1
|
Wu C, Liu J, Wang Y, Zhao Y, Li G, Zhang Y, Zhang G. A clean method for controlling pore structure development in potassium activation systems to improve CO 2 adsorption properties of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176429. [PMID: 39326756 DOI: 10.1016/j.scitotenv.2024.176429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
The conventional activator KOH poses issues of pollution and equipment corrosion in activated carbon production. This study proposes a low-cost, one-step synthetic method for the cleaner production of biomass-derived carbon. CO2 adsorbents with high specific surface area (550-1725 m2/g) and superior adsorption performance were prepared using a KCl-assisted activation process with three activators (KOH, KHCO3, K2CO3). The results demonstrated that KCl promoted the formation of a molten salt system in all the different activation processes, which improved the activation efficiency through the formation of a liquid-phase environment. The results show that KCl possesses both pore-creating and pore-modulating properties. We investigated the performance of the two properties and analyzed the influencing factors. Specifically, KCl increases the specific surface area and porosity of the material and also selectively increases the ultramicroporous content. The development and regulation of pore structure can be achieved through the selection of activator, temperature, and dosage of KCl. With the addition of KCl, the performance of the adsorbents in all systems improved due to optimized pore structure. Among them, the sample PB700-4 from KCl-assisted KHCO3 activation exhibited the highest CO2 adsorption of 4.51 mmol/g at 25 °C and 1 bar. The best sample, PC700-3, from the KCl-assisted K2CO3 activation system had an adsorption capacity of 4.48 mmol/g, which was superior to the best sample, PH800-3 (4.28 mmol/g), obtained from KCl-assisted KOH activation. Given the low corrosiveness and toxicity of KHCO3, K2CO3, and KCl, this study introduces a novel approach for cleaner production of activated carbons and advancements in gas separation technology.
Collapse
Affiliation(s)
- Chenlei Wu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China; Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Jun Liu
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China; National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ying Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China; Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Yuqiong Zhao
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China; Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Guoqiang Li
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China; Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Yongfa Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China; Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China.
| | - Guojie Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China; Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China.
| |
Collapse
|
2
|
Zhang Z, Zou W, Wang H, Du Z, Zhang C. Facile synthesis and biomimetic amine-functionalization of chitosan foam for CO 2 capture. Int J Biol Macromol 2024; 282:136870. [PMID: 39454898 DOI: 10.1016/j.ijbiomac.2024.136870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/14/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
A high-performance biomass-based adsorption materials could be the promising trend for CO2 capture and storage technology. However, the direct application of biomass-based porous materials as a CO2 adsorbent with enhanced performance is an emerging issue. Herein, a facile synthesis and a biomimetic strategy were combined to prepare amine-functionalized chitosan foam for CO2 capture, and then a porous biomass is achieved for the application on the environment protection field. Firstly, the chitosan foam was synthesized by the emulsion-templating method at room temperature. Depended on stabilizing n-octane in the chitosan hydrogel with Span 80, a tunable three-dimensional network porous structure was obtained. Subsequently, co-deposition with dopamine (DA) and polyethyleneimine (PEI) was applied to load abundant amine content on the surface of chitosan foam and thereby improving CO2 adsorption capacity. Finally, the as-prepared amine-functionalized chitosan foam exhibited the impressive adsorption capacity of 3.59 mmol/g at 333 K and atmospheric pressure, and the better adsorption selectivity and stability. The results extend the preparation approach of biomass porous materials, and also its application in CO2 adsorption technology.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wei Zou
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Changzhou Advanced Materials Research Institute, Beijing University of Chemical Technology, Jiangsu 213164, PR China
| | - Hong Wang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhongjie Du
- Sinochem Holdings Corporation Ltd., Beijing 100031, PR China
| | - Chen Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
3
|
Toprak A, Hazer B. N-doped carbon nanospheres synthesized from a newly designed eco-friendly sustainable polymer for highly selective CO 2 capture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58844-58857. [PMID: 39320600 DOI: 10.1007/s11356-024-35152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
N-doped carbon nanospheres and porous carbon were produced by a hydrothermal template and the activation of hexamethylenetetramine (HMTA as a nitrogen source and activator) and ZnCl2 (only as an activator) from a poly(Ri-S-ε-CL-PDMS) multiblock/graft copolymer produced using a renewable resource and eco-friendly autoxidation. N-doped carbon nanospheres (PPiSiHMTA) exhibited excellent CO2 adsorption (2.73 mmol/g at 0 °C and 0.15 atm, 1.72 mmol/g at 25 °C and 0.15 atm) and CO2/N2 selectivity (344-512). Despite the higher BET surface area and pore volume, porous carbon (PPiSi) showed low CO2 adsorption (1.21 and 0.71 mmol/g, 0.15 atm) and CO2/N2 selectivity (57 and 112). PPiSiHMTA and PPiSi have low isosteric heats of adsorption (Qst, 18-33 kJ/mol) and stability in humid environments. In addition, PPiSiHMTA exhibited an excellent CO2 recycling performance. The experimental data on CO₂ adsorption was evaluated using various isotherm models, including Freundlich, Langmuir, Sips, and Temkin. The results demonstrated a nearly perfect fit between the Freundlich isotherm and the experimental data, indicating the heterogeneous nature of the adsorbent surfaces. Our study is promising for industrial applications, offering excellent CO2 adsorption, CO2/N2 selectivity, moisture stability, and porous material fabrication strategies.
Collapse
Affiliation(s)
- Atakan Toprak
- Department of Chemistry and Chemical Process Technology, Zonguldak Bülent Ecevit University, 67900, Zonguldak, Turkey.
- Department of Chemistry and Department of Nano Technology Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey.
