1
|
Nasry WHS, Jones K, Rodriguez-Lecompte JC, Tesch M, Martin CK. Expression of mPGES1 and p16 in feline and human oral squamous cell carcinoma: A comparative oncology approach. Vet Comp Oncol 2024; 22:204-216. [PMID: 38378135 DOI: 10.1111/vco.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Comparative cancer studies help us determine if discoveries in one species apply to another. Feline and human oral squamous cell carcinoma (FOSCC and HOSCC) are invasive tumours in which inflammation and abnormal p16 expression are reported. Immunohistochemistry was used to determine the expression of p16 and microsomal prostaglandin E2 synthase 1 (mPGES1) in 42 HOSCC and 45 FOSCC samples with known expression of cyclooxygenase 2 (COX2) and cluster of differentiation 147 (CD147). High p16 expression was more common in HOSCC tumour cells compared to adjacent stroma and oral epithelium (p < .05), with a similar but statistically nonsignificant pattern in FOSCC. Interestingly, high mPGES1 expression in FOSCC was more common in the adjacent epithelium compared to the other compartments (p < .05). In HOSCC, mPGES1 was more similar between compartments but was numerically more common in the tumour compartment (p > .05). There were nominal (p > 0.05) differences in marker expression between high and low mPGES1 expressing tumours in both species, including high p16 observed more commonly in high mPGES1 tumours, and COX-2 positive tumours being more common in low mPGES1 tumours. High CD147 HOSCC tumours were more common in the high mPGES1 HOSCC group (p < .05). In the FOSCC cohort, where there was no statistical difference in CD147 expression between high and low mPGES1 tumours, there were numerically higher CD147 cases in the high mPGES1group. Different expression patterns in FOSCC and HOSCC could be related to different risk factors. For example, p16 is a marker of papillomavirus-driven HOSCC, but a causal relationship between papillomaviruses and FOSCC has yet to be definitively demonstrated. The significance of high P16 expression in the absence of papillomavirus infection deserves further study, and the relative contributions of COX2 and mPGES1 to tumour inflammation and progression should be explored. The findings reveal potential similarities in FOSCC and HOSCC biology, while also demonstrating differences that may relate to risk factors and pathogenesis that are unique to each species.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Kathleen Jones
- Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Marvin Tesch
- Provincial Health Services, Health PEI, Charlottetown, Prince Edward Island, Canada
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
2
|
Simpson S, Rizvanov AA, Jeyapalan JN, de Brot S, Rutland CS. Canine osteosarcoma in comparative oncology: Molecular mechanisms through to treatment discovery. Front Vet Sci 2022; 9:965391. [PMID: 36570509 PMCID: PMC9773846 DOI: 10.3389/fvets.2022.965391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is a leading cause of non-communicable morbidity and mortality throughout the world, similarly, in dogs, the most frequent cause of mortality is tumors. Some types of cancer, including osteosarcoma (OSA), occur at much higher rates in dogs than people. Dogs therefore not only require treatment themselves but can also act as an effective parallel patient population for the human disease equivalent. It should be noted that although there are many similarities between canine and human OSA, there are also key differences and it is important to research and highlight these features. Despite progress using chorioallantoic membrane models, 2D and 3D in vitro models, and rodent OSA models, many more insights into the molecular and cellular mechanisms, drug development, and treatment are being discovered in a variety of canine OSA patient populations.
