1
|
Obadi M, Xu B. Characteristics and applications of plant-derived antifreeze proteins in frozen dough: A review. Int J Biol Macromol 2024; 255:128202. [PMID: 37979748 DOI: 10.1016/j.ijbiomac.2023.128202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Frozen dough technology has been widely used in the food industry at home and abroad due to its advantages of extending shelf life, preventing aging, and facilitating refrigeration and transportation. However, during the transportation and storage process of frozen dough, the growth and recrystallization of ice crystals caused by temperature fluctuations can lead to a deterioration in the quality of the dough, resulting in poor sensory characteristics of the final product and decreased consumption, which limits the large-scale application of frozen dough. In response to this issue, antifreeze proteins (AFPs) could be used as a beneficial additive to frozen dough that can combine with ice crystals, modify the ice crystal morphology, reduce the freezing point of water, and inhibit the recrystallization of ice crystals. Because of its special structure and function, it can well alleviate the quality deterioration problem caused by ice crystal recrystallization during frozen storage of dough, especially the plant-derived AFPs, which have a prominent effect on inhibiting ice crystal recrystallization. In this review, we introduce the characteristics and mechanisms of action of plant-derived AFPs. Furthermore, the application of plant-derived AFPs in frozen dough are also discussed.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Xie X, Li J, Zhu H, Zhang B, Liang D, Cheng L, Hao M, Guo F. Effects of Polydextrose on Rheological and Fermentation Properties of Frozen Dough and Quality of Chinese Steamed Bread. STARCH-STARKE 2022. [DOI: 10.1002/star.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xinhua Xie
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Jiahui Li
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Hongshuai Zhu
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Bobo Zhang
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Dan Liang
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Lilin Cheng
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Mingyuan Hao
- College of Food Science and Technology Henan Agricultural University 63 Nongye Rd Zhengzhou 450002 China
| | - Fangjie Guo
- Henan Tailijie Biotechnology Co Ltd 278 Xiangzi South Road Mengzhou 454750 China
| |
Collapse
|
3
|
Tirado-Kulieva VA, Miranda-Zamora WR, Hernández-Martínez E, Pantoja-Tirado LR, Bazán-Tantaleán DL, Camacho-Orbegoso EW. Effect of antifreeze proteins on the freeze-thaw cycle of foods: fundamentals, mechanisms of action, current challenges and recommendations for future work. Heliyon 2022; 8:e10973. [PMID: 36262292 PMCID: PMC9573917 DOI: 10.1016/j.heliyon.2022.e10973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Freezing is widely used in food preservation, but if not carried out properly, ice crystals can multiply (nucleation) or grow (recrystallization) rapidly. This also affects thawing, causing structural damage and affecting overall quality. The objective of this review is to comprehensively study the cryoprotective effect of antifreeze proteins (AFPs), highlighting their role in the freeze-thaw process of food. The properties of AFPs are based on their thermal hysteresis capacity (THC), on the modification of crystal morphology and on the inhibition of ice recrystallization. The mechanism of action of AFPs is based on the adsorption-inhibition theory, but the specific role of hydrogen and hydrophobic bonds/residues and structural characteristics is also detailed. Because of the properties of AFPs, they have been successfully used to preserve the quality of a wide variety of refrigerated and frozen foods. Among the limitations of the use of AFPs, the high cost of production stands out, but currently there are solutions such as the use the production of recombinant proteins, cloning and chemical synthesis. Although in vitro, in vivo and human studies have shown that AFPs are non-toxic, their safety remains a matter of debate. Further studies are recommended to expand knowledge about AFPs, to reduce costs in their large-scale production, to understand their interaction with other food compounds and their possible effects on the consumer.