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, 50420, Ürgüp, Nevşehir, Turkey
- Department of Chemistry and Department of Nano Technology Engineering, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey
| |
Collapse
|
4
|
Gopalan J, Buthiyappan A, Rashidi NA, Sufian S, Abdul Raman AA. A sustainable and economical solution for CO 2 capture with biobased carbon materials derived from palm kernel shells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45887-45912. [PMID: 38980479 DOI: 10.1007/s11356-024-34173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
This study investigates the synthesize of activated carbon for carbon dioxide adsorption using palm kernel shell (PKS), a by-product of oil palm industry. The adsorbent synthesis involved a simple two-step carbonization method. Firstly, PKS was activated with potassium oxide (KOH), followed by functionalization with magnesium oxide (MgO). Surface analysis revealed that KOH activated PKS has resulted in a high specific surface area of 1086 m2/g compared to untreated PKS (435 m2/g). However, impregnation of MgO resulted in the reduction of surface area due to blockage of pores by MgO. Thermogravimetric analysis (TGA) demonstrated that PKS-based adsorbents exhibited minimal weight loss of less than 30% up to 500 °C, indicating their suitability for high-temperature applications. CO2 adsorption experiments revealed that PKS-AC-MgO has achieved a higher adsorption capacity of 155.35 mg/g compared to PKS-AC (149.63 mg/g) at 25 °C and 5 bars. The adsorption behaviour of PKS-AC-MgO was well fitted by both the Sips and Langmuir isotherms, suggesting a combination of both heterogeneous and homogeneous adsorption and indicating a chemical reaction between MgO and CO2. Thermodynamic analysis indicated a spontaneous and thermodynamically favourable process for CO2 capture by PKS-AC-MgO, with negative change in enthalpy (- 0.21 kJ/mol), positive change in entropy (2.44 kJ/mol), and negative change in Gibbs free energy (- 729.61 J/mol, - 790.79 J/mol, and - 851.98 J/mol) across tested temperature. Economic assessment revealed that the cost of PKS-AC-MgO is 21% lower than the current market price of commercial activated carbon, indicating its potential for industrial application. Environmental assessment shows a significant reduction in greenhouse gas emissions (381.9 tCO2) through the utilization of PKS-AC-MgO, underscoring its environmental benefits. In summary, the use of activated carbon produced from PKS and functionalised with MgO shows great potential for absorbing CO2. This aligns with the ideas of a circular economy and sustainable development.
Collapse
Affiliation(s)
- Jayaprina Gopalan
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering,, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Archina Buthiyappan
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Nor Adilla Rashidi
- Biomass Processing Lab, Center of Biofuel and Biochemical, Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak, Malaysia
| | - Suriati Sufian
- Biomass Processing Lab, Center of Biofuel and Biochemical, Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak, Malaysia
| | - Abdul Aziz Abdul Raman
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering,, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Acevedo S, Giraldo L, Moreno-Piraján JC. Kinetic study of CO 2 adsorption of granular-type activated carbons prepared from palm shells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39839-39848. [PMID: 37067718 DOI: 10.1007/s11356-023-26423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The adsorption kinetics of activated carbon (AC)-type adsorbent materials, which were prepared from a by-product of African palm (shells) processing by chemical activation with dehydrating metal salts at two different concentrations, was studied. N2 physisorption was performed in order to determine the textural characteristics of the adsorbent solids, obtaining materials with BET areas between 721 and 1334 m2g-1 and micropore volumes between 0.33 and 0.55 cm3g-1; FTIR determination was also used as a chemical characterization technique in order to observe variations in the functional groups present. CO2 adsorption was determined, obtaining values between 175 and 274 mg∙g-1; these results are correlated with the physicochemical characteristics of the materials. With the experimental data obtained in this adsorption, the kinetic study was carried out taking into account the kinetic models of pseudo-first-order, pseudo-second-order, and intraparticle diffusion, showing a better adjustment to this last model of a physisorption process. Finally, CO2 adsorption calorimetry was performed on the two adsorbents that presented the highest adsorption capacities, evidencing variations in the characteristics of the activated carbons with the change of the impregnant used. A correlation is observed between the speed of the CO2 adsorption process and the adsorption capacity.
Collapse
Affiliation(s)
- Sergio Acevedo
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Cra 30 No 45-03, Bogotá D.C., Colombia.
- Escuela de Ciencias Básicas, Universidad Nacional Abierta y a Distancia, Calle 5 # 1-08, Sogamoso, Colombia.
| | - Liliana Giraldo
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Cra 30 No 45-03, Bogotá D.C., Colombia
| | - Juan C Moreno-Piraján
- Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Cra. 1ª No. 18A-10, Bogotá D.C., Colombia
| |
Collapse
|
6
|
Yuan X, Suvarna M, Lim JY, Pérez-Ramírez J, Wang X, Ok YS. Active Learning-Based Guided Synthesis of Engineered Biochar for CO 2 Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6628-6636. [PMID: 38497595 PMCID: PMC11025117 DOI: 10.1021/acs.est.3c10922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Biomass waste-derived engineered biochar for CO2 capture presents a viable route for climate change mitigation and sustainable waste management. However, optimally synthesizing them for enhanced performance is time- and labor-intensive. To address these issues, we devise an active learning strategy to guide and expedite their synthesis with improved CO2 adsorption capacities. Our framework learns from experimental data and recommends optimal synthesis parameters, aiming to maximize the narrow micropore volume of engineered biochar, which exhibits a linear correlation with its CO2 adsorption capacity. We experimentally validate the active learning predictions, and these data are iteratively leveraged for subsequent model training and revalidation, thereby establishing a closed loop. Over three active learning cycles, we synthesized 16 property-specific engineered biochar samples such that the CO2 uptake nearly doubled by the final round. We demonstrate a data-driven workflow to accelerate the development of high-performance engineered biochar with enhanced CO2 uptake and broader applications as a functional material.