Collapse
Affiliation(s)
- Siobhan Simpson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A. Rizvanov
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Jennie N. Jeyapalan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone de Brot
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Comparative Pathology Platform (COMPATH), Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Catrin S. Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
3
|
Nasry WHS, Martin CK. Intersecting Mechanisms of Hypoxia and Prostaglandin E2-Mediated Inflammation in the Comparative Biology of Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:539361. [PMID: 34094895 PMCID: PMC8175905 DOI: 10.3389/fonc.2021.539361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
The importance of inflammation in the pathogenesis of cancer was first proposed by Rudolph Virchow over 150 years ago, and our understanding of its significance has grown over decades of biomedical research. The arachidonic acid pathway of inflammation, including cyclooxygenase (COX) enzymes, PGE2 synthase enzymes, prostaglandin E2 (PGE2) and PGE2 receptors has been extensively studied and has been associated with different diseases and different types of cancers, including oral squamous cell carcinoma (OSCC). In addition to inflammation in the tumour microenvironment, low oxygen levels (hypoxia) within tumours have also been shown to contribute to tumour progression. Understandably, most of our OSCC knowledge comes from study of this aggressive cancer in human patients and in experimental rodent models. However, domestic animals develop OSCC spontaneously and this is an important, and difficult to treat, form of cancer in veterinary medicine. The primary goal of this review article is to explore the available evidence regarding interaction between hypoxia and the arachidonic acid pathway of inflammation during malignant behaviour of OSCC. Overlapping mechanisms in hypoxia and inflammation can contribute to tumour growth, angiogenesis, and, importantly, resistance to therapy. The benefits and controversies of anti-inflammatory and anti-angiogenic therapies for human and animal OSCC patients will be discussed, including conventional pharmaceutical agents as well as natural products.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| |
Collapse
|
4
|
Yang S, An J, Park S, Lee J, Chae H, Lee K, Song W, Youn H. Enhanced expression of cyclooxygenase-2 related multi-drug resistance gene in melanoma and osteosarcoma cell lines by TSG-6 secreted from canine adipose-derived mesenchymal stem/stromal cells. Vet Med Sci 2021; 7:968-978. [PMID: 33570264 PMCID: PMC8136926 DOI: 10.1002/vms3.442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/09/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multiple drug resistance (MDR) of cancer cells is the main cause of intrinsic or acquired desensitization to chemotherapy in many cancers. A number of studies have found high expression of COX-2 to be a factor for expression of MDR gene in several cancer. Furthermore, adipose tissue derived mesenchymal stem/stromal cells (ADSC) have been found to increase cyclo-oxygenase-2 (COX-2) expression in some tumour cells. The mechanism for this, however, is not yet clear and needs further study. OBJECTIVE The purpose of this study was to determine whether tumour necrosis factor-alpha stimulated gene/protein 6 (TSG-6) secreted from ADSCs is associated with an increase in MDR genes by inducing COX-2 gene expression in melanoma and osteosarcoma cell lines. METHODS ADSCs were transfected with TSG-6 siRNA or Control RNA respected, and cancer cell line were transfected with COX-2 siRNA or Control RNA respected. Using trans well coculture system, the interactions of ADSCs with tumour cells were investigated. RESULTS Increased COX-2 expression was observed in cancer cell co-cultured with ADSCs. Additionally, we identified that COX-2 expression was related to drug resistance genes (P-glycoprotein, multidrug resistance-associated protein). Transfecting canine ADSCs with small interfering RNA, TSG-6 secreted from ADSCs was found to be a major factor in the regulation of COX-2 expression and drug resistance genes in osteosarcoma and melanoma cell lines. CONCLUSION TSG-6 mediated COX-2 up-regulation is a possible mechanism of chemoresistance development induced by ADSCs. These findings provide better understanding about the mechanism associated with ADSC-induced chemoresistance in cancer.
Collapse
Affiliation(s)
- Se‐Jin Yang
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Ju‐Hyun An
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Su‐Min Park
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Jeong‐Hwa Lee
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Hyung‐Kyu Chae
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Kyung‐Mi Lee
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| | - Woo‐Jin Song
- Department of Veterinary Internal MedicineCollege of Veterinary MedicineJeju National UniversityJeju‐SiKorea
| | - Hwa‐Young Youn
- Laboratory of Veterinary Internal MedicineDepartment of Veterinary Clinical ScienceCollege of Veterinary MedicineSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
5
|
Mason NJ. Comparative Immunology and Immunotherapy of Canine Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:199-221. [PMID: 32767244 DOI: 10.1007/978-3-030-43085-6_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approximately 800 people are diagnosed with osteosarcoma (OSA) per year in the USA. Although 70% of patients with localized OSA are cured with multiagent chemotherapy and surgical resection, the prognosis for patients with metastatic or relapsed disease is guarded. The small number of patients diagnosed annually contributes to an incomplete understanding of disease pathogenesis, and challenges in performing appropriately powered clinical trials and detecting correlative biomarkers of response. While mouse models of OSA are becoming increasingly sophisticated, they generally fail to accurately recapitulate tumor heterogeneity, tumor microenvironment (TME), systemic immune dysfunction, and the clinical features of tumor recurrence, metastases, and chemoresistance, which influence outcome. Pet dogs spontaneously develop OSA with an incidence that is 30-50 times higher than humans. Canine OSA parallels the human disease in its clinical presentation, biological behavior, genetic complexity, and therapeutic management. However, despite therapy, most dogs die from metastatic disease within 1 year of diagnosis. Since OSA occurs in immune-competent dogs, immune factors that sculpt tumor immunogenicity and influence responses to immune modulation are in effect. In both species, immune modulation has shown beneficial effects on patient outcome and work is now underway to identify the most effective immunotherapies, combination of immunotherapies, and correlative biomarkers that will further improve clinical response. In this chapter, the immune landscape of canine OSA and the immunotherapeutic strategies used to modulate antitumor immunity in dogs with the disease will be reviewed. From this immunological viewpoint, the value of employing dogs with spontaneous OSA to accelerate and inform the translation of immunotherapies into the human clinic will be underscored.
