1
|
Atalay E, Altuğ B, Çalışkan ME, Ceylan S, Özler ZS, Figueiredo G, Lako M, Figueiredo F. Animal Models for Limbal Stem Cell Deficiency: A Critical Narrative Literature Review. Ophthalmol Ther 2024; 13:671-696. [PMID: 38280103 PMCID: PMC10853161 DOI: 10.1007/s40123-023-00880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/29/2024] Open
Abstract
This literature review will provide a critical narrative overview of the highlights and potential pitfalls of the reported animal models for limbal stem cell deficiency (LSCD) and will identify the neglected aspects of this research area. There exists significant heterogeneity in the literature regarding the methodology used to create the model and the predefined duration after the insult when the model is supposedly fully fit for evaluations and/or for testing various therapeutic interventions. The literature is also replete with examples wherein the implementation of a specific model varies significantly across different studies. For example, the concentration of the chemical, as well as its duration and technique of exposure in a chemically induced LSCD model, has a great impact not only on the validity of the model but also on the severity of the complications. Furthermore, while some models induce a full-blown clinical picture of total LSCD, some are hindered by their ability to yield only partial LSCD. Another aspect to consider is the nature of the damage induced by a specific method. As thermal methods cause more stromal scarring, they may be better suited for assessing the anti-fibrotic properties of a particular treatment. On the other hand, since chemical burns cause more neovascularisation, they provide the opportunity to tap into the potential treatments for anti-neovascularisation. The animal species (i.e., rats, mice, rabbits, etc.) is also a crucial factor in the validity of the model and its potential for clinical translation, with each animal having its unique set of advantages and disadvantages. This review will also elaborate on other overlooked aspects, such as the anaesthetic(s) used during experiments, the gender of the animals, care after LSCD induction, and model validation. The review will conclude by providing future perspectives and suggestions for further developments in this rather important area of research.
Collapse
Affiliation(s)
- Eray Atalay
- Department of Ophthalmology, Eskişehir Osmangazi University Medical School, Eskişehir, Turkey
| | - Burcugül Altuğ
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskişehir Osmangazi University, Eskişehir, Turkey
| | | | - Semih Ceylan
- Eskişehir Osmangazi University Medical School, Eskişehir, Turkey
| | | | | | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Francisco Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle University, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
2
|
Song L, Yang X, Cui H. Plasma fibrin membranes loaded with bone marrow mesenchymal stem cells and corneal epithelial cells promote corneal injury healing via attenuating inflammation and fibrosis after corneal burns. Biomater Sci 2023; 11:5970-5983. [PMID: 37486330 DOI: 10.1039/d3bm00713h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The shortage of corneal donors has prompted the development of tissue-engineered corneal grafts as an alternative solution. Currently, amniotic membranes with good biocompatibility are widely used as scaffolds for loading stem cells in the treatment of corneal injury. However, this approach has its limitations. In this study, BMSCs were induced to differentiate into corneal epithelial cells via direct contact co-culture, and platelet-poor plasma was used to prepare fibrin gels, which were compressed to remove excess liquid and then lyophilized to obtain plasma fibrin membranes (PFMs). A tissue-engineered corneal implant with PFMs as a scaffold loaded with BMSCs and corneal epithelial cells was designed and obtained. Scanning electron microscopy showed that PFMs have a uniformly distributed microporous surface that facilitates cell attachment and nutrient transport. The rheological results showed that the freeze-dried and rehydrated PFMs were more rigid than fresh membranes, which makes it easier to use them for transplantation after cell loading. The experimental results of a rat alkali burn cornea injury model showed that PFMs effectively reduced the inflammatory reaction, inhibited fibrosis, and accelerated the healing of corneal wounds. It was also found that some of the BMSCs were successfully implanted into the corneal injury site in rats and differentiated into corneal epithelial cells. These results demonstrate the potential of tissue-engineered corneal implants using BMSCs and corneal epithelial cells and PFMs as scaffolds as a new treatment option for corneal injury.
Collapse
Affiliation(s)
- Liqun Song
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Xue Yang
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Huifei Cui
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- National Glycoengineering Research Center, Cheeloo College of Medicine, Shandon University, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry end Glycobiology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
3
|
Novel Animal Model of Limbal Stem Cell Deficiency Induced by Forcing Eye-Open at Birth. Cornea 2023:00003226-990000000-00244. [PMID: 36796015 DOI: 10.1097/ico.0000000000003242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/08/2022] [Indexed: 02/18/2023]
Abstract
PURPOSE The aim of this study was to develop a rat model of limbal stem cell deficiency (LSCD) by forcing eye-open at birth (FEOB). METHODS A total of 200 Sprague-Dawley neonatal rats were randomly divided into the control group and the experimental group, which received eyelid open surgery on postnatal day 1 (P1). Observation time points were defined as P1, P5, P10, P15, and P30. Slit-lamp microscope and corneal confocal microscope were used to observe the clinical features of the model. The eyeballs were collected for hematoxylin and eosin staining and periodic acid-Schiff staining. Proliferating cell nuclear antigen, CD68/polymorphonuclear leukocytes, and cytokeratin 10/12/13 immunostaining were performed, while the ultrastructure of the cornea was observed by scanning electron microscopy. Real-time polymerase chain reactions (PCRs), western blot, and immunohistochemical staining of activin A receptor-like kinase-1/5 were used to analyze the possible pathogenesis. RESULTS FEOB could successfully induce the typical manifestations of LSCD, including corneal neovascularization, severe inflammation, and corneal opacity. In the FEOB group, goblet cells could be detected in the corneal epithelium by periodic acid-Schiff staining. The expression of cytokeratins was also different between the 2 groups. Furthermore, proliferating cell nuclear antigen immunohistochemical staining revealed the weak proliferation and differentiation ability of limbal epithelial stem cells in the FEOB group. Real-time PCRs, western blot, and immunohistochemical staining of activin A receptor-like kinase-1/activin A receptor-like kinase-5 in the FEOB group showed different expression patterns than those of the control group. CONCLUSIONS FEOB in rats induces ocular surface changes resembling LSCD in humans, representing a novel model of LSCD.