Collapse
Affiliation(s)
- Xiangzhou Yuan
- Ministry
of Education of Key Laboratory of Energy Thermal Conversion and Control,
School of Energy and Environment, Southeast University, Nanjing 210096, China
- Korea
Biochar Research Center, APRU Sustainable Waste Management Program
& Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Manu Suvarna
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Juin Yau Lim
- Korea
Biochar Research Center, APRU Sustainable Waste Management Program
& Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Javier Pérez-Ramírez
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Xiaonan Wang
- Department
of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea
Biochar Research Center, APRU Sustainable Waste Management Program
& Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
7
|
Dziejarski B, Hernández-Barreto DF, Moreno-Piraján JC, Giraldo L, Serafin J, Knutsson P, Andersson K, Krzyżyńska R. Upgrading recovered carbon black (rCB) from industrial-scale end-of-life tires (ELTs) pyrolysis to activated carbons: Material characterization and CO 2 capture abilities. ENVIRONMENTAL RESEARCH 2024; 247:118169. [PMID: 38244973 DOI: 10.1016/j.envres.2024.118169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
The current study presents for the first time how recovered carbon black (rCB) obtained directly from the industrial-scale end-of-life tires (ELTs) pyrolysis sector is applied as a precursor for activated carbons (ACs) with application in CO2 capture. The rCB shows better physical characteristics, including density and carbon structure, as well as chemical properties, such as a consistent composition and low impurity concentration, in comparison to the pyrolytic char. Potassium hydroxide and air in combination with heat treatment (500-900 °C) were applied as agents for the conventional chemical and physical activation of the material. The ACs were tested for their potential to capture CO2. Ultimate and proximate analysis, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), Raman spectroscopy, thermogravimetric analysis (TGA), and N2/CO2 gas adsorption/desorption isotherms were used as material characterization methods. Analysis revealed that KOH-activated carbon at 900 °C (AC-900K) exhibited the highest surface area and a pore volume that increased 6 and 3 times compared to pristine rCB. Moreover, the AC-900K possessed a well-developed dual porosity, corresponding to the 22% and 78% of micropore and mesopore volume, respectively. At 0 °C and 25 °C, AC-900K also showed a CO2 adsorption capacity equal to 30.90 cm3/g and 20.53 cm3/g at 1 bar, along with stable cyclic regeneration after 10 cycles. The high dependence of CO2 uptake on the micropore volume at width below 0.7-0.8 nm was identified. The selectivity towards CO2 in relation to N2 reached high values of 350.91 (CO2/N2 binary mixture) and 59.70 (15% CO2/85% N2).
Collapse
Affiliation(s)
- Bartosz Dziejarski
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland; Department of Space, Earth and Environment, Division of Energy Technology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; Department of Chemistry and Chemical Engineering, Division of Energy and Materials, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | - Diego Felipe Hernández-Barreto
- Departamento de Química, Facultad de Ciencias, Grupo de Investigación en Sólidos Porosos y Calorimetría, Universidad de Los Andes, Cra. 1a No. 18A-10, Bogotá D.C. 11711, Colombia
| | - Juan Carlos Moreno-Piraján
- Departamento de Química, Facultad de Ciencias, Grupo de Investigación en Sólidos Porosos y Calorimetría, Universidad de Los Andes, Cra. 1a No. 18A-10, Bogotá D.C. 11711, Colombia.
| | - Liliana Giraldo
- Departamento de Química, Grupo de Calorimetría, Universidad Nacional de Colombia, Sede Bogotá, Cra. 45, Bogotá D.C. 11711, Colombia
| | - Jarosław Serafin
- Department of Inorganic and Organic Chemistry, University of Barcelona, Martí I Franquès, 1-11, 08028, Barcelona, Spain
| | - Pavleta Knutsson
- Department of Chemistry and Chemical Engineering, Division of Energy and Materials, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Klas Andersson
- Department of Space, Earth and Environment, Division of Energy Technology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Renata Krzyżyńska
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland
| |
Collapse
|
8
|
Khosrowshahi MS, Mashhadimoslem H, Shayesteh H, Singh G, Khakpour E, Guan X, Rahimi M, Maleki F, Kumar P, Vinu A. Natural Products Derived Porous Carbons for CO 2 Capture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304289. [PMID: 37908147 PMCID: PMC10754147 DOI: 10.1002/advs.202304289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Indexed: 11/02/2023]
Abstract
As it is now established that global warming and climate change are a reality, international investments are pouring in and rightfully so for climate change mitigation. Carbon capture and separation (CCS) is therefore gaining paramount importance as it is considered one of the powerful solutions for global warming. Sorption on porous materials is a promising alternative to traditional carbon dioxide (CO2 ) capture technologies. Owing to their sustainable availability, economic viability, and important recyclability, natural products-derived porous carbons have emerged as favorable and competitive materials for CO2 sorption. Furthermore, the fabrication of high-quality value-added functional porous carbon-based materials using renewable precursors and waste materials is an environmentally friendly approach. This review provides crucial insights and analyses to enhance the understanding of the application of porous carbons in CO2 capture. Various methods for the synthesis of porous carbon, their structural characterization, and parameters that influence their sorption properties are discussed. The review also delves into the utilization of molecular dynamics (MD), Monte Carlo (MC), density functional theory (DFT), and machine learning techniques for simulating adsorption and validating experimental results. Lastly, the review provides future outlook and research directions for progressing the use of natural products-derived porous carbons for CO2 capture.
Collapse
Affiliation(s)
- Mobin Safarzadeh Khosrowshahi
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Hossein Mashhadimoslem
- Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Hadi Shayesteh
- Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Elnaz Khakpour
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Mohammad Rahimi
- Department of Biosystems EngineeringFaculty of AgricultureFerdowsi University of MashhadMashhad9177948974Iran
| | - Farid Maleki
- Department of Polymer Engineering and Color TechnologyAmirkabir University of TechnologyNo. 424, Hafez StTehran15875‐4413Iran
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| |
Collapse
|
9
|
Wu C, Yang J, Gong Y, Ju Y, Tao J, Jiang X. Synthesis of Porous Activated Carbon Doped with Tetramethylammonium Hydroxide: Evaluation of Excellent Gasoline Vapor Adsorption Performance and Activation Mechanism. Molecules 2023; 28:5868. [PMID: 37570838 PMCID: PMC10421261 DOI: 10.3390/molecules28155868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The rapid urbanization and industrialization in China have led to an urgent dilemma for controlling urban air pollution, including the intensified emission of gasoline vapor into the atmosphere. Herein, we selected highland barley straw as a raw material and KOH and tetramethylammonium hydroxide (TMAOH) as activators to synthesize nitrogen-doped layered porous carbon (K-thAC) by a three-step activation method. The obtained K-thAC materials had a high specific surface area, reaching 3119 m2/g. Dynamic adsorption experiments demonstrated a superior adsorption capacity of up to 501 mg/g (K-thAC-25) for gasoline vapor compared with other documented carbon adsorbents. Moreover, adjusting the ratio of raw materials with a series of active ingredients could further improve the pore properties of the obtained K-thACs and their adsorption performance for gasoline vapor. Furthermore, the K-thAC materials were also characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), synchronous thermogravimetry (STA), X-ray powder diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption tests. This study synthesized a novel plant-based material to treat gasoline vapor pollution efficiently.