Collapse
Affiliation(s)
- Nicola J Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Molecular Characterisation of Canine Osteosarcoma in High Risk Breeds. Cancers (Basel) 2020; 12:cancers12092405. [PMID: 32854182 PMCID: PMC7564920 DOI: 10.3390/cancers12092405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Dogs develop osteosarcoma (OSA) and the disease process closely resembles that of human OSA. OSA has a poor prognosis in both species and disease-free intervals and cure rates have not improved in recent years. Gene expression in canine OSAs was compared with non-tumor tissue utilising RNA sequencing, validated by qRT-PCR and immunohistochemistry (n = 16). Polymorphic polyglutamine (polyQ) tracts in the androgen receptor (AR/NR3C4) and nuclear receptor coactivator 3 (NCOA3) genes were investigated in control and OSA patients using polymerase chain reaction (PCR), Sanger sequencing and fragment analysis (n = 1019 Rottweilers, 379 Irish Wolfhounds). Our analysis identified 1281 significantly differentially expressed genes (>2 fold change, p < 0.05), specifically 839 lower and 442 elevated gene expression in osteosarcoma (n = 3) samples relative to non-malignant (n = 4) bone. Enriched pathways and gene ontologies were identified, which provide insight into the molecular pathways implicated in canine OSA. Expression of a subset of these genes (SLC2A1, DKK3, MMP3, POSTN, RBP4, ASPN) was validated by qRTPCR and immunohistochemistry (MMP3, DKK3, SLC2A1) respectively. While little variation was found in the NCOA3 polyQ tract, greater variation was present in both polyQ tracts in the AR, but no significant associations in length were made with OSA. The data provides novel insights into the molecular mechanisms of OSA in high risk breeds. This knowledge may inform development of new prevention strategies and treatments for OSA in dogs and supports utilising spontaneous OSA in dogs to improve understanding of the disease in people.
Collapse
|
7
|
Musser ML, Viall AK, Phillips RL, Hostetter JM, Johannes CM. Gene expression of prostaglandin EP4 receptor in three canine carcinomas. BMC Vet Res 2020; 16:213. [PMID: 32571310 PMCID: PMC7310232 DOI: 10.1186/s12917-020-02431-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chronic inflammation mediated by the cyclooxygenase enzymes, specifically their product prostaglandin E2 (PGE2), can result in the development of cancer. PGE2 promotes cell proliferation, apoptosis, and angiogenesis through interaction with its specific receptors (EP1 receptor - EP4 receptor [EP1R-EP4R]). In multiple human cancers, the expression of EP4R is associated with the development of malignancy and a poor prognosis. The expression of EP4R has not yet been evaluated in canine tumors. The aim of this study was to characterize the mRNA gene expression of EP4R (ptger4) in canine squamous cell carcinoma (SCC), apocrine gland anal sac adenocarcinoma (AGASACA), and transitional cell carcinoma (TCC). Archived tumor samples of canine cutaneous SCC (n = 9), AGASACA (n = 9), and TCC (n = 9), and matched archived normal tissue controls were evaluated for mRNA expression of canine EP4R using RNA in situ hybridization (RNAscope®). Quantification of RNAscope® signals in tissue sections was completed with an advanced digital pathology image analysis system (HALO). Data was expressed as copy number, H-index, and percent tumor cell expression of EP4R. RESULTS In all canine SCC, AGASACA, and TCC samples evaluated, strong universal positive expression of EP4R was identified. For SCC and AGASACA, mRNA EP4R expression was statistically higher than that of their respective normal tissues. The TCC tissues displayed significantly less mRNA EP4R expression when compared to normal bladder mucosa. CONCLUSIONS These results confirm the mRNA expression of canine EP4R in all tumor types evaluated, with SCC and AGASACA displaying the highest expression, and TCC displaying the lowest expression. This study also represents the first reported veterinary evaluation of EP4R expression using the novel in situ hybridization technique, RNAscope®.