Collapse
|
4
|
Jurkunas U, Johns L, Armant M. Cultivated Autologous Limbal Epithelial Cell Transplantation: New Frontier in the Treatment of Limbal Stem Cell Deficiency. Am J Ophthalmol 2022; 239:244-268. [PMID: 35314191 DOI: 10.1016/j.ajo.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Taking into consideration prior human experience with treating limbal stem cell deficiency (LSCD) with cultivated limbal epithelial cells (CLEC) from other countries, we have set a goal to optimize and standardize the techniques of CLEC preparation (called CALEC by our group) for the clinical trial in the United States. METHODS We performed an extensive literature review of all human trials, case series, and reports involving autologous cultivated limbal epithelial cell transplantation. Allogeneic cultivated limbal epithelial cell transplantations were reported only when combined with autologous studies. We also searched prior animal data aiding in detailing regulatory toxicology requirements. RESULTS Between 1997 and 2020, the analysis of human trials revealed 21 studies on autologous grafts, and 13 studies analyzing both autologous grafts and allogeneic grafts. Of a total of 34 studies, 6 studies used good manufacturing process (GMP) facilities, and 11 studies had no animal-derived products or murine feeder layers, whereas only 1 study had both. Overall, the treatment with autologous CLEC grafts was 68.9% successful. In total there were 6 preclinical studies using rabbits, serving as surrogate studies to assess the safety and toxicity of cultivated limbal epithelial cells for human trials. Based on prior human experience, we further optimized the manufacturing conditions with GMP-grade and serum and animal-free reagents, and developed cell characterization assays for the CALEC product release. CONCLUSIONS These data were used to develop a novel and consistent manufacturing process using only qualified and validated reagents for performing the first clinical trial on CALEC transplantation to treat LSCD in the United States.
Collapse
Affiliation(s)
- Ula Jurkunas
- From the Schepens Eye Research Institute (U.J., L.J.), Massachusetts Eye and Ear, Boston, Massachusetts, USA.
| | - Lynette Johns
- From the Schepens Eye Research Institute (U.J., L.J.), Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Myriam Armant
- TransLab (M.A.), Translational Research Program, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
MIC-1 Antlerogenic Stem Cells Homogenate from Cervus elaphus Accelerate Corneal Burn Reepithelization in Rabbits. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deer antler is the only mammalian organ that can fully grow back once lost from its pedicle. Antler regeneration is a stem cell-based process. Therefore, antlers probably offer the most pertinent model for studying organ regeneration in mammals. Evaluation of the effect of deer antler stem cells on the healing of superficial and deep rabbit corneal wounds was performed. Thirty-six New Zealeand White rabbits were used in this study in superficial and deep denaturation models, and corneal erosion was performed with n-heptanol placed on the cornea for 30 and NaOH for 90 s. Antler stem cells in drop formulation with hyaluronate was used. As a control, sodium hyaluronate in the superficial model and protein-free calf blood dialysate (Solcoseryl) in the deep model were administered. In superficial corneal damage, a reduction in the area of the damaged cornea was observed from day 3 of the experiment to an adequate level: 45% in the test group and 52% in the control group relative to the baseline damage (100%). Between days 3 and 7, on average, a smaller lesion area was observed in the group receiving antler stem cells. The use of antler stem cells has resulted in a marked improvement in cornea clarity. According to the 5-point scale of corneal opacity evaluation, where 1 is completely clear and 5 is completely opaque, the first statistically significant changes were observed after 4 weeks of treatment: 3.0 in the study group, 4.1 in the control with Solcoseryl, and 4.4 in the control group. After 9 weeks, these values were, 2.5, 3.8, and 4.1, respectively. The present preliminary study shows the promising results of antlerogenic stem cells of Cervus elaphus topically applied for the treatment of corneal injury. A deeper understanding of the developmental mechanisms involved in antler renewal can be useful for controlling regeneration cornea processes.
Collapse
|
6
|
Sun CC, Lee SY, Kao CH, Chen LH, Shen ZQ, Lai CH, Tzeng TY, Pang JHS, Chiu WT, Tsai TF. Cisd2 plays an essential role in corneal epithelial regeneration. EBioMedicine 2021; 73:103654. [PMID: 34740104 PMCID: PMC8577409 DOI: 10.1016/j.ebiom.2021.103654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/24/2021] [Accepted: 10/14/2021] [Indexed: 02/05/2023] Open
Abstract
Background Age-related changes affecting the ocular surface cause vision loss in the elderly. Cisd2 deficiency drives premature aging in mice as well as resulting in various ocular surface abnormalities. Here we investigate the role of CISD2 in corneal health and disease. Methods We studied the molecular mechanism underlying the ocular phenotypes brought about by Cisd2 deficiency using both Cisd2 knockout (KO) mice and a human corneal epithelial cell (HCEC) cell line carrying a CRISPR-mediated CISD2KO background. We also develop a potential therapeutic strategy that targets the Ca2+ signaling pathway, which has been found to be dysregulated in the corneal epithelium of subjects with ocular surface disease in order to extend the mechanistic findings into a translational application. Findings Firstly, in patients with corneal epithelial disease, CISD2 is down-regulated in their corneal epithelial cells. Secondly, using mouse cornea, Cisd2 deficiency causes a cycle of chronic injury and persistent repair resulting in exhaustion of the limbal progenitor cells. Thirdly, in human corneal epithelial cells, CISD2 deficiency disrupts intracellular Ca2+ homeostasis, impairing mitochondrial function, thereby retarding corneal repair. Fourthly, cyclosporine A and EDTA facilitate corneal epithelial wound healing in Cisd2 knockout mice. Finally, cyclosporine A treatment restores corneal epithelial erosion in patients with dry eye disease, which affects the ocular surface. Interpretation These findings reveal that Cisd2 plays an essential role in the cornea and that Ca2+ signaling pathways are potential targets for developing therapeutics of corneal epithelial diseases. Funding This study was supported by the Ministry of Science and Technology (MOST) and Chang Gung Medical Research Foundation, Taiwan.