Collapse
Affiliation(s)
- Chenyu Wu
- School of Geographical Science, Nantong University, Nantong 226019, China; (C.W.); (J.T.); (X.J.)
| | - Jing Yang
- School of Geographical Science, Nantong University, Nantong 226019, China; (C.W.); (J.T.); (X.J.)
| | - Yu Gong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China;
| | - Yongming Ju
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China;
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Jiahui Tao
- School of Geographical Science, Nantong University, Nantong 226019, China; (C.W.); (J.T.); (X.J.)
| | - Xinmeng Jiang
- School of Geographical Science, Nantong University, Nantong 226019, China; (C.W.); (J.T.); (X.J.)
| |
Collapse
|
10
|
Wang Y, Zhu W, Zhao G, Ye G, Jiao Y, Wang X, Yao F, Peng W, Huang H, Ye D. Precise preparation of biomass-based porous carbon with pore structure-dependent VOCs adsorption/desorption performance by bacterial pretreatment and its forming process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121134. [PMID: 36720338 DOI: 10.1016/j.envpol.2023.121134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Pore distribution characteristic is one of the most crucial factors for porous adsorption materials, and the variety of volatile organic compounds (VOCs) approaches about how to simply and accurately tailor practical porous carbons for VOCs adsorption has gradually attracted attention. Here, precursors with different lignocellulose mass ratios have been used to produce porous carbon for model experiments to investigate the influence of the precursor lignocellulose contents on the pore structure and distribution characteristics of porous carbon, and the applicability of these mechanisms to real biomass materials has been further verified through bacteria-targeted bagasse decomposition: the microvolumes of ultra-micropores have decreased with decrease in cellulose contents, while mesopores have followed the reverse trend. The dynamic toluene adsorption/desorption performances of the obtained samples have been tested. The BACs-36 exhibits high toluene adsorption performance in low concentration with 635 mg/g while the BACs-48 shows excellent reusability in 10 times cycles. Based on this the balance between the adsorptive and regenerative capacities has been observed which indicates that carbon materials with abundant micropores and narrow mesopores have much better adsorption performance than porous carbon with a hierarchical pore structure, while the latter show better regeneration abilities than the former, which resulting in less desorption as a counter-acting force at the pore wall. Furthermore, the porous carbon has been shaped by one-step co-pyrolysis method using phenolic resin, which can not only maintain the hardness but also can avoid pore plugging phenomenon.
Collapse
Affiliation(s)
- Yuqin Wang
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Wenfu Zhu
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Guangyi Zhao
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Guangzheng Ye
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Yujun Jiao
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Xiaohong Wang
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Fan Yao
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Weixiao Peng
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Haomin Huang
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, 510006, Guangzhou, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), 510006, Guangzhou, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, 510006, Guangzhou, China.
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, 510006, Guangzhou, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), 510006, Guangzhou, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, 510006, Guangzhou, China
| |
Collapse
|
11
|
Enhanced CO2 uptake of mesoporous activated carbon derived from chitosan/casein coacervate. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
12
|
Zhu S, Zhao B, Zhang H, Su Y. Biomass-based adsorbents for post-combustion CO 2 capture: Preparation, performances, modeling, and assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:117020. [PMID: 36527800 DOI: 10.1016/j.jenvman.2022.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The adsorbents are critical carriers in the process of adsorption-based post-combustion CO2 capture. Biomass-based adsorbents (BAs) are considered to have great potential because of their high efficiency, low cost, and good sustainability. To understand the methods, theories, and technologies of BAs-based CO2 capture, this work analyzes their preparation and activation/modification, influencing factors, mechanisms, thermodynamics/kinetics, regeneration and cycle performances, and the pathway to application. It is found that BAs prepared by pyrolysis, chemical activation, and modification with dual heteroatoms are more conducive to improving adsorption sites. CO2 adsorption capacity positively correlates with elemental C and fixed carbon of feedstocks, but negatively with moisture. The BAs prepared at 550-600 °C have high performance. The specific surface area (SSA) increases as the preparation time increases by 9.4%-93.4%. The adsorption capacity is positively correlated to the SSA (R = 0.880) and microporous volume (R = 0.773). Moreover, it decreases linearly with increasing operating temperature with the slope of -0.6 mmol/(g·°C) but increases exponentially with increasing operating pressure and CO2 concentration with the power of 0.824. The adsorption process includes physical and/or physicochemical adsorption. Freundlich isotherm equation and pseudo-second-order model characterize the adsorption thermodynamics and kinetics more effectively with R2 = 0.985-1.000 and R2 = 0.894-1.000. The quantum chemistry indicates that most BAs modified with non-metallic belong to physisorption. The regeneration of BAs has low energy consumption (<3.44 MJ/kg CO2) and loss rate (<8%). Furthermore, the technical pathway is proposed for application. Finally, the challenges are also presented to facilitate the development of BAs-CO2 capture.
