1
|
Qi G, Ba D, Zhang Y, Jiang X, Chen Z, Yang M, Cao J, Dong W, Zhao J, Li D, Zhang Q. Constructing an Asymmetric Covalent Triazine Framework to Boost the Efficiency and Selectivity of Visible-Light-Driven CO 2 Photoreduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402645. [PMID: 38738739 PMCID: PMC11267385 DOI: 10.1002/advs.202402645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Indexed: 05/14/2024]
Abstract
The photocatalytic reduction of CO2 represents an environmentally friendly and sustainable approach for generating valuable chemicals. In this study, a thiophene-modified highly conjugated asymmetric covalent triazine framework (As-CTF-S) is developed for this purpose. Significantly, single-component intramolecular energy transfer can enhance the photogenerated charge separation, leading to the efficient conversion of CO2 to CO during photocatalysis. As a result, without the need for additional photosensitizers or organic sacrificial agents, As-CTF-S demonstrates the highest photocatalytic ability of 353.2 µmol g-1 and achieves a selectivity of ≈99.95% within a 4 h period under visible light irradiation. This study provides molecular insights into the rational control of charge transfer pathways for high-efficiency CO2 photoreduction using single-component organic semiconductor catalysts.
Collapse
Affiliation(s)
- Guang‐Dong Qi
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Dan Ba
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Yu‐Jie Zhang
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Xue‐Qing Jiang
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Zihao Chen
- Department of Materials Science and EngineeringDepartment of ChemistryCenter of Super‐Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean EnergyCity University of Hong KongHong KongSAR999077P. R. China
| | - Miao‐Miao Yang
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Jia‐Min Cao
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Wen‐Wen Dong
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Jun Zhao
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Dong‐Sheng Li
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges UniversityYichangHubei443002P. R. China
- Hubei Three Gorges LaboratoryYichangHubei443007P. R. China
| | - Qichun Zhang
- Department of Materials Science and EngineeringDepartment of ChemistryCenter of Super‐Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean EnergyCity University of Hong KongHong KongSAR999077P. R. China
| |
Collapse
|
2
|
Hou SL, Dong J, Zhao XY, Li XS, Ren FY, Zhao J, Zhao B. Thermocatalytic Conversion of CO 2 to Valuable Products Activated by Noble-Metal-Free Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202305213. [PMID: 37170958 DOI: 10.1002/anie.202305213] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Thermocatalysis of CO2 into high valuable products is an efficient and green method for mitigating global warming and other environmental problems, of which Noble-metal-free metal-organic frameworks (MOFs) are one of the most promising heterogeneous catalysts for CO2 thermocatalysis, and many excellent researches have been published. Hence, this review focuses on the valuable products obtained from various CO2 conversion reactions catalyzed by noble-metal-free MOFs, such as cyclic carbonates, oxazolidinones, carboxylic acids, N-phenylformamide, methanol, ethanol, and methane. We classified these published references according to the types of products, and analyzed the methods for improving the catalytic efficiency of MOFs in CO2 reaction. The advantages of using noble-metal-free MOF catalysts for CO2 conversion were also discussed along the text. This review concludes with future perspectives on the challenges to be addressed and potential research directions. We believe that this review will be helpful to readers and attract more scientists to join the topic of CO2 conversion.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jie Dong
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Ganji P, Chowdari RK, Likozar B. Photocatalytic Reduction of Carbon Dioxide to Methanol: Carbonaceous Materials, Kinetics, Industrial Feasibility, and Future Directions. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2023; 37:7577-7602. [PMID: 37283706 PMCID: PMC10240497 DOI: 10.1021/acs.energyfuels.3c00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Indexed: 06/08/2023]
Abstract
Photocatalytic carbon dioxide reduction (PCCR) for methanol synthesis (CH3OH) targeting renewable energy resources is an attractive way to create a sustainable environment and also balance the carbon-neutral series. The application of PCCR to methanol enables the generation of solar energy while reducing CO2, killing two birds with one stone in terms of energy and the environment. In recent years, research on CO2 utilization has focused on hydrogenation of CO2 to methanol due to global warming. This article mainly focuses on selective carbonaceous materials such as graphene, mesoporous carbon, and carbon nanotubes (CNTs) as catalysts for heterogeneous photocatalytic CO2 reduction to methanol. In addition, special emphasis will be placed on the state of the art of PCCR catalysts as this type of research will be of great benefit for further development in this field. The main features of the reaction kinetics, techno-economic study, and current technological developments in PCCR are covered in detail.