Collapse
Affiliation(s)
- Margaret L Musser
- Department of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA.
| | - Austin K Viall
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Rachel L Phillips
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Jesse M Hostetter
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, USA.,Present address: University of Georgia College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Chad M Johannes
- Department of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| |
Collapse
|
8
|
Metabolomics profiling provides valuable insights into the underlying mechanisms of Morinda officinalis on protecting glucocorticoid-induced osteoporosis. J Pharm Biomed Anal 2019; 166:336-346. [DOI: 10.1016/j.jpba.2019.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/27/2018] [Accepted: 01/12/2019] [Indexed: 11/21/2022]
|
9
|
Maeda S, Tomiyasu H, Tsuboi M, Inoue A, Ishihara G, Uchikai T, Chambers JK, Uchida K, Yonezawa T, Matsuki N. Comprehensive gene expression analysis of canine invasive urothelial bladder carcinoma by RNA-Seq. BMC Cancer 2018; 18:472. [PMID: 29699519 PMCID: PMC5921755 DOI: 10.1186/s12885-018-4409-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 04/18/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Invasive urothelial carcinoma (iUC) is a major cause of death in humans, and approximately 165,000 individuals succumb to this cancer annually worldwide. Comparative oncology using relevant animal models is necessary to improve our understanding of progression, diagnosis, and treatment of iUC. Companion canines are a preferred animal model of iUC due to spontaneous tumor development and similarity to human disease in terms of histopathology, metastatic behavior, and treatment response. However, the comprehensive molecular characterization of canine iUC is not well documented. In this study, we performed transcriptome analysis of tissue samples from canine iUC and normal bladders using an RNA sequencing (RNA-Seq) approach to identify key molecular pathways in canine iUC. METHODS Total RNA was extracted from bladder tissues of 11 dogs with iUC and five healthy dogs, and RNA-Seq was conducted. Ingenuity Pathway Analysis (IPA) was used to assign differentially expressed genes to known upstream regulators and functional networks. RESULTS Differential gene expression analysis of the RNA-Seq data revealed 2531 differentially expressed genes, comprising 1007 upregulated and 1524 downregulated genes, in canine iUC. IPA revealed that the most activated upstream regulator was PTGER2 (encoding the prostaglandin E2 receptor EP2), which is consistent with the therapeutic efficiency of cyclooxygenase inhibitors in canine iUC. Similar to human iUC, canine iUC exhibited upregulated ERBB2 and downregulated TP53 pathways. Biological functions associated with cancer, cell proliferation, and leukocyte migration were predicted to be activated, while muscle functions were predicted to be inhibited, indicating muscle-invasive tumor property. CONCLUSIONS Our data confirmed similarities in gene expression patterns between canine and human iUC and identified potential therapeutic targets (PTGER2, ERBB2, CCND1, Vegf, and EGFR), suggesting the value of naturally occurring canine iUC as a relevant animal model for human iUC.
Collapse
Affiliation(s)
- Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Hirotaka Tomiyasu
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaya Tsuboi
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiko Inoue
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Takao Uchikai
- Anicom Specialty Medical Institute Inc., Tokyo, Japan
| | - James K Chambers
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoaki Matsuki
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Simpson S, Dunning MD, de Brot S, Grau-Roma L, Mongan NP, Rutland CS. Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics. Acta Vet Scand 2017; 59:71. [PMID: 29065898 PMCID: PMC5655853 DOI: 10.1186/s13028-017-0341-9] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023] Open
Abstract
Osteosarcoma (OSA) is a rare cancer in people. However OSA incidence rates in dogs are 27 times higher than in people. Prognosis in both species is relatively poor, with 5 year OSA survival rates in people not having improved in decades. For dogs, 1 year survival rates are only around ~ 45%. Improved and novel treatment regimens are urgently required to improve survival in both humans and dogs with OSA. Utilising information from genetic studies could assist in this in both species, with the higher incidence rates in dogs contributing to the dog population being a good model of human disease. This review compares the clinical characteristics, gross morphology and histopathology, aetiology, epidemiology, and genetics of canine and human OSA. Finally, the current position of canine OSA genetic research is discussed and areas for additional work within the canine population are identified.
