1
|
Fresno F, Iglesias-Juez A, Coronado JM. Photothermal Catalytic CO 2 Conversion: Beyond Catalysis and Photocatalysis. Top Curr Chem (Cham) 2023; 381:21. [PMID: 37253819 DOI: 10.1007/s41061-023-00430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023]
Abstract
In recent years, the combination of both thermal and photochemical contributions has provided interesting opportunities for solar upgrading of catalytic processes. Photothermal catalysis works at the interface between purely photochemical processes, which involve the direct conversion of photon energy into chemical energy, and classical thermal catalysis, in which the catalyst is activated by temperature. Thus, photothermal catalysis acts in two different ways on the energy path of the reaction. This combined catalysis, of which the fundamental principles will be reviewed here, is particularly promising for the activation of small reactive molecules at moderate temperatures compared to thermal catalysis and with higher reaction rates than those attained in photocatalysis, and it has gained a great deal of attention in the last years. Among the different applications of photothermal catalysis, CO2 conversion is probably the most studied, although reaction mechanisms and photonic-thermal synergy pathways are still quite unclear and, from the reaction route point of view, it can be said that photothermal-catalytic CO2 reduction processes are still in their infancy. This article intends to provide an overview of the principles underpinning photothermal catalysis and its application to the conversion of CO2 into useful molecules, with application essentially as fuels but also as chemical building blocks. The most relevant specific cases published to date will be also reviewed from the viewpoint of selectivity towards the most frequent target products.
Collapse
Affiliation(s)
- Fernando Fresno
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/Marie Curie 2, 28049, Madrid, Spain.
| | - Ana Iglesias-Juez
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/Marie Curie 2, 28049, Madrid, Spain.
| | - Juan M Coronado
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/Marie Curie 2, 28049, Madrid, Spain.
| |
Collapse
|
2
|
Alli YA, Oladoye PO, Ejeromedoghene O, Bankole OM, Alimi OA, Omotola EO, Olanrewaju CA, Philippot K, Adeleye AS, Ogunlaja AS. Nanomaterials as catalysts for CO 2 transformation into value-added products: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161547. [PMID: 36642279 DOI: 10.1016/j.scitotenv.2023.161547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Carbon dioxide (CO2) is the most important greenhouse gas (GHG), accounting for 76% of all GHG emissions. The atmospheric CO2 concentration has increased from 280 ppm in the pre-industrial era to about 418 ppm, and is projected to reach 570 ppm by the end of the 21st century. In addition to reducing CO2 emissions from anthropogenic activities, strategies to adequately address climate change must include CO2 capture. To promote circular economy, captured CO2 should be converted to value-added materials such as fuels and other chemical feedstock. Due to their tunable chemistry (which allows them to be selective) and high surface area (which allows them to be efficient), engineered nanomaterials are promising for CO2 capturing and/or transformation. This work critically reviewed the application of nanomaterials for the transformation of CO2 into various fuels, like formic acid, carbon monoxide, methanol, and ethanol. We discussed the literature on the use of metal-based nanomaterials, inorganic/organic nanocomposites, as well as other routes suitable for CO2 conversion such as the electrochemical, non-thermal plasma, and hydrogenation routes. The characteristics, steps, mechanisms, and challenges associated with the different transformation technologies were also discussed. Finally, we presented a section on the outlook of the field, which includes recommendations for how to continue to advance the use of nanotechnology for conversion of CO2 to fuels.
Collapse
Affiliation(s)
- Yakubu Adekunle Alli
- Laboratoire de Chimie de Coordination du CNRS, UPR8241, Universite´ de Toulouse, UPS, INPT, Toulouse cedex 4 F-31077, France; Department of Chemical Sciences, Faculty of Science and Computing, Ahman Pategi University, Km 3, Patigi-Kpada Road, Patigi, Kwara State 243105, Nigeria.
| | - Peter Olusakin Oladoye
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA.
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, 211189 Nanjing, Jiangsu Province, PR China
| | | | - Oyekunle Azeez Alimi
- Research Center for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
| | | | - Clement Ajibade Olanrewaju
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Karine Philippot
- Laboratoire de Chimie de Coordination du CNRS, UPR8241, Universite´ de Toulouse, UPS, INPT, Toulouse cedex 4 F-31077, France
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | | |
Collapse
|
4
|
Yu J, Luo B, Wang Y, Wang S, Wu K, Liu C, Chu S, Zhang H. An efficient way to synthesize biomass-based molybdenum carbide catalyst via pyrolysis carbonization and its application for lignin catalytic pyrolysis. BIORESOURCE TECHNOLOGY 2022; 346:126640. [PMID: 34971778 DOI: 10.1016/j.biortech.2021.126640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
In this study, a simple and rapid method was proposed to synthesize orthorhombic α-Mo2C as catalyst for lignin catalytic pyrolysis. Biomass in-situ pyrolysis products were used as the carbon source and supporter, the carbonization of Mo precursor was realized under rapid heating. Experimental results show that Pine-Mo2C catalyst can achieve lignin pyrolysis vapor bond breaking and deoxidation under normal pressure, and the yield of monocyclic aromatic hydrocarbons is 13.26 wt%, of which aromatic hydrocarbons with side chain account for 74%. The side chain aliphatic hydrocarbons of lignin are effectively retained, and hydrogen consumption is minimized. The characterization of catalyst and experiments of guaiacol, 2-phenoxy-1-phenylethanol and 4,4'-biphenol shows that efficient deoxidation is due to targeted attack of catalyst on C-O. Therefore, Pine-Mo2C shows excellent activity in promoting direct bond breaking deoxidation of lignin.
Collapse
Affiliation(s)
- Jiajun Yu
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Bingbing Luo
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yihan Wang
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Siyu Wang
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Kai Wu
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Chao Liu
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Sheng Chu
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
5
|
Fan WK, Tahir M. Current Trends and Approaches to Boost the Performance of Metal Organic Frameworks for Carbon Dioxide Methanation through Photo/Thermal Hydrogenation: A Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02058] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wei Keen Fan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor 81310, Malaysia
| | - Muhammad Tahir
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor 81310, Malaysia
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|