ZIF-8 by 4.8 times. The adsorption kinetics and adsorption isotherm were depicted in good detail using pseudo-second-order kinetic and Langmuir models, respectively. Thermodynamic calculation revealed that the adsorption of the nanocomposite under experimental conditions was a spontaneous heat absorption process, and was primarily driven by chemisorption. After four cycles of use, the nanocomposite retained 87.2% of its initial adsorption capacity, confirming its high reusability and broad application prospects in removing tetracycline-type pollutants from wastewater.
Collapse
Affiliation(s)
- Yibo Zhao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Jiangsu 222005 China
- Jiangsu Institute of Marine Resources Development Jiangsu 222005 China
| | - Yueyang Li
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Jiangsu 222005 China
| | - Lu Chang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Wenjing He
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Keling Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Minjie Cui
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences Beijing 100190 China
| | - Shengnan Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Yujia Zhao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| | - Xinyu Tan
- School of Environmental and Chemical Engineering, Jiangsu Ocean University Lianyungang Jiangsu 222005 China
| |
Collapse
|
5
|
Kumar K, Wächtler M. Unravelling Dynamics Involving Multiple Charge Carriers in Semiconductor Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091579. [PMID: 37177124 PMCID: PMC10181110 DOI: 10.3390/nano13091579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The use of colloidal nanocrystals as part of artificial photosynthetic systems has recently gained significant attention, owing to their strong light absorption and highly reproducible, tunable electronic and optical properties. The complete photocatalytic conversion of water to its components is yet to be achieved in a practically suitable and commercially viable manner. To complete this challenging task, we are required to fully understand the mechanistic aspects of the underlying light-driven processes involving not just single charge carriers but also multiple charge carriers in detail. This review focuses on recent progress in understanding charge carrier dynamics in semiconductor nanocrystals and the influence of various parameters such as dimension, composition, and cocatalysts. Transient absorption spectroscopic studies involving single and multiple charge carriers, and the challenges associated with the need for accumulation of multiple charge carriers to drive the targeted chemical reactions, are discussed.
Collapse
Affiliation(s)
- Krishan Kumar
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Maria Wächtler
- Chemistry Department and State Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52, 67663 Kaiserslautern, Germany
| |
Collapse
|
6
|
Zhang Y, Lang F, Zhao Y, Hou H. Assembling CeO 2 nanoparticles on ZIF-8 via the hydrothermal method to promote the CO 2 photoreduction performance. Dalton Trans 2023; 52:4752-4759. [PMID: 36945865 DOI: 10.1039/d3dt00021d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Photocatalytic reduction of CO2 to valuable carbon fuel is a prospective technique to decrease CO2 emissions and simultaneously generate efficient chemical energy. In this paper, a novel high-efficiency photocatalyst ZIF-8@CeO2 heterogeneous composite (ZIF = zeolitic imidazolate framework) was prepared by the hydrothermal method, where CeO2 nanospheres were uniformly grown on the surface of ZIF-8. Compared to pristine ZIF-8 or CeO2 nanoparticles (NPs), the ZIF-8@CeO2 composite shows significantly better efficiency in the reduction of CO2 into CO and CH4 under light irradiation, that is the CO evolution rate can reach 465.01 μmol g-1 h-1 and the CH4 evolution rate can reach 181.27 μmol g-1 h-1. Analyses indicated that the addition of CeO2 in the composites will expand the photoresponse region; the formation of the ZIF-8/CeO2 heterojunction significantly promoted the separation of photogenerated electron-hole pairs within the composite. This work provided an effective method to further improve the catalytic activity of ZIF-based materials, which paved a new way for eco-friendly conversion of carbon dioxide into clean fuels and they could also have huge potential for application in energy and environmental science.
Collapse
Affiliation(s)
- Yuxin Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China.
| | - Feifan Lang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China.
| | - Yujie Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China.
| | - Hongwei Hou
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China.
