1
|
Sun Z, Zhang M, An Y, Han X, Guo B, Lv G, Zhao Y, Guo Y, Li S. CRISPR/Cas9-Mediated Disruption of Xylanase inhibitor protein ( XIP) Gene Improved the Dough Quality of Common Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:811668. [PMID: 35449885 PMCID: PMC9018002 DOI: 10.3389/fpls.2022.811668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The wheat dough quality is of great significance for the end-use of flour. Some genes have been cloned for controlling the protein fractions, grain protein content, starch synthase, grain hardness, etc. Using a unigene map of the recombinant inbred lines (RILs) for "TN 18 × LM 6," we mapped a quantitative trait locus (QTL) for dough stability time (ST) and SDS-sedimentation values (SV) on chromosome 6A (QSt/Sv-6A-2851). The peak position of the QTL covered two candidate unigenes, and we speculated that TraesCS6A02G077000 (a xylanase inhibitor protein) was the primary candidate gene (named the TaXip gene). The target loci containing the three homologous genes TaXip-6A, TaXip-6B, and TaXip-6D were edited in the variety "Fielder" by clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9). Two mutant types in the T2:3 generation were obtained (aaBBDD and AAbbdd) with about 120 plants per type. The SVs of aaBBDD, AAbbdd, and WT were 31.77, 27.30, and 20.08 ml, respectively. The SVs of the aaBBDD and AAbbdd were all significantly higher than those of the wild type (WT), and the aaBBDD was significantly higher than the AAbbdd. The STs of aaBBDD, AAbbdd, and WT were 2.60, 2.24, and 2.25 min, respectively. The ST for the aaBBDD was significantly higher than that for WT and was not significantly different between WT and AAbbdd. The above results indicated that XIP in vivo can significantly affect wheat dough quality. The selection of TaXip gene should be a new strategy for developing high-quality varieties in wheat breeding programs.
Collapse
|
2
|
Sestili F, Pagliarello R, Zega A, Saletti R, Pucci A, Botticella E, Masci S, Tundo S, Moscetti I, Foti S, Lafiandra D. Enhancing grain size in durum wheat using RNAi to knockdown GW2 genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:419-429. [PMID: 30426174 DOI: 10.1007/s00122-018-3229-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/02/2018] [Indexed: 05/21/2023]
Abstract
Knocking down GW2 enhances grain size by regulating genes encoding the synthesis of cytokinin, gibberellin, starch and cell wall. Raising crop yield is a priority task in the light of the continuing growth of the world's population and the inexorable loss of arable land to urbanization. Here, the RNAi approach was taken to reduce the abundance of Grain Weight 2 (GW2) transcript in the durum wheat cultivar Svevo. The effect of the knockdown was to increase the grains' starch content by 10-40%, their width by 4-13% and their surface area by 3-5%. Transcriptomic profiling, based on a quantitative real-time PCR platform, revealed that the transcript abundance of genes encoding both cytokinin dehydrogenase 1 and the large subunit of ADP-glucose pyrophosphorylase was markedly increased in the transgenic lines, whereas that of the genes encoding cytokinin dehydrogenase 2 and gibberellin 3-oxidase was reduced. A proteomic analysis of the non-storage fraction extracted from mature grains detected that eleven proteins were differentially represented in the transgenic compared to wild-type grain: some of these were involved, or at least potentially involved, in cell wall development, suggesting a role of GW2 in the regulation of cell division in the wheat grain.
Collapse
Affiliation(s)
- Francesco Sestili
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Riccardo Pagliarello
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Alessandra Zega
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Rosaria Saletti
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Anna Pucci
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Ermelinda Botticella
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Stefania Masci
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Silvio Tundo
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Ilaria Moscetti
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Salvatore Foti
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy.
| |
Collapse
|
3
|
Zhan Y, Sun X, Rong G, Hou C, Huang Y, Jiang D, Weng X. Identification of two transcription factors activating the expression of OsXIP in rice defence response. BMC Biotechnol 2017; 17:26. [PMID: 28270131 PMCID: PMC5341196 DOI: 10.1186/s12896-017-0344-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/01/2017] [Indexed: 12/02/2022] Open
Abstract
Background Xylanase inhibitors have been confirmed to be involved in plant defence. OsXIP is a XIP-type rice xylanase inhibitor, yet its transcriptional regulation remains unknown. Results Herbivore infestation, wounding and methyl jasmonate (MeJA) treatment enhanced mRNA levels and protein levels of OsXIP. By analyzing different 5’ deletion mutants of OsXIP promoter exposed to rice brown planthopper Nilaparvata lugens stress, a 562 bp region (–1451 – −889) was finally identified as the key sequence for the herbivores stress response. Using yeast one-hybrid screening, coupled with chromatin immunoprecipitation analysis, a basic helix-loop-helix protein (OsbHLH59) and an APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor OsERF71 directly binding to the 562 bp key sequence to activate the expression of OsXIP were identified, which is further supported by transient expression assay. Moreover, transcriptional analysis revealed that mechanical wounding and treatment with MeJA resulted in an obvious increase in transcript levels of OsbHLH59 and OsERF71 in root and shoot tissues. Conclusions Our data shows that two proteins as direct transcriptional activators of OsXIP responding to stress were identified. These results reveal a coordinated regulatory mechanism of OsXIP, which may probably be involved in defence responses via a JA-mediated signaling pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0344-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yihua Zhan
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyu Sun
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Guozeng Rong
- Cixi Agricultural Technology Promotion Center, Cixi, 315300, China
| | - Chunxiao Hou
- The Institute of Rural Development and Information Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yingying Huang
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Dean Jiang
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Weng
- College of Life Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Moscetti I, Tundo S, Janni M, Sella L, Gazzetti K, Tauzin A, Giardina T, Masci S, Favaron F, D'Ovidio R. Constitutive expression of the xylanase inhibitor TAXI-III delays Fusarium head blight symptoms in durum wheat transgenic plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1464-72. [PMID: 23945000 DOI: 10.1094/mpmi-04-13-0121-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cereals contain xylanase inhibitor (XI) proteins which inhibit microbial xylanases and are considered part of the defense mechanisms to counteract microbial pathogens. Nevertheless, in planta evidence for this role has not been reported yet. Therefore, we produced a number of transgenic plants constitutively overexpressing TAXI-III, a member of the TAXI type XI that is induced by pathogen infection. Results showed that TAXI-III endows the transgenic wheat with new inhibition capacities. We also showed that TAXI-III is correctly secreted into the apoplast and possesses the expected inhibition parameters against microbial xylanases. The new inhibition properties of the transgenic plants correlate with a significant delay of Fusarium head blight disease symptoms caused by Fusarium graminearum but do not significantly influence leaf spot symptoms caused by Bipolaris sorokiniana. We showed that this contrasting result can be due to the different capacity of TAXI-III to inhibit the xylanase activity of these two fungal pathogens. These results provide, for the first time, clear evidence in planta that XI are involved in plant defense against fungal pathogens and show the potential to manipulate TAXI-III accumulation to improve wheat resistance against F. graminearum.
Collapse
|