Collapse
|
11
|
Molecular investigation of the direct anti-tumour effects of nonsteroidal anti-inflammatory drugs in a panel of canine cancer cell lines. Vet J 2017; 221:38-47. [DOI: 10.1016/j.tvjl.2017.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 01/25/2023]
|
12
|
Carvalho S, Stoll AL, Priestnall SL, Suarez-Bonnet A, Rassnick K, Lynch S, Schoepper I, Romanelli G, Buracco P, Atherton M, de Merlo EM, Lara-Garcia A. Retrospective evaluation of COX-2 expression, histological and clinical factors as prognostic indicators in dogs with renal cell carcinomas undergoing nephrectomy. Vet Comp Oncol 2016; 15:1280-1294. [DOI: 10.1111/vco.12264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/30/2016] [Accepted: 07/27/2016] [Indexed: 01/30/2023]
Affiliation(s)
- S. Carvalho
- Oncology Service, Department of Clinical Sciences and Services; Royal Veterinary College; Hertfordshire UK
| | - A. L. Stoll
- Department of Pathology and Pathogen Biology; Royal Veterinary College; Hertfordshire UK
| | - S. L. Priestnall
- Department of Pathology and Pathogen Biology; Royal Veterinary College; Hertfordshire UK
| | - A. Suarez-Bonnet
- Institute for Animal Health, Veterinary School; Universidad de Las Palmas de Gran Canaria; Arucas Spain
| | - K. Rassnick
- Veterinary Medical Centre of Central New York; New York USA
| | - S. Lynch
- Davies Veterinary Specialists; Hitchin UK
| | | | | | - P. Buracco
- Department of Veterinary Science; University of Turin; Turin Italy
| | - M. Atherton
- University of Glasgow School of Veterinary Medicine Glasgow; Glasgow UK
| | - E. M. de Merlo
- Universidad Complutense de Madrid Facultad de Veterinaria Madrid; Madrid Spain
| | - A. Lara-Garcia
- Oncology Service, Department of Clinical Sciences and Services; Royal Veterinary College; Hertfordshire UK
| |
Collapse
|
13
|
Investigating associations of cyclooxygenase-2 expression with angiogenesis, proliferation, macrophage and T-lymphocyte infiltration in canine melanocytic tumours. Melanoma Res 2016; 26:338-47. [DOI: 10.1097/cmr.0000000000000262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Tuohy JL, Lascelles BDX, Griffith EH, Fogle JE. Association of Canine Osteosarcoma and Monocyte Phenotype and Chemotactic Function. J Vet Intern Med 2016; 30:1167-78. [PMID: 27338235 PMCID: PMC5094498 DOI: 10.1111/jvim.13983] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/26/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
Background Monocytes/macrophages are likely key cells in immune modulation in dogs with osteosarcoma (OSA). Increased peripheral monocyte counts are negatively correlated with shorter disease‐free intervals in dogs with OSA. Understanding the monocyte/macrophage's modulatory role in dogs with OSA can direct further studies in immunotherapy development for OSA. Hypothesis/Objectives That OSA evades the immune response by down‐regulating monocyte chemokine receptor expression and migratory function, and suppresses host immune responses. Animals Eighteen dogs with OSA that have not received definitive treatment and 14 healthy age‐matched controls Methods Clinical study—expression of peripheral blood monocyte cell surface receptors, monocyte mRNA expression and cytokine secretion, monocyte chemotaxis, and survival were compared between clinical dogs with OSA and healthy control dogs. Results Cell surface expression of multiple chemokine receptors is significantly down‐regulated in peripheral blood monocytes of dogs with OSA. The percentage expression of CCR2 (median 58%, range 2–94%) and CXCR2 expression (median 54%, range 2–92%) was higher in control dogs compared to dogs with OSA (CCR2 median 29%, range 3–45%, P = 0.0006; CXCR2 median 23%, range 0.2–52%, P = 0.0007). Prostaglandin E2 (PGE2) (OSA, median 347.36 pg/mL, range 103.4–1268.5; control, 136.23 pg/mL, range 69.93–542.6, P = .04) and tumor necrosis factor‐alpha (TNF‐α) (P = .02) levels are increased in OSA monocyte culture supernatants compared to controls. Peripheral blood monocytes of dogs with OSA exhibit decreased chemotactic function when compared to control dogs (OSA, median 1.2 directed to random migration, range 0.8–1.25; control, 1.6, range of 0.9–1.8, P = .018). Conclusions and Clinical Importance Dogs with OSA have decreased monocyte chemokine receptor expression and monocyte chemotaxis, potential mechanisms by which OSA might evade the immune response. Reversal of monocyte dysfunction using immunotherapy could improve survival in dogs with OSA.