Collapse
Affiliation(s)
| | | | | | - Lucia Ruth Pantoja-Tirado
- Carrera Profesional de Ingeniería en Industrias Alimentarias, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Peru
| | | | | |
Collapse
|
4
|
Bhattacharjee A, Kumar D, Badwaik LS. Rheological and textural properties of dough made out of de‐oiled soya flour with application of different binding agents. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ayan Bhattacharjee
- Department of Food Engineering and Technology, School of Engineering Tezpur University Napaam India
| | - Devesh Kumar
- Department of Food Engineering and Technology, School of Engineering Tezpur University Napaam India
| | - Laxmikant S. Badwaik
- Department of Food Engineering and Technology, School of Engineering Tezpur University Napaam India
| |
Collapse
|
5
|
Gharib G, Saeidiharzand S, Sadaghiani AK, Koşar A. Antifreeze Proteins: A Tale of Evolution From Origin to Energy Applications. Front Bioeng Biotechnol 2022; 9:770588. [PMID: 35186912 PMCID: PMC8851421 DOI: 10.3389/fbioe.2021.770588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/31/2021] [Indexed: 11/19/2022] Open
Abstract
Icing and formation of ice crystals is a major obstacle against applications ranging from energy systems to transportation and aviation. Icing not only introduces excess thermal resistance, but it also reduces the safety in operating systems. Many organisms living under harsh climate and subzero temperature conditions have developed extraordinary survival strategies to avoid or delay ice crystal formation. There are several types of antifreeze glycoproteins with ice-binding ability to hamper ice growth, ice nucleation, and recrystallization. Scientists adopted similar approaches to utilize a new generation of engineered antifreeze and ice-binding proteins as bio cryoprotective agents for preservation and industrial applications. There are numerous types of antifreeze proteins (AFPs) categorized according to their structures and functions. The main challenge in employing such biomolecules on industrial surfaces is the stabilization/coating with high efficiency. In this review, we discuss various classes of antifreeze proteins. Our particular focus is on the elaboration of potential industrial applications of anti-freeze polypeptides.
Collapse
Affiliation(s)
- Ghazaleh Gharib
- Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
| | - Shaghayegh Saeidiharzand
- Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| | - Abdolali K. Sadaghiani
- Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
- *Correspondence: Abdolali K. Sadaghiani, ; Ali Koşar,
| | - Ali Koşar
- Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
- *Correspondence: Abdolali K. Sadaghiani, ; Ali Koşar,
| |
Collapse
|
6
|
ZHANG K, SHI Y, ZENG J, GAO H, WANG M. Effect of frozen storage temperature on the protein properties of steamed bread. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.68622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Keke ZHANG
- Henan Institute of Science and Technology, China
| | - Yingxin SHI
- Liaoning Agricultural Technical College, China
| | - Jie ZENG
- Henan Institute of Science and Technology, China
| | - Haiyan GAO
- Henan Institute of Science and Technology, China
| | - Mengyu WANG
- Henan Institute of Science and Technology, China
| |
Collapse
|
7
|
Zhang B, Omedi JO, Zheng J, Huang W, Jia C, Zhou L, Zou Q, Li N, Gao T. Exopolysaccharides in sourdough fermented by Weissella confusa QS813 protected protein matrix and quality of frozen gluten-red bean dough during freeze-thaw cycles. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture. Biomolecules 2020; 10:biom10121649. [PMID: 33317024 PMCID: PMC7764015 DOI: 10.3390/biom10121649] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Antifreeze proteins (AFPs) are specific proteins, glycopeptides, and peptides made by different organisms to allow cells to survive in sub-zero conditions. AFPs function by reducing the water’s freezing point and avoiding ice crystals’ growth in the frozen stage. Their capability in modifying ice growth leads to the stabilization of ice crystals within a given temperature range and the inhibition of ice recrystallization that decreases the drip loss during thawing. This review presents the potential applications of AFPs from different sources and types. AFPs can be found in diverse sources such as fish, yeast, plants, bacteria, and insects. Various sources reveal different α-helices and β-sheets structures. Recently, analysis of AFPs has been conducted through bioinformatics tools to analyze their functions within proper time. AFPs can be used widely in various aspects of application and have significant industrial functions, encompassing the enhancement of foods’ freezing and liquefying properties, protection of frost plants, enhancement of ice cream’s texture, cryosurgery, and cryopreservation of cells and tissues. In conclusion, these applications and physical properties of AFPs can be further explored to meet other industrial players. Designing the peptide-based AFP can also be done to subsequently improve its function.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.E.); (T.C.L.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.E.); (T.C.L.)