Collapse
Affiliation(s)
- Chi-Chin Sun
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shao-Yun Lee
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan, Taiwan
| | - Li-Hsien Chen
- Department of Pharmacology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Hui Lai
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Kwei-shan, Taoyuan, Taiwan
| | - Tsai-Yu Tzeng
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Hwei Su Pang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Kwei-shan, Taoyuan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
7
|
Evaluating the clinical translational relevance of animal models for limbal stem cell deficiency: A systematic review. Ocul Surf 2021; 23:169-183. [PMID: 34583088 DOI: 10.1016/j.jtos.2021.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Animal models are pivotal for elucidating pathophysiological mechanisms and evaluating novel therapies. This systematic review identified studies that developed or adapted animal models of limbal stem cell deficiency (LSCD), assessed their reporting quality, summarized their key characteristics, and established their clinical translational relevance to human disease. METHODS The protocol was prospectively registered (PROSPERO CRD42020203937). Searches were conducted in PubMed, Ovid EMBASE and Web of Science in August 2020. Two authors screened citations, extracted data, assessed the reporting quality of eligible studies using the ARRIVE guidelines, and judged the clinical translational relevance of each model using a custom matrix. RESULTS 105 studies were included. Rabbits were the most common animal species. Overall, 97% of studies recapitulated LSCD to a clinical etiology, however 62% did not provide sufficient methodological detail to enable independent reproduction of the model. Adverse events and/or exclusion of animals were infrequently (20%) reported. Approximately one-quarter of studies did not produce the intended severity of LSCD; 34% provided insufficient information to assess the fidelity of disease induction. Adjunctive diagnostic confirmation of LSCD induction was performed in 13% of studies. CONCLUSIONS This is the first systematic review to assess the reporting quality and clinical translational relevance of animal models of LSCD. Models of LSCD have evolved over time, resulting in variable reporting of the characteristics of animals, experimental procedures and adverse events. In most studies, validation of LSCD was made using clinical tests; newer adjunctive techniques would enhance diagnostic validation. As most studies sought to evaluate novel therapies for LSCD, animal models should ideally recapitulate all features of the condition that develop in patients.
Collapse
|
8
|
Ahani-Nahayati M, Niazi V, Moradi A, Pourjabbar B, Roozafzoon R, Baradaran-Rafii A, Keshel SH. Cell-based therapy for ocular disorders: A promising frontier. Curr Stem Cell Res Ther 2021; 17:147-165. [PMID: 34161213 DOI: 10.2174/1574888x16666210622124555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
As the ocular disorders causing long-term blindness or optical abnormalities of the ocular tissue affect the quality of life of patients to a large extent, awareness of their corresponding pathogenesis and the earlier detection and treatment need more consideration. Though current therapeutics result in desirable outcomes, they do not offer an inclusive solution for development of visual impairment to blindness. Accordingly, stem cells, because of their particular competencies, have gained extensive attention for application in regenerative medicine of ocular diseases. In the last decades, a wide spectrum of stem cells surrounding mesenchymal stem/stromal cells (MSC), neural stem cells (NSCs), and embryonic/induced pluripotent stem cells (ESCs/iPSCs) accompanied by Müller glia, ciliary epithelia-derived stem cells, and retinal pigment epithelial (RPE) stem cells have been widely investigated to report their safety and efficacy in preclinical models and also human subjects. In this regard, in the first interventions, RPE cell suspensions were successfully utilized to ameliorate visual defects of the patients suffering from age-related macular degeneration (AMD) after subretinal transplantation. Herein, we will explain the pathogenesis of ocular diseases and highlight the novel discoveries and recent findings in the context of stem cell-based therapies in these disorders, focusing on the in vivo reports published during the last decade.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
9
|
Adil MT, Henry JJ. Understanding cornea epithelial stem cells and stem cell deficiency: Lessons learned using vertebrate model systems. Genesis 2021; 59:e23411. [PMID: 33576188 DOI: 10.1002/dvg.23411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Animal models have contributed greatly to our understanding of human diseases. Here, we focus on cornea epithelial stem cell (CESC) deficiency (commonly called limbal stem cell deficiency, LSCD). Corneal development, homeostasis and wound healing are supported by specific stem cells, that include the CESCs. Damage to or loss of these cells results in blindness and other debilitating ocular conditions. Here we describe the contributions from several vertebrate models toward understanding CESCs and LSCD treatments. These include both mammalian models, as well as two aquatic models, Zebrafish and the amphibian, Xenopus. Pioneering developments have been made using stem cell transplants to restore normal vision in patients with LSCD, but questions still remain about the basic biology of CESCs, including their precise cell lineages and behavior in the cornea. We describe various cell lineage tracing studies to follow their patterns of division, and the fates of their progeny during development, homeostasis, and wound healing. In addition, we present some preliminary results using the Xenopus model system. Ultimately, a more thorough understanding of these cornea cells will advance our knowledge of stem cell biology and lead to better cornea disease therapeutics.