Collapse
|
4
|
Rostami M, Farajollahi AH, Amirkhani R, Farshchi ME. A review study on methanol steam reforming catalysts: Evaluation of the catalytic performance, characterizations, and operational parameters. AIP ADVANCES 2023; 13:030701. [DOI: 10.1063/5.0137706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/26/2023] [Indexed: 08/28/2023]
Abstract
Conventional fossil-based energy sources have numerous environmental demerits; sustainable and renewable sources are attracting the undivided attention of researchers owing to their valuable physical and chemical features. Several industrial-scale technologies are employing hydrogen as a green energy source as the most preferential source. Not only is hydrogen a potent energy carrier but also it is not detrimental to the environment. Among many other hydrogen production processes, steam reforming of methanol (SRM) is deemed a practical method due to its low energy consumption. Cu, Ni, noble metals, etc., are the salient catalysts in SRM. Many researchers have conducted thorough studies incorporating improvement of the catalysts’ activity, mechanism predictions, and the impacts of operational parameters and reformers. This review concentrates on the SRM catalysts, supports, promoters, and the effect of the operational parameters on the process efficiency and H2 production yield. In this regard, the methanol conversion, H2 and CO selectivity, and operating parameters are notably contingent on the surface characterization and chemistry of the catalysts. Herein, Cu-, Ni-, and noble metal-based catalysts on various metal oxide supports, such as Al2O3 and ZnO, are assessed meticulously in the SRM process from the standpoint of mechanism and catalyst characterization. Most of the peer-reviewed studies had encountered agglomeration, metal particle sintering at high temperatures, coke formation, and deactivation of catalysts as the prevalent barriers. Hence, the novel methods of conquering the above-mentioned obstacles are evaluated in this review. Employment of diverse synthetic methods, bimetallic catalysts, distinct catalyst promoters, and unconventional supports, such as metal–organic frameworks, carbon nanotubes, and zeolites, are the salient routes to overcome the metal dispersion and thermal stability issues. In addition, the influence of operational parameters (temperature of the process, steam/carbon ratio, and feed flow rate) has been weighed painstakingly, along with introducing the research gap and future perspectives in the territory of SRM catalysts.
Collapse
Affiliation(s)
- Mohsen Rostami
- Department of Engineering, Imam Ali University, Tehran, Iran
| | | | | | - Mahdi Ebrahimi Farshchi
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Lu Y, Wu D, Qin Y, Xie Y, Ling Y, Ye H, Zhang Y. Facile construction of BiOBr/CoAl-LDH heterojunctions with suppressed Z-axis growth for efficient photoreduction of CO2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Fan WK, Sherryna A, Tahir M. Advances in Titanium Carbide (Ti 3C 2T x ) MXenes and Their Metal-Organic Framework (MOF)-Based Nanotextures for Solar Energy Applications: A Review. ACS OMEGA 2022; 7:38158-38192. [PMID: 36340125 PMCID: PMC9631731 DOI: 10.1021/acsomega.2c05030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Introducing new materials with low cost and superior solar harvesting efficiency requires urgent attention to solve energy and environmental challenges. Titanium carbide (Ti3C2T x ) MXene, a 2D layered material, is a promising solution to solve the issues of existing materials due to their promising conductivity with low cost to function as a cocatalyst/support. On the other hand, metal-organic frameworks (MOFs) are emerging materials due to their high surface area and semiconducting characteristics. Therefore, coupling them would be promising to form composites with higher solar harvesting efficiency. Thus, the main objective of this work to disclose recent development in Ti3C2T x -based MOF nanocomposites for energy conversion applications to produce renewable fuels. MOFs can generate photoinduced electron/hole pairs, followed by transfer of electrons to MXenes through Schottky junctions for photoredox reactions. Currently, the principles, fundamentals, and mechanism of photocatalytic systems with construction of Schottky junctions are critically discussed. Then the basics of MOFs are discussed thoroughly in terms of their physical properties, morphologies, optical properties, and derivatives. The synthesis of Ti3C2T x MXenes and their composites with the formation of surface functionals is systematically illustrated. Next, critical discussions are conducted on design considerations and strategies to engineer the morphology of Ti3C2T x MXenes and MOFs. The interfacial/heterojunction modification strategies of Ti3C2T x MXenes and MOFs are then deeply discussed to understand the roles of both materials. Following that, the applications of MXene-mediated MOF nanotextures in view of CO2 reduction and water splitting for solar fuel production are critically analyzed. Finally, the challenges and a perspective toward the future research of MXene-based MOF composites are disclosed.