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Enzyme Technology Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.E.); (T.C.L.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Enzyme Technology Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-39769-6710; Fax: +60-39769-7590
| |
Collapse
|
9
|
Effect of Barley Antifreeze Protein on Dough and Bread during Freezing and Freeze-Thaw Cycles. Foods 2020; 9:foods9111698. [PMID: 33228238 PMCID: PMC7699476 DOI: 10.3390/foods9111698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
In order to verify the cryoprotective effect of an antifreeze protein (BaAFP-1) obtained from barley on bread dough, the effect of BaAFP-1 on the rheological properties, microstructure, fermentation, and baking performance including the proofing time and the specific volume of bread dough and bread crumb properties during freezing treatment and freeze-thaw cycles were analysed. BaAFP-1 reduced the rate of decrease in storage modulus and loss modulus values during freezing treatment and freeze-thaw cycles. It influenced the formation and the shape of ice formed during freezing and inhibited ice recrystallization during freeze-thaw. BaAFP-1 maintained gas production ability and gas retention properties, protected gluten network and the yeast cells from deterioration caused by ice formation and ice crystals recrystallisation in dough samples during freezing treatment and freeze-thaw treatment. It slow down the increase rate of hardness of bread crumb. The average area of pores in bread crumbs decreased significantly (p < 0.05) as the total number of pores increased (p < 0.05), and the addition of BaAFP-1 inhibited this deterioration. These results confirmed the cryoprotective activity of BaAFP-1 in bread dough during freezing treatment and freeze-thaw cycles.
Collapse
|
10
|
Effects of konjac glucomannan on the water distribution of frozen dough and corresponding steamed bread quality. Food Chem 2020; 330:127243. [DOI: 10.1016/j.foodchem.2020.127243] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
|
11
|
Yu W, Xu D, Zhang H, Guo L, Hong T, Zhang W, Jin Y, Xu X. Effect of pigskin gelatin on baking, structural and thermal properties of frozen dough: Comprehensive studies on alteration of gluten network. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105591] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Ice Binding Proteins: Diverse Biological Roles and Applications in Different Types of Industry. Biomolecules 2020; 10:biom10020274. [PMID: 32053888 PMCID: PMC7072191 DOI: 10.3390/biom10020274] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
More than 80% of Earth’s surface is exposed periodically or continuously to temperatures below 5 °C. Organisms that can live in these areas are called psychrophilic or psychrotolerant. They have evolved many adaptations that allow them to survive low temperatures. One of the most interesting modifications is production of specific substances that prevent living organisms from freezing. Psychrophiles can synthesize special peptides and proteins that modulate the growth of ice crystals and are generally called ice binding proteins (IBPs). Among them, antifreeze proteins (AFPs) inhibit the formation of large ice grains inside the cells that may damage cellular organelles or cause cell death. AFPs, with their unique properties of thermal hysteresis (TH) and ice recrystallization inhibition (IRI), have become one of the promising tools in industrial applications like cryobiology, food storage, and others. Attention of the industry was also caught by another group of IBPs exhibiting a different activity—ice-nucleating proteins (INPs). This review summarizes the current state of art and possible utilizations of the large group of IBPs.