Collapse
Affiliation(s)
- Mohd Tayyab Adil
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
Wan T, Zhang Y, Yuan K, Min J, Mou Y, Jin X. Acetylsalicylic Acid Promotes Corneal Epithelium Migration by Regulating Neutrophil Extracellular Traps in Alkali Burn. Front Immunol 2020; 11:551057. [PMID: 33178183 PMCID: PMC7593339 DOI: 10.3389/fimmu.2020.551057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/31/2020] [Indexed: 01/04/2023] Open
Abstract
Neutrophils are the first cells to migrate into the cornea in response to alkali burns, and excessive neutrophil infiltration is associated with inflammatory injury and a poorer prognosis. In an effort to understand the mechanisms underlying the inflammation mediated by neutrophils after alkali burns, we examined the role of alkali-activated neutrophils on human corneal epithelial cells (HCEs) proliferation and migration, as well as the effects of acetylsalicylic acid (ASA) and dexamethasone (DXM) on NETosis. We stimulated human neutrophils with sodium hydroxide (NaOH) and observed dose- and time-dependent neutrophil extracellular traps (NETs) formation. We also observed that ASA, but not DXM, significantly inhibited NaOH-induced NETosis. Furthermore, the activation of nuclear factor (NF)-κB, but not the production of reactive oxygen species, was involved in ASA-regulated NETosis. Moreover, NETs were found to be involved in alkali-activated neutrophils (ANs) induced neutrophil-HCE adhesion. ANs enhanced HCEs proliferation via phagocytosis. Meanwhile, ANs inhibited HCEs migration through the release of NETs, which was partially rescued by 5 mM ASA. In conclusion, ANs may interfere with HCEs proliferation and migration by phagocytosis and NETs formation, respectively. ASA may enhance HCEs migration by decreasing NETs formation through inhibition of NF-κB activation and could be a promising strategy for improving the prognosis of corneal alkali burns.
Collapse
Affiliation(s)
- Ting Wan
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Zhang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kelan Yuan
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinjin Min
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yujie Mou
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiuming Jin
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Nanofiber-reinforced decellularized amniotic membrane improves limbal stem cell transplantation in a rabbit model of corneal epithelial defect. Acta Biomater 2019; 97:310-320. [PMID: 31437637 DOI: 10.1016/j.actbio.2019.08.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022]
Abstract
Human amniotic membrane (AM) offers unique advantages as a matrix to support the transplantation of limbal stem cells (LSCs) due to its inherent pro-regenerative and anti-inflammatory properties. However, the widespread use of AM in clinical treatments of ocular surface disorders is limited by its weak mechanical strength and fast degradation, and high cost associated with preserving freshly isolated AM. Here we constructed a composite membrane consisting of an electrospun bioabsorbable poly(ε-caprolactone) (PCL) nanofiber mesh to significantly improve the ultimate tensile strength, toughness, and suture retention strength by 4-10-fold in comparison with decellularized AM sheet. The composite membrane showed extended stability and conferred longer-lasting coverage on wounded cornea surface compared with dAM. The composite membrane maintained the pro-regenerative and immunomodulatory properties of dAM, promoted LSC survival, retention, and organization, improved re-epithelialization of the defect area, and reduced inflammation and neovascularization. This study demonstrates the translational potential of our composite membrane for stem cell-based treatment of ocular surface damage. STATEMENT OF SIGNIFICANCE: Human decellularized amniotic membrane (dAM) has been widely shown as a biodegradable and bioactive matrix for regenerative tissue repair. However, the weak mechanical property has limited its widespread use in the clinic. Here we constructed a composite membrane using a layer of electrospun poly(ε-caprolactone) (PCL) nanofiber mesh to reinforce the dAM sheet through covalent interfacial bonding, while retaining the unique bioactivity of dAM. In a rabbit model of limbal stem cell (LSC) deficiency induced by alkaline burn, we demonstrated the superior property of this PCL-dAM composite membrane for repairing damaged cornea through promoting LSC transplantation, improving re-epithelialization, and reducing inflammation and neovascularization. This new composite membrane offers great translational potential in supporting stem cell-based treatment of ocular surface damage.
Collapse
|
12
|
Afsharkhamseh N, Ghahari E, Eslani M, Djalilian AR. A Simple Mechanical Procedure to Create Limbal Stem Cell Deficiency in Mouse. J Vis Exp 2016. [PMID: 27911382 DOI: 10.3791/54658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Limbal stem cell deficiency (LSCD) is a state of malfunction or loss of limbal epithelial stem cells, after which the corneal epithelium is replaced with conjunctiva. Patients suffer from recurrent corneal defects, pain, inflammation, and loss of vision. Previously, a murine model of LSCD was described and compared to two other models. The goal was to produce a consistent mouse model of LSCD that both mimics the phenotype in humans and lasts long enough to make it possible to study the disease pathophysiology and to evaluate new treatments. Here, the technique is described in more detail. A motorized tool with a rotating burr has been designed to remove the rust rings from the corneal surface or to smooth the pterygium bed in patients. It is a suitable device to create the desired LSCD model. It is a readily available, easy-to-use tool with a fine tip that makes it appropriate for working on small eyes, as in mice. Its application prevents unnecessary trauma to the eye and it does not result in unwanted injuries, as often is the case with chemical injury models. As opposed to a blunt scraper, it removes the epithelium with the basement membrane. In this protocol, the limbal area was abraded two times, and then the whole corneal epithelium was shaved from limbus to limbus. To avoid stroma injury, care was taken not to brush the corneal surface once the epithelium was already removed.