Collapse
Affiliation(s)
- J L Tuohy
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - B D X Lascelles
- Comparative Pain Research Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC.,Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC.,Center for Pain Research and Innovation, University of North Carolina School of Dentistry, Chapel Hill, NC
| | - E H Griffith
- Department of Statistics, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC
| | - J E Fogle
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC.,Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
15
|
Avallone G, Stefanello D, Boracchi P, Ferrari R, Gelain ME, Turin L, Tresoldi E, Roccabianca P. Growth Factors and COX2 Expression in Canine Perivascular Wall Tumors. Vet Pathol 2015; 52:1034-40. [PMID: 25795373 DOI: 10.1177/0300985815575050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Canine perivascular wall tumors (PWTs) are a group of subcutaneous soft tissue sarcomas developing from vascular mural cells. Mural cells are involved in angiogenesis through a complex crosstalk with endothelial cells mediated by several growth factors and their receptors. The evaluation of their expression may have relevance since they may represent a therapeutic target in the control of canine PWTs. The expression of vascular endothelial growth factor (VEGF) and receptors VEGFR-I/II, basic fibroblast growth factor (bFGF) and receptor Flg, platelet-derived growth factor B (PDGFB) and receptor PDGFRβ, transforming growth factor β1 (TGFβ1) and receptors TGFβR-I/II, and cyclooxygenase 2 (COX2) was evaluated on frozen sections of 40 PWTs by immunohistochemistry and semiquantitatively scored to identify their potential role in PWT development. Statistical analysis was performed to analyze possible correlations between Ki67 labeling index and the expression of each molecule. Proteins of the VEGF-, PDGFB-, and bFGF-mediated pathways were highly expressed in 27 (67.5%), 30 (75%), and 19 (47.5%) of 40 PWTs, respectively. Proteins of the TGFβ1- and COX2-mediated pathways were highly expressed in 4 (10%) and 14 (35%) of 40 cases. Statistical analysis identified an association between VEGF and VEGFR-I/II (P = .015 and .003, respectively), bFGF and Flg (P = .038), bFGF and PDGFRβ (P = .003), and between TGFβ1 and COX2 (P = .006). These findings were consistent with the mechanisms that have been reported to play a role in angiogenesis and in tumor development. No association with Ki67 labeling index was found. VEGF-, PDGFB-, and bFGF-mediated pathways seem to have a key role in PWT development and growth. Blockade of tyrosine kinase receptors after surgery could represent a promising therapy with the aim to reduce the PWT relapse rate and prolong the time to relapse.