Collapse
|
13
|
Tang X, Zhang B, Huang W, Ma Z, Zhang F, Wang F, Zou Q, Zheng J. Hydration, water distribution and microstructure of gluten during freeze thaw process: Role of a high molecular weight dextran produced by Weissella confusa QS813. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Omedi JO, Huang W, Zhang B, Li Z, Zheng J. Advances in present-day frozen dough technology and its improver and novel biotech ingredients development trends-A review. Cereal Chem 2019. [DOI: 10.1002/cche.10122] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jacob O. Omedi
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
| | - Binle Zhang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
- MagiBake GS International; Jinjiang; Quanzhou China
| | - Zhibin Li
- MagiBake GS International; Jinjiang; Quanzhou China
| | | |
Collapse
|
15
|
Liu M, Liang Y, Zhang H, Wu G, Wang L, Qian H, Qi X. Production of a recombinant carrot antifreeze protein by Pichia pastoris GS115 and its cryoprotective effects on frozen dough properties and bread quality. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.05.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Liu M, Liang Y, Zhang H, Wu G, Wang L, Qian H, Qi X. Comparative Study on the Cryoprotective Effects of Three Recombinant Antifreeze Proteins from Pichia pastoris GS115 on Hydrated Gluten Proteins during Freezing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6151-6161. [PMID: 29863868 DOI: 10.1021/acs.jafc.8b00910] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During the freezing process, ice crystal formation leads to the deterioration in physicochemical properties and networks of gluten proteins. The cryoprotective effects of recombinant carrot ( Daucus carota) antifreeze protein (rCaAFP), type II antifreeze protein from Epinephelus coioides (rFiAFP), and Tenebrio molitor antifreeze protein (rTmAFP) produced from Pichia pastoris GS115 on hydrated gluten, glutenin, and gliadin during freezing were investigated. The thermal hysteresis (TH) activity and ice crystals' morphology modification ability of recombinant antifreeze proteins (rAFPs) were analyzed by differential scanning calorimetry (DSC) and cryomicroscope, respectively. The freezing and melting properties, water state, rheological properties, and microstructure of hydrated gluten proteins were studied by DSC, low field nuclear magnetic resonance, rheometer, and scanning electron microscopy, respectively. The rTmAFP exhibited strongest TH activity and ice crystals' morphology modification ability, followed by rFiAFP and rCaAFP. The addition of the three rAFPs caused freezing hysteresis and weakened the damage of freezing to the networks of hydrated gluten, glutenin, and gliadin. During freezing, the cryoprotective effects of the three rAFPs on the freezable water content, water mobility and distribution, and rheological properties of hydrated gluten were achieved by protecting these corresponding properties of hydrated glutenin. Among the three rAFPs, rTmAFP was most effective in the cryoprotective activities on hydrated gluten proteins during freezing. The results demonstrate the potential of these rAFPs, especially rTmAFP, to preserve the above properties of hydrated gluten proteins during the freezing process.
Collapse
Affiliation(s)
| | - Ying Liang
- College of Biological Engineering , Henan University of Technology , Zhengzhou 450001 , China
| | | | | | | | | | | |
Collapse
|
17
|
Calderara M, Deorsola FA, Bensaid S, Fino D, Russo N, Geobaldo F. Role of ice structuring proteins on freezing-thawing cycles of pasta sauces. Journal of Food Science and Technology 2016; 53:4216-4223. [PMID: 28115762 DOI: 10.1007/s13197-016-2409-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/21/2016] [Accepted: 11/13/2016] [Indexed: 11/29/2022]
Abstract
The freezing of the food is one of the most important technological developments for the storage of food in terms of quality and safety. The aim of this work was to study the role of an ice structuring protein (ISP) on freezing-thawing cycles of different solutions and commercial Italian pasta sauces. Ice structuring proteins were related to the modification of the structure of ice. The results showed that the freezing time of an aqueous solution containing the protein was reduced to about 20% with respect to a pure water solution. The same effect was demonstrated in sugar-containing solutions and in lipid-containing sauces. The study proved a specific role of ISP during thawing, inducing a time decrease similar to that of freezing and even more important in the case of tomato-based sauces. This work demonstrated the role of ISP in the freezing-thawing process, showing a significant reduction of processing in the freezing and thawing phase by adding the protein to pure water and different sugar-, salt- and lipid-containing solutions and commercial sauces, with considerable benefits for the food industry in terms of costs and food quality.
Collapse
Affiliation(s)
- Marianna Calderara
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Fabio A Deorsola
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Samir Bensaid
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Debora Fino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Nunzio Russo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Francesco Geobaldo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
18
|
Akbarian M, Koocheki A, Mohebbi M, Milani E. Rheological properties and bread quality of frozen sweet dough with added xanthan and different freezing rate. Journal of Food Science and Technology 2016; 53:3761-3769. [PMID: 28017991 DOI: 10.1007/s13197-016-2361-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 11/24/2022]
Abstract
In this paper the effects of frozen storage time, xanthan gum and rate of freezing on frozen sweet dough properties and unfermented bread quality was investigated. Results revealed that the water holding capacity, WHC, K1 (stress decay rate) and K2 (residual stress at the end of the stress relaxation experiment) values of frozen dough decreased with increasing frozen storage time and decreasing freezing rate; while the lowest values for these parameters were obtained for samples without xanthan gum. The amount of unfreezable water increased and freezable water decreased with addition of xanthan gum. Glass transition temperature for fresh or frozen sweet were around -37 and -39 °C, respectively. Addition of xanthan gum increased the glass transition temperature of fresh and fozen sweet dough. Firmness and gumminess of sweet bread increased during frozen storage which led to lower specific volume of frozen sweet bread. Increasing freezing rate and addition of xanthan gum to dough formulation improved the texture and specific volume of the final bread.