Collapse
Affiliation(s)
- Neda Afsharkhamseh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago
| | - Elham Ghahari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago;
| |
Collapse
|
13
|
Li FJ, Nili E, Lau C, Richardson NA, Walshe J, Barnett NL, Cronin BG, Hirst LW, Schwab IR, Chirila TV, Harkin DG. Evaluation of the AlgerBrush II rotating burr as a tool for inducing ocular surface failure in the New Zealand White rabbit. Exp Eye Res 2016; 147:1-11. [DOI: 10.1016/j.exer.2016.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/30/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022]
|
14
|
Bian F, Pelegrino FSA, Henriksson JT, Pflugfelder SC, Volpe EA, Li DQ, de Paiva CS. Differential Effects of Dexamethasone and Doxycycline on Inflammation and MMP Production in Murine Alkali-Burned Corneas Associated with Dry Eye. Ocul Surf 2016; 14:242-54. [PMID: 26772899 DOI: 10.1016/j.jtos.2015.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 01/06/2023]
Abstract
Alkali burns to the cornea are among the most devastating injuries to the eye. The purpose of this study was to evaluate the effects of dexamethasone (Dex) or doxycycline (Doxy) on protease activity and corneal complications in a combined model (CM) of alkali burn and dry eye. C57BL/6 mice were subjected to the CM for 2 or 5 days (D). Mice were topically treated either with Dex (0.1%), Dox (0.025%) or vehicle QID and observed daily for appearance of corneal perforation. Quantitative real time PCR was performed to measure expression of inflammation cytokines and matrix metalloproteinases (MMPs) in whole cornea lysates. No perforations were observed in the Dex-treated corneas. All wounds in Doxy-treated corneas were closed 2D post-injury, and they had significantly lower corneal opacity scores at days 4 and 5 post-injury compared to BSS treatment. Dex-treated corneas had the lowest corneal opacity scores. Dex treatment significantly decreased expression of IL-1β, IL-6, MMPs -1, -9, -13, and TIMP-1 after 2 days but increased levels of MMP-8, while Doxy treatment significantly decreased IL-1β, IL-6, MMP-8, and -9, compared to vehicle. Decreased MMP-1, -9 and -13 immunoreactivity and gelatinolytic activity were seen in corneas treated with Doxy and Dex compared to vehicle. Increased neutrophil infiltration and myeloperoxidase activity was noted in the vehicle group compared to Dex 2 days post-injury. These findings demonstrate that early initiation of anti-inflammatory therapy is very efficacious in preserving corneal clarity and facilitating wound healing, while modulating MMP production and suppressing neutrophil infiltration.
Collapse
Affiliation(s)
- Fang Bian
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Flavia S A Pelegrino
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Johanna Tukler Henriksson
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Eugene A Volpe
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - De-Quan Li
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
15
|
Limbal Stem Cell Deficiency: Current Treatment Options and Emerging Therapies. Stem Cells Int 2015; 2016:9798374. [PMID: 26788074 PMCID: PMC4691643 DOI: 10.1155/2016/9798374] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/18/2015] [Indexed: 12/15/2022] Open
Abstract
Severe ocular surface disease can result in limbal stem cell deficiency (LSCD), a condition leading to decreased visual acuity, photophobia, and ocular pain. To restore the ocular surface in advanced stem cell deficient corneas, an autologous or allogenic limbal stem cell transplantation is performed. In recent years, the risk of secondary LSCD due to removal of large limbal grafts has been significantly reduced by the optimization of cultivated limbal epithelial transplantation (CLET). Despite the great successes of CLET, there still is room for improvement as overall success rate is 70% and visual acuity often remains suboptimal after successful transplantation. Simple limbal epithelial transplantation reports higher success rates but has not been performed in as many patients yet. This review focuses on limbal epithelial stem cells and the pathophysiology of LSCD. State-of-the-art therapeutic management of LSCD is described, and new and evolving techniques in ocular surface regeneration are being discussed, in particular, advantages and disadvantages of alternative cell scaffolds and cell sources for cell based ocular surface reconstruction.
Collapse
|
16
|
Afsharkhamseh N, Movahedan A, Gidfar S, Huvard M, Wasielewski L, Milani BY, Eslani M, Djalilian AR. Stability of limbal stem cell deficiency after mechanical and thermal injuries in mice. Exp Eye Res 2015; 145:88-92. [PMID: 26607808 DOI: 10.1016/j.exer.2015.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 12/15/2022]
Abstract
We studied the reproducibility and stability of limbal stem cell deficiency (LSCD) in mice following controlled injuries to the corneal and limbal epithelia. In one method, corneal and limbal epithelia were entirely removed with a 0.5 mm metal burr. In the other, limbus to limbus epithelial removal with the burr was followed by thermal injury to the limbus. These two methods were compared with a previously published one. Unwounded corneas were used as control. The corneas were examined monthly for three months by slit lamp with fluorescein staining. Immunofluorescence staining for cytokeratin 12 and 8 on corneal wholemount and cross sections were performed to determine the phenotype of the epithelium. Mechanical shaving of the epithelium, with or without thermal injury, resulted in a reproducible state of LSCD marked by superficial neovascularization, reduce of keratin 12 expression and presence of goblet cells on the cornea. The phenotype was stable in 100% of the eyes up to at least three months. Thermal injury produced a more severe phenotype with more significant stromal opacification. These corneal injury models may be useful for studying the mechanisms leading to limbal stem cell deficiency.