Collapse
Affiliation(s)
- G Avallone
- Department of Veterinary Medical Sciences (DIMEVET), Università di Bologna, Ozzano dell'Emilia, Milano, Italy
| | - D Stefanello
- Dipartimento di scienze veterinarie e sanità pubblica (DIVET), Università degli studi di Milano, Milano, Italy
| | - P Boracchi
- Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics, Biometry and Epidemiology GA Maccacaro, Università degli Studi di Milano, Milano, Italy
| | - R Ferrari
- Dipartimento di scienze veterinarie e sanità pubblica (DIVET), Università degli studi di Milano, Milano, Italy
| | - M E Gelain
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Agripolis-Legnaro (PD), Italy
| | - L Turin
- Dipartimento di scienze veterinarie e sanità pubblica (DIVET), Università degli studi di Milano, Milano, Italy
| | - E Tresoldi
- Dipartimento di scienze veterinarie e sanità pubblica (DIVET), Università degli studi di Milano, Milano, Italy
| | - P Roccabianca
- Dipartimento di scienze veterinarie e sanità pubblica (DIVET), Università degli studi di Milano, Milano, Italy
| |
Collapse
|
16
|
Nagamine E, Hirayama K, Matsuda K, Okamoto M, Ohmachi T, Kadosawa T, Taniyama H. Diversity of Histologic Patterns and Expression of Cytoskeletal Proteins in Canine Skeletal Osteosarcoma. Vet Pathol 2015; 52:977-84. [PMID: 25770040 DOI: 10.1177/0300985815574006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteosarcoma (OS), the most common bone tumor, includes OS of the head (OSH) and appendicular OS (OSA). In dogs, it is classified into 6 histologic subtypes: osteoblastic, chondroblastic, fibroblastic, telangiectatic, giant cell, and poorly differentiated. This study investigated the significance of the histologic classification relevant to clinical outcome and the histologic and immunohistochemical relationships between pleomorphism and expression of cytoskeletal proteins in 60 cases each of OSH and OSA. Most neoplasms exhibited histologic diversity, and 64% of OS contained multiple subtypes. In addition to the above 6 subtypes, myxoid, round cell, and epithelioid subtypes were observed. Although the epithelioid subtypes were observed in only OSH, no significant difference in the frequency of other subtypes was observed. Also, no significant relevance was observed between the clinical outcome and histologic subtypes. Cytokeratin (CK) was expressed in both epithelioid and sarcomatoid tumor cells in various subtypes, and all CK-positive tumor cells also expressed vimentin. Vimentin and α-smooth muscle actin (SMA) were expressed in all subtypes. A few SMA-positive spindle-shaped tumor cells exhibited desmin expression. Glial fibrillary acidic protein-positive tumor cells were observed in many subtypes, and some of these cells showed neurofilament expression. Although OSH exhibited significantly stronger immunoreactivity for SMA than OSA, no significant difference in other cytoskeletal proteins was observed. Some tumor cells had cytoskeletal protein expression compatible with the corresponding histologic subtypes, such as CK in the epithelioid subtype and SMA in the fibroblastic subtype. Thus, canine skeletal OS is composed of pleomorphic and heterogenous tumor cells as is reflected in the diversity of histologic patterns and expression of cytoskeletal proteins.
Collapse
Affiliation(s)
- E Nagamine
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - K Hirayama
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - K Matsuda
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - M Okamoto
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | | | - T Kadosawa
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - H Taniyama
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| |
Collapse
|
17
|
Cancedda S, Sabattini S, Bettini G, Leone VF, Laganga P, Rossi F, Terragni R, Gnudi G, Vignoli M. Combination of radiation therapy and firocoxib for the treatment of canine nasal carcinoma. Vet Radiol Ultrasound 2015; 56:335-43. [PMID: 25703137 DOI: 10.1111/vru.12246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 11/04/2014] [Indexed: 11/28/2022] Open
Abstract
Carcinomas represent two-thirds of canine nasosinal neoplasms. Although radiation therapy (RT) is the standard of care, the incidence of local recurrence following treatment is high. Cyclooxygenase-isoform-2 (COX-2) is expressed in 71-95% of canine nasal carcinomas and has been implicated in tumor growth and angiogenesis. Accordingly, COX-2 inhibition seems rational to improve outcome. Dogs with histologically confirmed, previously untreated nasal carcinomas were randomized to receive the combination of a selective COX-2 inhibitor (firocoxib) and palliative RT (Group 1) or RT and placebo (Group 2). Patients were regularly monitored with blood tests, urinalysis, and computed tomography. Pet owners were asked to complete monthly a quality-of-life questionnaire. Twenty-four dogs were prospectively enrolled. According to Adams modified system, there were five stage 1, five stage 2, three stage 3, and 11 stage 4 tumors. Two dogs had metastases to regional lymph nodes. Median progression-free interval and overall survival were 228 and 335 days in Group 1 (n = 12) and 234 and 244 days in Group 2 (n = 12). These differences were not statistically significant. The involvement of regional lymph nodes was significantly associated with progression-free interval and overall survival (P = 0.004). Quality of life was significantly improved in Group 1 (P = 0.008). In particular, a significant difference was observed for activity and appetite. Although not providing a significant enhancement of progression-free interval and overall survival, firocoxib in combination with RT is safe and improved life quality in dogs with nasal carcinomas.