| |
Collapse
|
7
|
Wang W, Li J, Liu Y, Zhang W, Sun Y, Ma P, Song D. A Strategy for the Determination of Alkaline Phosphatase Based on the Self-Triggered Degradation of Metal-Organic Frameworks by Phosphate. Anal Chem 2023; 95:3414-3422. [PMID: 36715730 DOI: 10.1021/acs.analchem.2c05098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alkaline phosphatase (ALP) is widely present in the human body and is an important biomarker. Numerous ALP detection studies have been carried out, and ascorbic acid (AA) is often used as the reducing component in the sensors to monitor ALP levels since it can be produced from ascorbic acid 2-phosphate (AA2P) hydrolysis in the presence of ALP. However, it is well-known that AA is a strong reducing agent and can be easily oxidized. The disproportion between oxidized AA and reduced AA reactions results in the generation of AA free radicals with single electrons that may lead to inaccurate results in assays. To solve this problem, we synthesized a core-shell metal-organic framework sensor (PATP-Au@ZIF-8 NP) and used it as a sensitive and accurate ALP detection sensor with self-triggered control of phosphate ions (Pi) to avoid the potential inaccuracy of the method that uses AA as the reducing component. By establishing a physical shell on the surface of the gold nanoparticles (Au NPs), the sensor not only can eliminate the random assembly of metal nanoparticles caused by plasma exposure but also can generate self-triggering of Pi caused by ALP. Pi can decompose ZIF-8 through coordination with Zn2+ and thus can destroy the ZIF-8 shell structure of the prepared PAZ NPs. Au NPs are released and then become aggregated, in turn causing the SERS "hot spot" area to increase. The enhancement of the SERS signals was found to be directly associated with the level of Pi released from ALP-triggered hydrolysis. The response of the strategy was linear at ALP concentrations ranging from 0.1 to 150 mU/mL (r = 0.996) with a detection limit of 0.03 mU/mL. Lastly, the developed strategy was employed in the evaluation of ALP inhibitors, and the possibility to implement the developed SERS strategy for rapid and selective analysis of ALP in human serum was demonstrated.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, Jilin130012, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, Jilin130012, China
| | - Yibing Liu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, Jilin130012, China
| | - Wei Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, Jilin130012, China
| | - Ying Sun
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, Jilin130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, Jilin130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, Jilin130012, China
| |
Collapse
|
8
|
Abdelhamid HN. Removal of Carbon Dioxide using Zeolitic Imidazolate Frameworks: Adsorption and Conversion via Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry Assiut University Assiut Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry Assiut University Assiut Egypt
- Nanotechnology Research Centre (NTRC) The British University in Egypt Cairo Egypt
| |
Collapse
|
9
|
Abstract
Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO2 reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics.
Collapse
Affiliation(s)
- Mahmoud Sayed
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China.,Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, P.R. China.,College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, Hunan, P.R. China
| | - Gang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
10
|
Abstract
Various carbon dioxide (CO2) capture materials and processes have been developed in recent years. The absorption-based capturing process is the most significant among other processes, which is widely recognized because of its effectiveness. CO2 can be used as a feedstock for the production of valuable chemicals, which will assist in alleviating the issues caused by excessive CO2 levels in the atmosphere. However, the interaction of carbon dioxide with other substances is laborious because carbon dioxide is dynamically relatively stable. Therefore, there is a need to develop types of catalysts that can break the bond in CO2 and thus be used as feedstock to produce materials of economic value. Metal oxide-based processes that convert carbon dioxide into other compounds have recently attracted attention. Metal oxides play a pivotal role in CO2 hydrogenation, as they provide additional advantages, such as selectivity and energy efficiency. This review provides an overview of the types of metal oxides and their use for carbon dioxide adsorption and conversion applications, allowing researchers to take advantage of this information in order to develop new catalysts or methods for preparing catalysts to obtain materials of economic value.
Collapse
|
11
|
Abstract
Constantly increasing hydrocarbon fuel combustion along with high levels of carbon dioxide emissions has given rise to a global energy crisis and environmental alterations. Photocatalysis is an effective technique for addressing this energy and environmental crisis. Clean and renewable solar energy is a very favourable path for photocatalytic CO2 reduction to value-added products to tackle problems of energy and the environment. The synthesis of various products such as CH4, CH3OH, CO, EtOH, etc., has been expanded through the photocatalytic reduction of CO2. Among these products, methanol is one of the most important and highly versatile chemicals widely used in industry and in day-to-day life. This review emphasizes the recent progress of photocatalytic CO2 hydrogenation to CH3OH. In particular, Metal organic frameworks (MOFs), mixed-metal oxide, carbon, TiO2 and plasmonic-based nanomaterials are discussed for the photocatalytic reduction of CO2 to methanol. Finally, a summary and perspectives on this emerging field are provided.
Collapse
|
12
|
Wang J, Qu X, Djitcheu X, Meng Q, Ni Z, Liu H, Zhang Q. Photo-assisted effective and selective reduction of CO 2 to methanol on a Cu–ZnO–ZrO 2 catalyst. NEW J CHEM 2022. [DOI: 10.1039/d2nj03441g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Highly selective catalysis of CO2 hydrogenation to methanol with photo-assistance on Cu–ZnO–ZrO2, a photothermal synergistic catalyst.