Collapse
Affiliation(s)
- Neda Afsharkhamseh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Asadolah Movahedan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Sanaz Gidfar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Michael Huvard
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Lisa Wasielewski
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Behrad Y Milani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Medi Eslani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA.
| |
Collapse
|
17
|
Gronkiewicz KM, Giuliano EA, Kuroki K, Bunyak F, Sharma A, Teixeira LBC, Hamm CW, Mohan RR. Development of a novel in vivo corneal fibrosis model in the dog. Exp Eye Res 2015; 143:75-88. [PMID: 26450656 DOI: 10.1016/j.exer.2015.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
The aim of this study was to develop a novel in vivo corneal model of fibrosis in dogs utilizing alkali burn and determine the ability of suberanilohydroxamic acid (SAHA) to inhibit corneal fibrosis using this large animal model. To accomplish this, we used seven research Beagle dogs. An axial corneal alkali burn in dogs was created using 1 N NaOH topically. Six dogs were randomly and equally assigned into 2 groups: A) vehicle (DMSO, 2 μL/mL); B) anti-fibrotic treatment (50 μM SAHA). The degree of corneal opacity, ocular health, and anti-fibrotic effects of SAHA were determined utilizing the Fantes grading scale, modified McDonald-Shadduck (mMS) scoring system, optical coherence tomography (OCT), corneal histopathology, immunohistochemistry (IHC), and transmission electron microscopy (TEM). The used alkali burn dose to produce corneal fibrosis was well tolerated as no significant difference in mMS scores between control and treatment groups (p = 0.89) were detected. The corneas of alkali burned dogs showed significantly greater levels of α-smooth muscle actin, the fibrotic marker, than the controls (p = 0.018). Total corneal thickness of all dogs post-burn was significantly greater than baseline OCT images irrespective of treatment (p = 0.004); TEM showed that alkali burned corneas had significantly greater minimum and maximum interfibrillar distances than the controls (p = 0.026, p = 0.018). The tested topical corneal alkali burn dose generated significant opacity and fibrosis in dog corneas without damaging the limbus as evidenced by histopathology, IHC, TEM, and OCT findings, and represents a viable large animal corneal fibrosis in vivo model. Additional in vivo SAHA dosing studies with larger sample size are warranted.
Collapse
Affiliation(s)
- K M Gronkiewicz
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Columbia, MO, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, USA
| | - E A Giuliano
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Columbia, MO, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, USA
| | - K Kuroki
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Columbia, MO, USA
| | - F Bunyak
- Department of Computer Science, University of Missouri, Columbia, MO, USA
| | - A Sharma
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Columbia, MO, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, USA
| | - L B C Teixeira
- Department of Pathological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA
| | - C W Hamm
- Mason Eye Institute, University of Missouri, Columbia, MO, USA
| | - R R Mohan
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Columbia, MO, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, USA; Mason Eye Institute, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
18
|
The Use of Stem Cells in Burn Wound Healing: A Review. BIOMED RESEARCH INTERNATIONAL 2015; 2015:684084. [PMID: 26236731 PMCID: PMC4508388 DOI: 10.1155/2015/684084] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/15/2023]
Abstract
Burn wound healing involves a series of complex processes which are subject to intensive investigations to improve the outcomes, in particular, the healing time and the quality of the scar. Burn injuries, especially severe ones, are proving to have devastating effects on the affected patients. Stem cells have been recently applied in the field to promote superior healing of the wounds. Not only have stem cells been shown to promote better and faster healing of the burn wounds, but also they have decreased the inflammation levels with less scar progression and fibrosis. This review aims to highlight the beneficial therapeutic effect of stem cells in burn wound healing and to discuss the involved pathways and signaling molecules. The review covers various types of burn wound healing like skin and corneal burns, along with the alternative recent therapies being studied in the field of burn wound healing. The current reflection of the attitudes of people regarding the use of stem cells in burn wound healing is also stated.
Collapse
|
19
|
Application of adipose-derived stem cells on scleral contact lens carrier in an animal model of severe acute alkaline burn. Eye Contact Lens 2015; 40:243-7. [PMID: 24901976 DOI: 10.1097/icl.0000000000000045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To evaluate the therapeutic effect of human adipose-derived stem cells (hASCs) overlaid on a scleral contact lens (SCL) carrier in a rabbit model of ocular alkaline burn. MATERIALS AND METHODS After inducing alkaline burn in 11 New Zealand white rabbits, hASCs cultured on SCLs were placed on the right eye of 5 rabbits, SCLs without cells were used in 5, and no treatment was applied in 1 eye. Each eye was examined and photographed for corneal vascularization, opacities, and epithelial defect in week 1, 2, and 4 after surgery. After 1 month, rabbits were killed and the corneas were removed and cut in half for electron and light microscopy examination. RESULTS Human adipose-derived stem cells were attached to SCL surface and confluent easily. Human adipose-derived stem cells on SCL eyes showed smaller epithelial defect, less corneal opacity, corneal neovascularization relative to SCL eyes. Both groups showed no symblepharon. However, the cornea in the untreated eye was melted in 2 weeks and developed severe symblepharon. CONCLUSION Human adipose-derived stem cells on SCL can reduce inflammation and corneal haziness in severe ocular alkaline burn injury in rabbits.
Collapse
|
20
|
Abdelfattah NS, Amgad M, Zayed AA, Salem H, Elkhanany AE, Hussein H, Abd El-Baky N. Clinical correlates of common corneal neovascular diseases: a literature review. Int J Ophthalmol 2015; 8:182-93. [PMID: 25709930 DOI: 10.3980/j.issn.2222-3959.2015.01.32] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022] Open
Abstract
A large subset of corneal pathologies involves the formation of new blood and lymph vessels (neovascularization), leading to compromised visual acuity. This article aims to review the clinical causes and presentations of corneal neovascularization (CNV) by examining the mechanisms behind common CNV-related corneal pathologies, with a particular focus on herpes simplex stromal keratitis, contact lenses-induced keratitis and CNV secondary to keratoplasty. Moreover, we reviewed CNV in the context of different types of corneal transplantation and keratoprosthesis, and summarized the most relevant treatments available so far.