Collapse
Affiliation(s)
- Shaoliang Zhu
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Bingtao Zhao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
| | - Haonan Zhang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yaxin Su
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| |
Collapse
|
13
|
Yu Q, Bai J, Huang J, Demir M, Farghaly AA, Aghamohammadi P, Hu X, Wang L. One-Pot Synthesis of Melamine Formaldehyde Resin-Derived N-Doped Porous Carbon for CO 2 Capture Application. Molecules 2023; 28:molecules28041772. [PMID: 36838757 PMCID: PMC9958949 DOI: 10.3390/molecules28041772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
The design and synthesis of porous carbons for CO2 adsorption have attracted tremendous interest owing to the ever-soaring concerns regarding climate change and global warming. Herein, for the first time, nitrogen-rich porous carbon was prepared with chemical activation (KOH) of commercial melamine formaldehyde resin (MF) in a single step. It has been shown that the porosity parameters of the as-prepared carbons were successfully tuned by controlling the activating temperature and adjusting the amount of KOH. Thus, as-prepared N-rich porous carbon shows a large surface area of 1658 m2/g and a high N content of 16.07 wt%. Benefiting from the unique physical and textural features, the optimal sample depicted a CO2 uptake of up to 4.95 and 3.30 mmol/g at 0 and 25 °C under 1 bar of pressure. More importantly, as-prepared adsorbents show great CO2 selectivity over N2 and outstanding recyclability, which was prominently important for CO2 capture from the flue gases in practical application. An in-depth analysis illustrated that the synergetic effect of textural properties and surface nitrogen decoration mainly determined the CO2 capture performance. However, the textural properties of carbons play a more important role than surface functionalities in deciding CO2 uptake. In view of cost-effective synthesis, outstanding textural activity, and the high adsorption capacity together with good selectivity, this advanced approach becomes valid and convenient in fabricating a unique highly efficient N-rich carbon adsorbent for CO2 uptake and separation from flue gases.
Collapse
Affiliation(s)
- Qiyun Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Jiali Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Jiamei Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Muslum Demir
- Department of Chemical Engineering, Osmaniye Korkut Ata University, Osmaniye 80000, Turkey
- TUBITAK Marmara Research Center, Material Institute, Gebze 41470, Turkey
| | - Ahmed A. Farghaly
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Parya Aghamohammadi
- Department of Chemical Engineering, Osmaniye Korkut Ata University, Osmaniye 80000, Turkey
| | - Xin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
- Correspondence: (X.H.); (L.W.); Tel.: +86-151-0579-0257 (X.H.)
| | - Linlin Wang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology and Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
- Correspondence: (X.H.); (L.W.); Tel.: +86-151-0579-0257 (X.H.)
| |
Collapse
|
14
|
Lin L, Meng Y, Ju T, Han S, Meng F, Li J, Du Y, Song M, Lan T, Jiang J. Characteristics, application and modeling of solid amine adsorbents for CO 2 capture: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116438. [PMID: 36240641 DOI: 10.1016/j.jenvman.2022.116438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/18/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
In recent years, global warming has become an important topic of public concern. As one of the most promising carbon capture technologies, solid amine adsorbents have received a lot of attention because of their high adsorption capacity, excellent selectivity, and low energy cost, which is committed to sustainable development. The preparation methods and support materials can influence the thermal stability and adsorption capacity of solid amine adsorbents. As a supporting material, it needs to meet the requirements of high pore volume and abundant hydroxyl groups. Industrial and biomass waste are expected to be a novel and cheap raw material source, contributing both carbon dioxide capture and waste recycling. The applied range of solid amine adsorbents has been widened from flue gas to biogas and ambient air, which require different research focuses, including strengthening the selectivity of CO2 to CH4 or separating CO2 under the condition of the dilute concentration. Several kinetic or isotherm models have been adopted to describe the adsorption process of solid amine adsorbents, which select the pseudo-first order model, pseudo-second order model, and Langmuir isotherm model most commonly. Besides searching for novel materials from solid waste and widening the applicable gases, developing the dynamic adsorption and three-dimensional models can also be a promising direction to accelerate the development of this technology. The review has combed through the recent development and covered the shortages of previous review papers, expected to promote the industrial application of solid amine adsorbents.
Collapse
Affiliation(s)
- Li Lin
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuan Meng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tongyao Ju
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Siyu Han
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fanzhi Meng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jinglin Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yufeng Du
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Mengzhu Song
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tian Lan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
15
|
Gao Q, Wang Z, Li J, Liu B, Liu C. Facile synthesis of ternary dual Z-scheme g-C 3N 4/Bi 2MoO 6/CeO 2 photocatalyst with enhanced 4-chlorophenol removal: Degradation pathways and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120436. [PMID: 36279996 DOI: 10.1016/j.envpol.2022.120436] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The design of visible-light-driven photocatalysts has been rapidly developed due to the great application potential in environmental pollution remediation. The present work focused on the construction of a novel ternary g-C3N4/Bi2MoO6/CeO2 nanocomposite and the application for photocatalytic removal of 4-CP under irradiation. The g-C3N4/Bi2MoO6/CeO2 photocatalysts were successfully synthesized by a facile solid-state thermolysis assisted ultrasonic dispersion to introduce g-C3N4 nanosheets into Bi2MoO6/CeO2 composite. Morphology characterization revealed that the Bi2MoO6/CeO2 spherical structure uniformly dispersed on the g-C3N4 nanosheets and the close interface contact induced the generation of dual Z-scheme heterojunction. The as-prepared photocatalysts shown enhanced catalytic activity in comparison with binary Bi2MoO6/CeO2 composites and the optimal CBC-20% exhibited the highest degradation efficiency of 99.1% for 4-CP under 80 min illumination, which was attributed to the efficient separation of photogenerated e--h+ pairs under the dual Z-scheme charges transfer mode. Additionally, combined with trapping experiments and EPR analysis, 4-CP was decomposed mainly by the active species •O2- and h+ with a marginal assistance of •OH during the photocatalytic process. The intermediates for 4-CP degradation were analyzed and a reasonable degradation pathway was proposed.
Collapse
Affiliation(s)
- Qiang Gao
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810008, PR China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China.