Collapse
Affiliation(s)
- Mina Akbarian
- Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), PO Box 91775-1163, Mashhad, Iran
| | - Arash Koocheki
- Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), PO Box 91775-1163, Mashhad, Iran
| | - Mohebbat Mohebbi
- Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), PO Box 91775-1163, Mashhad, Iran
| | - Elnaz Milani
- Iranian Academic Center for Education Culture and Research (ACECR), Khorasan Razavi, Mashhad, Iran
| |
Collapse
|
19
|
Ren S, Ma R. Effects of Xylanase on Quality of Frozen Dough Steamed Bread. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shuncheng Ren
- School of Food Science and Technology, Henan University of Technology
| | - Ruiping Ma
- School of Food Science and Technology, Henan University of Technology
| |
Collapse
|
20
|
|
21
|
Ustun NS, Turhan S. Antifreeze Proteins: Characteristics, Function, Mechanism of Action, Sources and Application to Foods. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12476] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nebahat Sule Ustun
- Department of Food Engineering; Engineering Faculty; Ondokuz Mayis University; Samsun Turkey
| | - Sadettin Turhan
- Department of Food Engineering; Engineering Faculty; Ondokuz Mayis University; Samsun Turkey
| |
Collapse
|
22
|
Różyło R, Dziki D, Laskowski J. Changes in the physical and the sensorial properties of wheat bread caused by interruption and slowing of the fermentation of yeast-based leaven. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2013.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Jia C, Huang W, Wu C, Lv X, Rayas-Duarte P, Zhang L. Characterization and yeast cryoprotective performance for thermostable ice-structuring proteins from Chinese Privet (Ligustrum Vulgare) leaves. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Jia C, Huang W, Wu C, Zhong J, Rayas-Duarte P, Guo C. Frozen Bread Dough Properties Modified by Thermostable Ice Structuring Proteins Extract from Chinese Privet (Ligustrum vulgare) Leaves. Cereal Chem 2012. [DOI: 10.1094/cchem-11-11-0136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chunli Jia
- Research associate, professor, research associate, and research associate, respectively, The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Exchange and Cooperation Program, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Weining Huang
- Research associate, professor, research associate, and research associate, respectively, The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Exchange and Cooperation Program, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Corresponding author. Phone: +86 510 8591 9139. Fax: +86 510 8591 9139. E-mail:
| | - Chao Wu
- Research associate, professor, research associate, and research associate, respectively, The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Exchange and Cooperation Program, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jing Zhong
- Research associate, professor, research associate, and research associate, respectively, The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Exchange and Cooperation Program, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Patricia Rayas-Duarte
- Professor, Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, Oklahoma 74078-6055
| | - Chengxiang Guo
- Research scientist, Nanjing Christine Foods Co. Ltd., Nanjing, Jiangsu, 211100, China
| |
Collapse
|
25
|
Hassas-Roudsari M, Goff HD. Ice structuring proteins from plants: Mechanism of action and food application. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.12.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Xu HN. An aqueous anonic/nonionic surfactant two-phase system in the presence of salt. 2. Partitioning of ice structuring proteins. RSC Adv 2012. [DOI: 10.1039/c2ra21797j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
27
|
Huang L, Wan J, Huang W, Rayas-Duarte P, Liu G. Effects of glycerol on water properties and steaming performance of prefermented frozen dough. J Cereal Sci 2011. [DOI: 10.1016/j.jcs.2010.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Effect of ice structuring proteins from winter wheat on thermophysical properties of dough during freezing. J Cereal Sci 2009. [DOI: 10.1016/j.jcs.2009.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|