Collapse
Affiliation(s)
- Wei Keen Fan
- School
of Chemical and Energy Engineering, Universiti
Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Areen Sherryna
- School
of Chemical and Energy Engineering, Universiti
Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Muhammad Tahir
- Chemical
and Petroleum Engineering Department, UAE
University, P.O. Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
7
|
Cui L, Liu C, Yao B, Edwards PP, Xiao T, Cao F. A review of catalytic hydrogenation of carbon dioxide: From waste to hydrocarbons. Front Chem 2022; 10:1037997. [PMID: 36304742 PMCID: PMC9592991 DOI: 10.3389/fchem.2022.1037997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 12/01/2022] Open
Abstract
With the rapid development of industrial society and humankind’s prosperity, the growing demands of global energy, mainly based on the combustion of hydrocarbon fossil fuels, has become one of the most severe challenges all over the world. It is estimated that fossil fuel consumption continues to grow with an annual increase rate of 1.3%, which has seriously affected the natural environment through the emission of greenhouse gases, most notably carbon dioxide (CO2). Given these recognized environmental concerns, it is imperative to develop clean technologies for converting captured CO2 to high-valued chemicals, one of which is value-added hydrocarbons. In this article, environmental effects due to CO2 emission are discussed and various routes for CO2 hydrogenation to hydrocarbons including light olefins, fuel oils (gasoline and jet fuel), and aromatics are comprehensively elaborated. Our emphasis is on catalyst development. In addition, we present an outlook that summarizes the research challenges and opportunities associated with the hydrogenation of CO2 to hydrocarbon products.
Collapse
Affiliation(s)
- Lingrui Cui
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
| | - Cao Liu
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
| | - Benzhen Yao
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
| | - Peter P. Edwards
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
| | - Tiancun Xiao
- OXCCU Tech Ltd, Centre for Innovation and Enterprise, Begbroke Science Park, Oxford, United Kingdom
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
- *Correspondence: Fahai Cao, ; Tiancun Xiao,
| | - Fahai Cao
- Engineering Research Center of Large Scale Reactor, East China University of Science and Technology, Shanghai, China
- *Correspondence: Fahai Cao, ; Tiancun Xiao,
| |
Collapse
|
8
|
Liang S, Zeng G, Zhong X, Deng H, Zhong Z, Lin Z, Huang J. Efficient photoreduction of diluted CO2 using lattice-strained Ni1−xSe nanoflowers. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Khan MM, Rahman A, Matussin SN. Recent Progress of Metal-Organic Frameworks and Metal-Organic Frameworks-Based Heterostructures as Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2820. [PMID: 36014685 PMCID: PMC9413115 DOI: 10.3390/nano12162820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 05/09/2023]
Abstract
In the field of photocatalysis, metal-organic frameworks (MOFs) have drawn a lot of attention. MOFs have a number of advantages over conventional semiconductors, including high specific surface area, large number of active sites, and an easily tunable porous structure. In this perspective review, different synthesis methods used to prepare MOFs and MOFs-based heterostructures have been discussed. Apart from this, the application of MOFs and MOFs-based heterostructures as photocatalysts for photocatalytic degradation of different types of pollutants have been compiled. This paper also highlights the different strategies that have been developed to modify and regulate pristine MOFs for improved photocatalytic performance. The MOFs modifications may result in better visible light absorption, effective photo-generated charge carriers (e-/h+), separation and transfer as well as improved recyclability. Despite that, there are still many obstacles and challenges that need to be addressed. In order to meet the requirements of using MOFs and MOFs-based heterostructures in photocatalysis for low-cost practical applications, future development and prospects have also been discussed.