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810008, PR China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Bin Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Chenguang Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| |
Collapse
|
16
|
Ullah F, Ji G, Irfan M, Gao Y, Shafiq F, Sun Y, Ain QU, Li A. Adsorption performance and mechanism of cationic and anionic dyes by KOH activated biochar derived from medical waste pyrolysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120271. [PMID: 36167162 DOI: 10.1016/j.envpol.2022.120271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The massive generation of medical waste (MW) results in a series of environmental, social, and ecological problems. Pyrolysis is one such approach that has attracted more attention because of the production of value-added products with lesser environmental risk. In this study, the activated biochar (ABC600) was obtained from MW pyrolysis and activated with KOH. The adsorption mechanism of activated biochar on cationic (methylene blue) and anionic (reactive yellow) dyes were studied. The physicochemical characterization of biochar showed that increasing pyrolysis temperature and KOH activation resulted in increased surface area, a rough surface with a clear porous structure, and sufficient functional groups. MB and RYD-145 adsorption on ABC600 was more consistent with Langmuir isotherm (R2 ≥ 0.996) and pseudo-second-order kinetics (R2 ≥ 0.998), indicating chemisorption with monolayer characteristics. The Langmuir model fitting demonstrated that MB and RYD-145 had maximum uptake capacities of 922.2 and 343.4 mg⋅g-1. The thermodynamics study of both dyes showed a positive change in enthalpy (ΔH°) and entropy (ΔS°), revealing the endothermic adsorption behavior and randomness in dye molecule arrangement on activated-biochar/solution surface. The activated biochar has excellent adsorption potential for cationic and anionic dyes; hence, it can be considered an economical and efficient adsorbent.
Collapse
Affiliation(s)
- Fahim Ullah
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Guozhao Ji
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Muhammad Irfan
- Trier College of Sustainable Technology, Yantai University, Yantai, 264005, Shandong, P. R. China
| | - Yuan Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Farishta Shafiq
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Ye Sun
- Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Qurat Ul Ain
- Institute of Environmental Engineering Research (IEER), UET Lahore, Pakistan
| | - Aimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian, China.
| |
Collapse
|
17
|
Gómez IC, Cruz OF, Silvestre-Albero J, Rambo CR, Escandell MM. Role of KCl in activation mechanisms of KOH-chemically activated high surface area carbons. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Rehman A, Nazir G, Rhee KY, Park SJ. Valorization of orange peel waste to tunable heteroatom-doped hydrochar-derived microporous carbons for selective CO 2 adsorption and separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157805. [PMID: 35944625 DOI: 10.1016/j.scitotenv.2022.157805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Constrained by the extortionately expensive carbon sources, low carbon yields, inadequate adsorption capacities, and corrosive chemical activating agents, the commercialization of carbonaceous CO2 adsorbents remains a challenging task. Herein, potassium oxalate (K2C2O4), an activating agent with less corrosive properties, was used for the synthesis of activated carbons from inexhaustibly available "orange peel biowaste." For the first time, a comprehensive report is presented on the effect of hydrothermal treatment, hydrochar/K2C2O4 ratio, activation temperature, and melamine modification in tailoring the porosity and surface functionalization of activated carbons. The optimized sample, OPMK-900, exhibited large specific surface area ~2130 m2/g; micropore volume ~1.1166 cm3/g, and a high pyrrolic nitrogen content (~ 46.1 %). Notably, melamine played the dual role as a promoter to K2C2O4 porosity generation and a nitrogen dopant, which synergistically led to an efficient CO2 uptake of ~6.67 mmol/g at 273 K/ 1 bar via micropore-filling mechanism and Lewis acid-base interactions. Moreover, remarkably high IAST CO2/N2 selectivity (105 at 273 K and 96 at 298 K) surpasses most of the biomass-derived carbons. Furthermore, the moderately high isosteric heat of adsorption (∆Hads ~ 38.9 kJ/mol) revealed the physisorption mechanism of adsorption with a limited energy requirement for the regeneration of the spent adsorbents.
Collapse
Affiliation(s)
- Adeela Rehman
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea; Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 445-701, South Korea
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 445-701, South Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea.
| |
Collapse
|
19
|
GBE JLK, Ravi K, Singh M, Neogi S, Grafouté M, Biradar AV. Hierarchical porous nitrogen-doped carbon supported MgO as an excellent composite for CO2 capture at atmospheric pressure and conversion to value-added products. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Guo T, Zhang R, Wang X, Kong L, Xu J, Xiao H, Bedane AH. Porous Structure of β-Cyclodextrin for CO 2 Capture: Structural Remodeling by Thermal Activation. Molecules 2022; 27:7375. [PMID: 36364201 PMCID: PMC9657893 DOI: 10.3390/molecules27217375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2023] Open
Abstract
With a purpose of extending the application of β-cyclodextrin (β-CD) for gas adsorption, this paper aims to reveal the pore formation mechanism of a promising adsorbent for CO2 capture which was derived from the structural remodeling of β-CD by thermal activation. The pore structure and performance of the adsorbent were characterized by means of SEM, BET and CO2 adsorption. Then, the thermochemical characteristics during pore formation were systematically investigated by means of TG-DSC, in situ TG-FTIR/FTIR, in situ TG-MS/MS, EDS, XPS and DFT. The results show that the derived adsorbent exhibits an excellent porous structure for CO2 capture accompanied by an adsorption capacity of 4.2 mmol/g at 0 °C and 100 kPa. The porous structure is obtained by the structural remodeling such as dehydration polymerization with the prior locations such as hydroxyl bonded to C6 and ring-opening polymerization with the main locations (C4, C1, C5), accompanied by the release of those small molecules such as H2O, CO2 and C3H4. A large amount of new fine pores is formed at the third and fourth stage of the four-stage activation process. Particularly, more micropores are created at the fourth stage. This revealed that pore formation mechanism is beneficial to structural design of further thermal-treated graft/functionalization polymer derived from β-CD, potentially applicable for gas adsorption such as CO2 capture.