Collapse
Affiliation(s)
- Simona Cancedda
- Centro Oncologico Veterinario, I 40037 Sasso Marconi, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen Y, Liu H, Xu S, Wang T, Li W. Targeting microsomal prostaglandin E2synthase-1 (mPGES-1): the development of inhibitors as an alternative to non-steroidal anti-inflammatory drugs (NSAIDs). MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00278h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AA cascade and several key residues in the 3D structure of mPGES-1.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | | | - Shuang Xu
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Tianlin Wang
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| |
Collapse
|
19
|
Asproni P, Vignoli M, Cancedda S, Millanta F, Terragni R, Poli A. Immunohistochemical Expression of Cyclooxygenase-2 in Normal, Hyperplastic and Neoplastic Canine Lymphoid Tissues. J Comp Pathol 2014; 151:35-41. [DOI: 10.1016/j.jcpa.2014.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/11/2014] [Accepted: 03/19/2014] [Indexed: 02/07/2023]
|
20
|
Millanta F, Asproni P, Canale A, Citi S, Poli A. COX-2, mPGES-1 and EP2 receptor immunohistochemical expression in canine and feline malignant mammary tumours. Vet Comp Oncol 2014; 14:270-80. [PMID: 24824420 DOI: 10.1111/vco.12096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
Abstract
Prostaglandin (PG) signalling is involved in human and animal cancer development. PG E2 (PGE2 ) tumour-promoting activity has been confirmed and its production is controlled by Cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1). Evidence suggests that mPGES-1 and COX-2 contribute to carcinogenesis through the EP2 receptor. The aim of our study was to detect by immunohistochemistry COX-2, mPGES-1 and EP2 receptor expression in canine (n = 46) and feline (n = 50) mammary tumours and in mammary non-neoplastic tissues. COX-2 positivity was observed in 83% canine and 81% feline mammary carcinomas, mPGES-1 in 75% canine and 66% feline mammary carcinomas and the EP2 receptor expression was observed in 89% canine and 54% feline carcinomas. The frequency of COX-2, EP2 receptor and mPGES-1 expression was significantly higher in carcinomas than in non-neoplastic tissues and adenomas. COX-2, mPGES-1 and EP2 receptor expression was strongly associated. These findings support a role of the COX-2/PGE2 pathway in the pathogenesis of these tumours.
Collapse
Affiliation(s)
- F Millanta
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - P Asproni
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - A Canale
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - S Citi
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| | - A Poli
- Department of Veterinary Science, University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
Pang LY, Gatenby EL, Kamida A, Whitelaw BA, Hupp TR, Argyle DJ. Global gene expression analysis of canine osteosarcoma stem cells reveals a novel role for COX-2 in tumour initiation. PLoS One 2014; 9:e83144. [PMID: 24416158 PMCID: PMC3885401 DOI: 10.1371/journal.pone.0083144] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumour of both children and dogs. It is an aggressive tumour in both species with a rapid clinical course leading ultimately to metastasis. In dogs and children distant metastasis occurs in >80% of individuals treated by surgery alone. Both canine and human osteosarcoma has been shown to contain a sub-population of cancer stem cells (CSCs), which may drive tumour growth, recurrence and metastasis, suggesting that naturally occurring canine osteosarcoma could act as a preclinical model for the human disease. Here we report the successful isolation of CSCs from primary canine osteosarcoma, as well as established cell lines. We show that these cells can form tumourspheres, and demonstrate relative resistance to chemotherapy. We demonstrate similar results for the human osteosarcma cell lines, U2OS and SAOS2. Utilizing the Affymetrix canine microarray, we are able to definitively show that there are significant differences in global gene expression profiles of isolated osteosarcoma stem cells and the daughter adherent cells. We identified 13,221 significant differences (p = 0.05), and significantly, COX-2 was expressed 141-fold more in CSC spheres than daughter adherent cells. To study the role of COX-2 expression in CSCs we utilized the COX-2 inhibitors meloxicam and mavacoxib. We found that COX-2 inhibition had no effect on CSC growth, or resistance to chemotherapy. However inhibition of COX-2 in daughter cells prevented sphere formation, indicating a potential significant role for COX-2 in tumour initiation.
Collapse
Affiliation(s)
- Lisa Y. Pang
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Emma L. Gatenby
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Ayako Kamida
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Bruce A. Whitelaw
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Ted R. Hupp
- Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
22
|
|