Collapse
Affiliation(s)
- Nizar Saleh Abdelfattah
- Doheny Image Reading Center, Doheny Eye Institute, University of California, Los Angeles, 1355 San Pablo Street, Los Angeles, California 90033, USA
| | - Mohamed Amgad
- Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Amira A Zayed
- Department of Surgery, Mayo Clinic, Rochester 55905, MN, USA
| | - Hamdy Salem
- Faculty of Medicine, University of Alexandria, Alexandria 21131, Egypt
| | - Ahmed E Elkhanany
- Department of Medical Oncology, Mayo Clinic, Rochester 55905, MN, USA
| | - Heba Hussein
- Faculty of Oral and Dental Medicine, Cairo University, Cairo 11956, Egypt
| | - Nawal Abd El-Baky
- Antibody Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, Alexandria 21934, Egypt
| |
Collapse
|
21
|
Science and Art of Cell-Based Ocular Surface Regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:45-106. [DOI: 10.1016/bs.ircmb.2015.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Takaichi S, Muramatsu T, Lee JM, Jung HS, Shinozaki N, Katakura A, Yamane GY. Re-epithelialization of the Buccal Mucosa after Alkaline Chemical Injury. Acta Histochem Cytochem 2014; 47:195-201. [PMID: 25861125 PMCID: PMC4387240 DOI: 10.1267/ahc.14015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 07/01/2014] [Indexed: 12/12/2022] Open
Abstract
Alkaline conditions in the oral cavity may be caused by a variety of stimuli, including tobacco products, antacids, alkaline drinking water and bicarbonate toothpaste. However, the effects of an alkaline pH on the oral mucosa had not been elucidated. The purpose of this study was to investigate how basal keratinocytes are actively involved in re-epithelialization after alkaline chemical injury. We generated epithelial defects in the oral mucosa of mice by applying an alkaline chemical, and the localization of cytokeratin 13, cytokeratin 14, PCNA and p63 was investigated during the re-epithelialization process. PCNA- and p63-positive staining was seen in basal cells covering the wound surface at 1 day after the chemical injury. Cytokeratin 14-positive and PCNA-negative basal keratinocytes were localized in a few layers of the wound epithelium during epithelial outgrowth. Cytokeratin 14-positive and PCNA-positive basal keratinocytes, indicating proliferation, were localized over the entire layer of the epithelium at the wound margin. These results imply that basal keratinocytes at the wound margin migrate to the wound surface, provoke differentiation and keratinization during epithelial outgrowth and that epithelial cells are supplied from the wound margin to the epithelial outgrowth after alkaline chemical injury.
Collapse
Affiliation(s)
- Saneyuki Takaichi
- Oral Health Science Center hrc7, Tokyo Dental College
- Department of Oral Medicine, Oral and Maxillofacial Surgery, Tokyo Dental College
| | - Takashi Muramatsu
- Oral Health Science Center hrc7, Tokyo Dental College
- Department of Endodontics and Clinical Cariology, Tokyo Dental College
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Research Center for Orofacial Hard Tissue Regeneration, Brain Korea 21 Project, Yonsei University College of Dentistry
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Research Center for Orofacial Hard Tissue Regeneration, Brain Korea 21 Project, Yonsei University College of Dentistry
| | - Naoshi Shinozaki
- Oral Health Science Center hrc7, Tokyo Dental College
- Cornea Center, Tokyo Dental College
| | - Akira Katakura
- Department of Oral Medicine, Oral and Maxillofacial Surgery, Tokyo Dental College
| | - Gen-yuki Yamane
- Oral Health Science Center hrc7, Tokyo Dental College
- Department of Oral Medicine, Oral and Maxillofacial Surgery, Tokyo Dental College
| |
Collapse
|
23
|
Abstract
Corneal and limbal epithelial function is highly dependent on its underlying matrix. In this study, we report the in vitro and in vivo effects of a decellularized limbal matrix on corneal and limbal epithelial differentiation and repair. We demonstrate that a limbal matrix helps to maintain epithelial cells in a more proliferative and less differentiated state. We introduce a novel focal injury model to the limbus using an excimer laser and further show that transplanting a decellularized limbal graft after the limbal injury helps to promote epithelialization and reduce corneal haze formation. These results suggest that a decellularized limbal graft may be therapeutically beneficial in clinical cases of focal limbal deficiency.
Collapse
|
24
|
Liu J, Lawrence BD, Liu A, Schwab IR, Oliveira LA, Rosenblatt MI. Silk fibroin as a biomaterial substrate for corneal epithelial cell sheet generation. Invest Ophthalmol Vis Sci 2012; 53:4130-8. [PMID: 22661480 DOI: 10.1167/iovs.12-9876] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate a silk fibroin (SF) biomaterial as a substrate for corneal epithelial cell proliferation, differentiation, and stratification in vitro compared with denuded human amniotic membrane (AM). METHODS Primary human and rabbit corneal epithelial cells and immortalized human corneal limbal epithelial cells were cultured on the SF and denuded AM, respectively. The biological cell behavior, including the morphology, proliferation, differentiation, and stratification, on the two substrates was compared and analyzed. RESULTS Corneal epithelial cells can adhere and proliferate on the SF and denuded AM with a cobblestone appearance, abundant microvilli on the surface, and wide connection with the adjacent cells. MTT assay showed that cell proliferation on denuded AM was statistically higher than that on SF at 24 and 72 hours after plating (P = 0.001 and 0.0005, respectively). Expression of ΔNp63a and keratin 3/12 was detected in primary cell cultures on the two substrates with no statistical difference. When cultured at the air-liquid interface for 7 days, cells on SF could form a comparable stratified graft with a 2- to 3-cell layering, which compared similarly to AM cultures. CONCLUSIONS SF, a novel biomaterial, could support corneal epithelial cells to proliferate, differentiate, and stratify, retaining the normal characteristic epithelium phenotype. Compared with AM, its unique features, including the transparency, ease of handling, and transfer, and inherent freedom from disease transmission, make it a promising substrate for corneal wound repair and tissue-engineering purposes.