Collapse
Affiliation(s)
- Tianxiang Guo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Runan Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xilai Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Lingfeng Kong
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Junpeng Xu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Alemayehu Hailu Bedane
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
21
|
Luo J, Peng J, Tang M, Zhang F, Miao G, Li G, Song C, Wang W, Xiao J. Effective adsorption of Ultra-dilute CO2 over Polyethyleneimine-based adsorbent for H2 purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Li A, Xie H, Qiu Y, Liu L, Lu T, Wang W, Qiu G. Resource utilization of rice husk biomass: Preparation of MgO flake-modified biochar for simultaneous removal of heavy metals from aqueous solution and polluted soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119869. [PMID: 35926734 DOI: 10.1016/j.envpol.2022.119869] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
In general, the remediation performance of heavy metals can be further improved by metal-oxide modified biochar. This work used MgO-modified rice husk biochar (MgO-5%@RHB-450 and MgO-5%@RHB-600) with high surface activity for simultaneous remediation and removal of heavy metals in soil and wastewater. The adsorption of MgO-5%@RHB-450/MgO-5%@RHB-600 for Cd(II), Cu(II), Zn(II) and Cr(VI) followed the pseudo-second order, with the adsorption capacities reaching 91.13/104.68, 166.68/173.22, 80.12/104.38 and 38.88/47.02 mg g-1, respectively. The addition of 1.0% MgO-5%@RHB-450 and MgO-5%@RHB-600 could effectively decrease the CaCl2-extractable Cd concentration (CaCl2-Cd) by 66.2% and 70.0%, respectively. Moreover, MgO-5%@RHB-450 and MgO-5%@RHB-600 facilitated the transformation of exchangeable fractions to carbonate-bound and residual fractions, and reduced the exchangeable fractions by 8.1% and 9.6%, respectively. The mechanisms for the removal of heavy metals from wastewater by MgO-5%@RHB-450 and MgO-5%@RHB-600 mainly included complexation, ion exchange and precipitation, and the immobilization mechanisms in soil may be precipitation, complexation and pore filling. In general, this study provides high-efficiency functional materials for the remediation of heavy metal pollution.
Collapse
Affiliation(s)
- Anyu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Shenzhen Institute of Nutrition and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hanquan Xie
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Shenzhen Institute of Nutrition and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ying Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Shenzhen Institute of Nutrition and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Shenzhen Institute of Nutrition and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Shenzhen Institute of Nutrition and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weihua Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Shenzhen Institute of Nutrition and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Shenzhen Institute of Nutrition and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
23
|
Jiao F, Sang H, Guo P, Miao P, Wang X. Efficient adsorption and porous features from activated carbon felts activated by the eutectic of Na2CO3 and K2CO3 with vapor. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Different loading of Ni2P nanoparticles supported on Co-N-doped ordered macro-/mesoporous carbon for hydrogen evolution reaction. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Enhanced water permeability and rejection of As(III) in groundwater by nanochannels and active center formed in nanofibrillated celluloses UF membranes with ZIF-8. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Carbon Dioxide Capture through Physical and Chemical Adsorption Using Porous Carbon Materials: A Review. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to rapid industrialization and urban development across the globe, the emission of carbon dioxide (CO2) has been significantly increased, resulting in adverse effects on the climate and ecosystems. In this regard, carbon capture and storage (CCS) is considered to be a promising technology in reducing atmospheric CO2 concentration. Among the CO2 capture technologies, adsorption has grabbed significant attention owing to its advantageous characteristics discovered in recent years. Porous carbon-based materials have emerged as one of the most versatile CO2 adsorbents. Numerous research activities have been conducted by synthesizing carbon-based adsorbents using different precursors to investigate their performances towards CCS. Additionally, amine-functionalized carbon-based adsorbents have exhibited remarkable potential for selective capturing of CO2 in the presence of other gases and humidity conditions. The present review describes the CO2 emission sources, health, and environmental impacts of CO2 towards the human beings, options for CCS, and different CO2 separation technologies. Apart from the above, different synthesis routes of carbon-based adsorbents using various precursors have been elucidated. The CO2 adsorption selectivity, capacity, and reusability of the current and applied carbon materials have also been summarized. Furthermore, the critical factors controlling the adsorption performance (e.g., the effect of textural and functional properties) are comprehensively discussed. Finally, the current challenges and future research directions have also been summarized.
Collapse
|
27
|
Shi W, Zhao X, Ren S, Li W, Zhang Q, Jia X. Heteroatoms co-doped porous carbons from amino acid based polybenzoxazine for superior CO2 adsorption and electrochemical performances. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
The dealuminated zeolites via acid leaching and followed calcination method for removal of hydrophobic bisphenol A. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Li Z, Cao Z, Grande C, Zhang W, Dou Y, Li X, Fu J, Shezad N, Akhtar F, Kaiser A. A phase conversion method to anchor ZIF-8 onto a PAN nanofiber surface for CO 2 capture. RSC Adv 2021; 12:664-670. [PMID: 35425096 PMCID: PMC8697354 DOI: 10.1039/d1ra06480k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
Polyacrylonitrile (PAN) nanofibers were prepared by electrospinning and coated with zeolitic imidazolate framework-8 (ZIF-8) by a phase conversion growth method and investigated for CO2 capture. The PAN nanofibers were pre-treated with NaOH, and further coated with zinc hydroxide, which was subsequently converted into ZIF-8 by the addition of 2-methyl imidazolate. In the resulting flexible ZIF-8/PAN composite nanofibers, ZIF-8 loadings of up to 57 wt% were achieved. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDS) showed the formation of evenly distributed submicron-sized ZIF-8 crystals on the surface of the PAN nanofibers with sizes between 20 and 75 nm. X-ray photoelectron spectroscopy (XPS) and carbon-13 nuclear magnetic resonance (13C NMR) investigations indicated electrostatic interactions and hydrogen bonds between the ZIF-8 structure and the PAN nanofiber. The ZIF-8/composite nanofibers showed a high BET surface area of 887 m2 g-1. CO2 adsorption isotherms of the ZIF-8/PAN composites revealed gravimetric CO2 uptake capacities of 130 mg g-1 (at 298 K and 40 bar) of the ZIF-8/PAN nanofiber and stable cyclic adsorption performance.