Collapse
Affiliation(s)
- Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei
| | | | | |
Collapse
|
10
|
Cheng XM, Wang P, Wang SQ, Zhao J, Sun WY. Ti(IV)-MOF with Specific Facet-Ag Nanoparticle Composites for Enhancing the Photocatalytic Activity and Selectivity of CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32350-32359. [PMID: 35801822 DOI: 10.1021/acsami.2c05037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal nanoparticles deposited in the photocatalyst not only can serve as a cocatalyst but also can act as a light harvester to extend the light absorption, resulting from the surface plasmon resonance (SPR). In this study, we deposited silver nanoparticles (Ag NPs) onto NH2-MIL-125(Ti) with exposed specific facets and achieved effectively improved activity and selectivity for photocatalytic CO2 reduction. Loading Ag NPs on the exposed {111} facets of NH2-MIL-125(Ti) generates a highly effective composite catalyst for the photoreduction of CO2, resulting in the maximal CO and CH4 yields of 26.7 and 63.3 μmol g-1 h-1, respectively, which are 2.2- and 16.2-fold those of the NH2-MIL-125(Ti) exposing {111} facets, and a CH4 selectivity of 90.5%. Incorporation of Ag NPs not only optimizes the electronic structure of the photocatalyst but also suppresses the recombination of photogenerated electron-hole pairs. This study provides an exciting example for creating and understanding metal-decorated facet-dependent effects on metal-organic frameworks (MOFs) for photocatalytic reactions.
Collapse
Affiliation(s)
- Xiao-Mei Cheng
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Shi-Qing Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Facile Synthesis of Mesoporous Silica at Room Temperature for CO 2 Adsorption. MICROMACHINES 2022; 13:mi13060926. [PMID: 35744541 PMCID: PMC9227262 DOI: 10.3390/mi13060926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Although mesoporous silica materials have been widely investigated for many applications, most silica materials are made by calcination processes. We successfully developed a convenient method to synthesize mesoporous materials at room temperature. Although the silica materials made by the two different methods, which are the calcination process and the room-temperature process, have similar specific surface areas, the silica materials produced with the room-temperature process have a significantly larger pore volume. This larger pore volume has the potential to attach to functional groups that can be applied to various industrial fields such as CO2 adsorption. This mesoporous silica with a larger pore volume was analyzed by TEM, FT-IR, low angle X-ray diffraction, N2-adsorption analysis, and CO2 adsorption experiments in comparison with the mesoporous silica synthesized with the traditional calcination method.
Collapse
|
12
|
Gopalan J, Buthiyappan A, Raman AAA. Insight into metal-impregnated biomass based activated carbon for enhanced carbon dioxide adsorption: A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Matussin SN, Rahman A, Khan MM. Role of Anions in the Synthesis and Crystal Growth of Selected Semiconductors. Front Chem 2022; 10:881518. [PMID: 35548677 PMCID: PMC9082539 DOI: 10.3389/fchem.2022.881518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/31/2022] [Indexed: 12/28/2022] Open
Abstract
The ideal methods for the preparation of semiconductors should be reproducible and possess the ability to control the morphology of the particles with monodispersity yields. Apart from that, it is also crucial to synthesize a large quantity of desired materials with good control of size, shape, morphology, crystallinity, composition, and surface chemistry at a reasonably low production cost. Metal oxides and chalcogenides with various morphologies and crystal structures have been obtained using different anion metal precursors (and/or different sulfur sources for chalcogenides in particular) through typical synthesis methods. Generally, spherical particles are obtained as it is thermodynamically favorable. However, by changing the anion precursor salts, the morphology of a semiconductor is influenced. Therefore, precursors having different anions show some effects on the final forms of a semiconductor. This review compiled and discussed the effects of anions (NO3−, Cl−, SO42-, CH3COO−, CH(CH3)O−, etc.) and different sources of S2- on the morphology and crystal structure of selected metal oxides and chalcogenides respectively.