Collapse
Affiliation(s)
- Jingbo Liu
- Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
25
|
Pi YL, Lu JY, Tang WQ, Dong Y, Wang HW. Tissue-Engineered Corneal Epithelium Transplantation for Repair of Corneal Alkali Burn. J HARD TISSUE BIOL 2012. [DOI: 10.2485/jhtb.21.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Mason SL, Stewart RMK, Kearns VR, Williams RL, Sheridan CM. Ocular epithelial transplantation: current uses and future potential. Regen Med 2011; 6:767-82. [DOI: 10.2217/rme.11.94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Visual loss may be caused by a variety of ocular diseases and places a significant burden on society. Replacing or regenerating epithelial structures in the eye has been demonstrated to recover visual loss in a number of such diseases. Several types of cells (e.g., embryonic stem cells, adult stem/progenitor/differentiated epithelial cells and induced pluripotent cells) have generated much interest and research into their potential in restoring vision in a variety of conditions: from ocular surface disease to age-related macular degeneration. While there has been some success in clinical transplantation of conjunctival and particularly corneal epithelium utilizing ocular stem cells, in particular, from the limbus, the replacement of the retinal pigment epithelium by utilizing stem cell sources has yet to reach the clinic. Advances in our understanding of all of these cell types, their differentiation and subsequent optimization of culture conditions and development of suitable substrates for their transplantation will enable us to overcome current clinical obstacles. This article addresses the current status of knowledge concerning the biology of stem cells, their progeny and the use of differentiated epithelial cells to replace ocular epithelial cells. It will highlight the clinical outcomes to date and their potential for future clinical use.
Collapse
Affiliation(s)
- Sharon L Mason
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rosalind MK Stewart
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Victoria R Kearns
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rachel L Williams
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | | |
Collapse
|
27
|
|
28
|
Lopez ES, Rizzo MM, Croxatto JO, Mazzolini G, Gallo JE. Suramab, a novel antiangiogenic agent, reduces tumor growth and corneal neovascularization. Cancer Chemother Pharmacol 2010; 67:723-8. [PMID: 20857116 DOI: 10.1007/s00280-010-1457-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
Abstract
PURPOSE Oncological and ophthalmological diseases are increasingly treated with antiangiogenic agents. These agents have different intensities and duration of effects that should be considered to choose the most suitable therapy. Our purpose was to evaluate the synergistic effect of two drugs, jointly administered as a pharmaceutical compound, in two animal models. METHODS Corneal neovascularization was induced in three groups of nine white New Zealand rabbits, applying a filter paper disk soaked in 1 M NaOH on the central cornea (Ormerod et al., Invest Ophthalmol Vis Sci 30:2148-2153, 1989). Group one was treated immediately after injury with intravenous Suramab, compound of Bevacizumab + Suramin, and group two with intravenous Bevacizumab. A third group of non-treated rabbits was included as control group. Digital photographs were taken at days 9, 15, 21, and 35. Neovessel index (NVI) was calculated using the Image J Program. Neovessels formation was quantified and given a score from 0 to 4 to each quadrant according to the centripetal growth of the longest vessel. Colorectal animal model: 6- to 8-week-old male BALB/c mice were inoculated with cancer cells. Seven days after tumor inoculation, four groups of BALB/c mice were treated with intravenous Bevacizumab (n = 9); intravenous Suramin (n = 10); intravenous Suramab (n = 10); and intravenous saline solution (n = 4). Tumor growth was assessed twice weekly by caliper measurement. RESULTS The NVI was remarkably inferior in the group of rabbits treated with intravenous Suramab compared with controls after 35 days of follow-up. A greater inhibitory effect was obtained with Suramab compared to that obtained with Bevacizumab. Suramab significantly reduced tumor volume and prolonged survival of mice compared to controls. CONCLUSIONS Suramab strongly reduced neovascularization in a rabbit model of corneal angiogenesis and induced a potent antitumoral effect in mice.
Collapse
Affiliation(s)
- Emiliano S Lopez
- Departments of Ophthalmology and Internal Medicine, Austral University Medical School and Austral University Hospital, Pilar, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
29
|
Abstract
In this article, we provide the results of experimental studies demonstrating that corneal avascularity is an active process involving the production of anti-angiogenic factors, which counterbalance the pro-angiogenic/lymphangiogenic factors that are upregulated during wound healing. We also summarize pertinent published reports regarding corneal neovascularization (NV), corneal lymphangiogenesis and corneal angiogenic/lymphangiogenic privilege. We outline the clinical causes of corneal NV, and discuss the angiogenic proteins (VEGF and bFGF) and angiogenesis regulatory proteins. We also describe the role of matrix metalloproteinases MMP-2, -7, and MT1-MMP, anti-angiogenic factors, and lymphangiogenic regulatory proteins during corneal wound healing. Established and potential new therapies for the treatment of corneal neovascularization are also discussed.
Collapse
|
30
|
|