Collapse
Affiliation(s)
- Zeyu Li
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU) Denmark
| | - Zhejian Cao
- Department of Engineering Sciences and Mathematics, Luleå University of Technology (LTU) Sweden
| | | | - Wenjing Zhang
- Department of Environmental Engineering, Technical University of Denmark (DTU) Denmark
| | - Yibo Dou
- Department of Environmental Engineering, Technical University of Denmark (DTU) Denmark
| | - Xiaosen Li
- Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences (CAS) China
| | - Juan Fu
- Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences (CAS) China
| | - Nasir Shezad
- Department of Engineering Sciences and Mathematics, Luleå University of Technology (LTU) Sweden
| | - Farid Akhtar
- Department of Engineering Sciences and Mathematics, Luleå University of Technology (LTU) Sweden
| | - Andreas Kaiser
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU) Denmark
| |
Collapse
|
30
|
Zhang XS, Zhao HT, Liu Y, Li WZ, Yang AA, Luan J. Cu-Organic framework-derived V-doped carbon nanostructures for organic dye removal. Dalton Trans 2021; 50:18173-18185. [PMID: 34859813 DOI: 10.1039/d1dt03450b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metal-organic frameworks (MOFs) have recently emerged as a type of uniformly and periodically atom-distributed precursor and efficient self-sacrificial template to fabricate hierarchical porous-carbon-related nanostructured functional materials. In this work, we used Cu(II) ions and aromatic dicarboxylic acid to construct [Cu3(4,4'-oba)2(μ2-OH)2(H2O)2]n (4,4'-H2oba = 4,4'-oxybisbenzoic acid) as a precursor for the preparation of carbon nanostructures. Doping foreign elements into intrinsic MOF-based nanomaterials is an effective way to enhance the adsorption property and photocatalytic activity; thus, we designed a facile method to synthesize a vanadium-doped mixture of Cu2O and Cu nanoparticles encapsulated in a Cu-MOF-derived carbon nanostructure (C-V-1) in this work for the first time. Benefiting from the protection of the carbon shell and regulation of the electronic structure by doping vanadium and phase-mixing Cu2O and Cu, the adsorption capacities of C-V-1 for MB, RhB, MO, CR and GV at room temperature are 174.13, 147.06, 179.92, 275.90 and 611.81 mg g-1 in 240 min, respectively, while the photocatalytic degradation rates are 88.14% for MB, 79.80% for RhB, 71.31% for MO, and 71.19% for CR after 4 h. In addition, the degradation rate is larger than 99.01% for GV after only 30 min of UV irradiation. This strategy of using a diverse MOF as a structural and compositional material to create a multifunctional composite/hybrid may expand the opportunities to explore highly efficient, fast and robust adsorbents and photocatalysts for water treatment.
Collapse
Affiliation(s)
- Xiao-Sa Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Hong-Tian Zhao
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Ai-Ai Yang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, 100819, P. R. China.
| |
Collapse
|
31
|
Nazir G, Rehman A, Park SJ. Valorization of shrimp shell biowaste for environmental remediation: Efficient contender for CO 2 adsorption and separation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113661. [PMID: 34481373 DOI: 10.1016/j.jenvman.2021.113661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/07/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Over the years, single heteroatom-doped biowaste-derived activated carbons were studied for effective CO2 adsorption. However, binary or ternary heteroatoms-doping is equally important and could significantly affect the CO2 adsorption and flue gas (i.e., CO2/N2) separation. Herein, for the first time, shrimp shell-derived chitosan was used to design a series of ternary (N, S, O)-doped hierarchically porous carbons. The resultant carbons exhibit a large specific surface area (up to 2095 m2/g), micropore volume (up to 1.2647 cm3/g), and high heteroatoms content i.e., N up to 4.1 at. %, S up to 4.6 at. %, and O up to 13.4 at. %. Consequently, high CO2 uptake of 236.80 mg/g at 273 K/1 bar and an excellent CO2/N2 gas selectivity (84.3) was observed, attributed to the synergistic role of narrow micropores (<1 nm) and optimum heteroatom content. Furthermore, the stable CO2 adsorption-desorption cyclic behavior under flue gas conditions i.e., 15% CO2/85% N2 reveals the physisorption mechanism of CO2 adsorption and appears to be an energy-efficient regeneration process. Concluding, our work demonstrates a facile route of valorization of biowaste for environmental remediation to combat biowaste accumulation and mitigating atmospheric CO2 levels, simultaneously.
Collapse
Affiliation(s)
- Ghazanfar Nazir
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea
| | - Adeela Rehman
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| |
Collapse
|
32
|
The vertically aligned graphene/graphite/PPy composites electrode and its PPy thickness-dependent electrochemical performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
In situ grown molybdenum sulfide on Laponite D clay: Visible-light-driven hydrogen evolution for high solar-to-hydrogen (STH) efficiencies. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Tan Y, Wang X, Song S, Sun M, Xue Y, Yang G. Preparation of Nitrogen-Doped Cellulose-Based Porous Carbon and Its Carbon Dioxide Adsorption Properties. ACS OMEGA 2021; 6:24814-24825. [PMID: 34604663 PMCID: PMC8482490 DOI: 10.1021/acsomega.1c03664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen-doped cellulose-based porous carbon materials were obtained by hydrothermal method and KOH chemical activation together with melamine as a nitrogen-doping precursor. The effects of hydrothermal temperature on the microstructure and surface morphology of the products were mainly studied. Also, the carbon dioxide adsorption capacity of the prepared porous carbon was investigated. It was found that when the hydrothermal carbonization temperature was 270 °C and the mass ratio of cellulose and melamine was 1:1, the largest micropore specific surface area of 1703 m2·g-1 and micropore volume of 0.65 cm3·g-1 were obtained, with a nitrogen-doping composition of 1.68 atom %. At the temperature of 25 °C and under the pressure of 0.1, 0.2, 0.3, and 0.4 MPa, the adsorption amount of CO2 was 1.56, 3.79, 5.42, and 7.34 mmol·g-1, respectively. Also, the adsorption process of CO2 was in good accordance with the Freundlich isotherm model.
Collapse
|