Collapse
Affiliation(s)
- Jian Wang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, P. R. China
| | - Xiuli Qu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, P. R. China
| | - Xavier Djitcheu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, P. R. China
| | - Qingrun Meng
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, P. R. China
| | - Zenan Ni
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, P. R. China
| | - Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, P. R. China
| | - Qijian Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, P. R. China
| |
Collapse
|
13
|
Zhu P, Lou C, Shi Y, Wang C. Study on Preparation of Ag/AgCl/ZIF-8 Composite and Photocatalytic NO Oxidation Performance. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22060266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Sun W, Hou Y, Zhang X. Bi-Functional Paraffin@Polyaniline/TiO 2/PCN-222(Fe) Microcapsules for Solar Thermal Energy Storage and CO 2 Photoreduction. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:2. [PMID: 35009951 PMCID: PMC8746944 DOI: 10.3390/nano12010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
A novel type of bi-functional microencapsulated phase change material (MEPCM) microcapsules with thermal energy storage (TES) and carbon dioxide (CO2) photoreduction was designed and fabricated. The polyaniline (PANI)/titanium dioxide (TiO2)/PCN-222(Fe) hybrid shell encloses phase change material (PCM) paraffin by the facile and environment-friendly Pickering emulsion polymerization, in which TiO2 and PCN-222(Fe) nanoparticles (NPs) were used as Pickering stabilizer. Furthermore, a ternary heterojunction of PANI/(TiO2)/PCN-222(Fe) was constructed due to the tight contact of the three components on the hybrid shell. The results indicate that the maximum enthalpy of MEPCMs is 174.7 J·g-1 with encapsulation efficiency of 77.2%, and the thermal properties, chemical composition, and morphological structure were well maintained after 500 high-low temperature cycles test. Besides, the MEPCM was employed to reduce CO2 into carbon monoxide (CO) and methane (CH4) under natural light irradiation. The CO evolution rate reached up to 45.16 μmol g-1 h-1 because of the suitable band gap and efficient charge migration efficiency, which is 5.4, 11, and 62 times higher than pure PCN-222(Fe), PANI, and TiO2, respectively. Moreover, the CO evolution rate decayed inapparently after five CO2 photoreduction cycles. The as-prepared bi-functional MEPCM as the temperature regulating building materials and air purification medium will stimulate a potential application.
Collapse
Affiliation(s)
| | | | - Xu Zhang
- Correspondence: ; Tel./Fax: +86-22-6020-0443
| |
Collapse
|
15
|
Preparation and Application of Nb 2O 5 Nanofibers in CO 2 Photoconversion. NANOMATERIALS 2021; 11:nano11123268. [PMID: 34947617 PMCID: PMC8704612 DOI: 10.3390/nano11123268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022]
Abstract
Increasing global warming due to NOx, CO2, and CH4, is significantly harming ecosystems and life worldwide. One promising methodology is converting pollutants into valuable chemicals via photocatalytic processes (by reusable photocatalysts). In this context, the present work aimed to produce a Nb2O5 photocatalyst nanofiber system by electrospinning to convert CO2. Based on the collected data, the calcination at 600 ∘C for 2 h resulted in the best condition to obtain nanofibers with homogeneous surfaces and an average diameter of 84 nm. As a result, the Nb2O5 nanofibers converted CO2 mostly into CO and CH4, reaching values around 8.5 μmol g−1 and 0.55 μmol g−1, respectively.
Collapse
|
16
|
Boorboor Ajdari F, Dashti Najafi M, Izadpanah Ostad M, Naderi HR, Niknam Shahrak M, Kowsari E, Ramakrishna S. A symmetric ZnO-ZIF8//Mo-ZIF8 supercapacitor and comparing with electrochemical of Pt, Au, and Cu decorated ZIF-8 electrodes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Bismuth Oxyhalides for NOx Degradation under Visible Light: The Role of the Chloride Precursor. Catalysts 2021. [DOI: 10.3390/catal11010081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Photocatalysis is a green technology for tackling water and air contamination. A valid alternative to the most exploited photocatalytic material, TiO2, is bismuth oxyhalides, which feature a wider bandgap energy range and use visible radiation to attain photoexcitation. Moreover, their layered structure favors the separation of photogenerated electron–hole pairs, with an enhancement in photocatalytic activity. Controlled doping of bismuth oxyhalides with metallic bismuth nanoparticles allows for further boosting of the performance of the material. In the present work, we synthesized Y%Bi-doped BiO(Cl0.875Br0.125) (Y = 0.85, 1, 2, 10) photocatalysts, using cetyltrimethylammonium bromide as the bromide source and varying the chloride source to assess the impact that both length and branching of the hydrocarbon chain might have on the framing and layering of the material. A change in the amount of the reducing agent NaBH4 allowed tuning of the percentage of metallic bismuth. After a thorough characterization (XRPD, SEM, TEM, UV-DRS, XPS), the photocatalytic activity of the catalysts was tested in the degradation of NOx under visible light, reaching a remarkable 53% conversion after 3 h of illumination for the material prepared using cetylpyridinium chloride.
Collapse
|