Collapse
|
14
|
Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature: A Review. Catalysts 2022. [DOI: 10.3390/catal12020244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The combustion of fossil fuels has led to a large amount of carbon dioxide emissions and increased greenhouse effect. Methanation of carbon dioxide can not only mitigate the greenhouse effect, but also utilize the hydrogen generated by renewable electricity such as wind, solar, tidal energy, and others, which could ameliorate the energy crisis to some extent. Highly efficient catalysts and processes are important to make CO2 methanation practical. Although noble metal catalysts exhibit higher catalytic activity and CH4 selectivity at low temperature, their large-scale industrial applications are limited by the high costs. Ni-based catalysts have attracted extensive attention due to their high activity, low cost, and abundance. At the same time, it is of great importance to study the mechanism of CO2 methanation on Ni-based catalysts in designing high-activity and stability catalysts. Herein, the present review focused on the recent progress of CO2 methanation and the key parameters of catalysts including the essential nature of nickel active sites, supports, promoters, and preparation methods, and elucidated the reaction mechanism on Ni-based catalysts. The design and preparation of catalysts with high activity and stability at low temperature as well as the investigation of the reaction mechanism are important areas that deserve further study.
Collapse
|
15
|
Payra S, Ray S, Sharma R, Tarafder K, Mohanty P, Roy S. Photo- and Electrocatalytic Reduction of CO 2 over Metal-Organic Frameworks and Their Derived Oxides: A Correlation of the Reaction Mechanism with the Electronic Structure. Inorg Chem 2022; 61:2476-2489. [PMID: 35084843 DOI: 10.1021/acs.inorgchem.1c03317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A Ce/Ti-based bimetallic 2-aminoterephthalate metal-organic framework (MOF) was synthesized and evaluated for photocatalytic reduction of CO2 in comparison with an isoreticular pristine monometallic Ce-terephthalate MOF. Owing to highly selective CO2 adsorption capability, optimized band gaps, higher flux of photogenerated electron-hole pairs, and a lower rate of recombination, this material exhibited better photocatalytic reduction of CO2 and lower hydrogen evolution compared to Ce-terephthalate. Thorough probing of the surface and electronic structure inferred that the reducibility of Ce4+ to Ce3+ was due to the introduction of an amine functional group into the linker, and low-lying Ti(3d) orbitals in Ce/Ti-2-aminoterephthalate facilitated the photoreduction reaction. Both the MOFs were calcined to their respective oxides of Ce1-xTixO2 and CeO2, and the electrocatalytic reduction of CO2 was performed over the oxidic materials. In contrast to the photocatalytic reaction mechanism, the lattice substitution of Ti in the CeO2 fluorite cubic structure showed a better hydrogen evolution reaction and consequently, poorer electroreduction of CO2 compared to pristine CeO2. Density functional theory calculations of the competitive hydrogen evolution reaction on the MOF and the oxide surfaces corroborated the experimental findings.
Collapse
Affiliation(s)
- Soumitra Payra
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Subhasmita Ray
- Department of Physics, National Institute of Technology Karnataka, Mangalore 575025, India
| | - Ruchi Sharma
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, India
| | - Kartick Tarafder
- Department of Physics, National Institute of Technology Karnataka, Mangalore 575025, India
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
16
|
Lee JT, Bae JY. Synthesis and Characteristics of Double-Shell Mesoporous Hollow Silica Nanomaterials to Improve CO 2 Adsorption Performance. MICROMACHINES 2021; 12:1424. [PMID: 34832835 PMCID: PMC8621649 DOI: 10.3390/mi12111424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
To improve the adsorption performance of carbon dioxide, which is considered the main culprit of greenhouse gases, the specific surface area and high pore volume of the adsorbing material should be considered. For a porous material, the performance of carbon dioxide adsorption is determined by the amine groups supporting capacity; the larger the pore volume, the greater the capacity to support the amine groups. In this study, a double-shell mesoporous hollow silica nanomaterial with excellent pore volume and therefore increased amine support capacity was synthesized. A core-shell structure capable of having a hollow shape was synthesized using polystyrene as a core material, and a double-shell mesoporous shape was synthesized by sequentially using two types of surfactants. The synthesized material was subjected to a sintering process of 600 degrees, and the N2 sorption analysis confirmed a specific surface area of 690 m2/g and a pore volume of 1.012 cm3/g. Thereafter, the amine compound was impregnated into the silica nanomaterial, and then, a carbon dioxide adsorption experiment was conducted, which confirmed that compared to the mesoporous hollow silica nanomaterial synthesized as a single shell, the adsorption performance was improved by about 1.36 times.
Collapse
Affiliation(s)
| | - Jae-Young Bae
- Department of Chemistry, Keimyung University, Daegu 42601, Korea;
| |
Collapse
|
17
|
A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101715] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Miletto I, Ivaldi C, Gianotti E, Paul G, Travagin F, Giovenzana GB, Fraccarollo A, Marchi D, Marchese L, Cossi M. Predicting the Conformation of Organic Catalysts Grafted on Silica Surfaces with Different Numbers of Tethering Chains: The Silicopodality Concept. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:21199-21210. [PMID: 34621460 PMCID: PMC8489525 DOI: 10.1021/acs.jpcc.1c06150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Hybrid catalysts are attracting much attention, since they combine the versatility and efficiency of homogeneous organic catalysis with the robustness and thermal stability of solid materials, for example, mesoporous silica; in addition, they can be used in cascade reactions, for exploring both organic and inorganic catalysis at the same time. Despite the importance of the organic/inorganic interface in these materials, the effect of the grafting architecture on the final conformation of the organic layer (and hence its reactivity) is still largely unexplored. Here, we investigate a series of organosiloxanes comprising a pyridine ring (the catalyst model) and different numbers of alkylsiloxane chains used to anchor it to the MCM-41 surface. The hybrid interfaces are characterized with X-ray powder diffraction, thermogravimetric analyses, Fourier-transform infrared spectroscopy, nuclear magnetic resonance techniques and are modeled theoretically through molecular dynamics (MD) simulations, to determine the relationship between the number of chains and the average position of the pyridine group; MD simulations also provide some insights about temperature and solvent effects.
Collapse
Affiliation(s)
- Ivana Miletto
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Chiara Ivaldi
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Enrica Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Geo Paul
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Fabio Travagin
- Dipartimento di Scienze del Farmaco (DSF), Università del Piemonte Orientale, L.go Donegani 2, I-28100 Novara, Italy
| | - Giovanni Battista Giovenzana
- Dipartimento di Scienze del Farmaco (DSF), Università del Piemonte Orientale, L.go Donegani 2, I-28100 Novara, Italy
- CAGE Chemicals srl, Via Bovio 6, I-28100 Novara, Italy
| | - Alberto Fraccarollo
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Davide Marchi
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Leonardo Marchese
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| | - Maurizio Cossi
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria, Italy
| |
Collapse
|
19
|
Fan WK, Tahir M. Current Trends and Approaches to Boost the Performance of Metal Organic Frameworks for Carbon Dioxide Methanation through Photo/Thermal Hydrogenation: A Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02058] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wei Keen Fan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor 81310, Malaysia
| | - Muhammad Tahir
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor 81310, Malaysia
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
20
|
Belousov AS, Suleimanov EV, Fukina DG. Pyrochlore oxides as visible light-responsive photocatalysts. NEW J CHEM 2021. [DOI: 10.1039/d1nj04439g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This perspective describes the use of pyrochlore oxides in photocatalysis with focus on the strategies to enhance their activity.
Collapse
Affiliation(s)
- Artem S. Belousov
- Lobachevsky State University of Nizhny Novgorod, Research Institute for Chemistry, Gagarin Avenue 23, Nizhny Novgorod, 603950, Russian Federation
| | - Evgeny V. Suleimanov
- Lobachevsky State University of Nizhny Novgorod, Research Institute for Chemistry, Gagarin Avenue 23, Nizhny Novgorod, 603950, Russian Federation
| | - Diana G. Fukina
- Lobachevsky State University of Nizhny Novgorod, Research Institute for Chemistry, Gagarin Avenue 23, Nizhny Novgorod, 603950, Russian Federation
| |
Collapse
|