1
|
Yang X, Hill KA, Austin RS, Tian L. Differential Gene Expression of Brachypodium distachyon Roots Colonized by Gluconacetobacter diazotrophicus and the Role of BdCESA8 in the Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1143-1156. [PMID: 34709058 DOI: 10.1094/mpmi-06-20-0170-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alternatives to synthetic nitrogen fertilizer are needed to reduce the costs of crop production and offset environmental damage. Nitrogen-fixing bacterium Gluconacetobacter diazotrophicus has been proposed as a possible biofertilizer for monocot crop production. However, the colonization of G. diazotrophicus in most monocot crops is limited and deep understanding of the response of host plants to G. diazotrophicus colonization is still lacking. In this study, the molecular response of the monocot plant model Brachypodium distachyon was studied during G. diazotrophicus root colonization. The gene expression profiles of B. distachyon root tissues colonized by G. diazotrophicus were generated via next-generation RNA sequencing, and investigated through gene ontology and metabolic pathway analysis. The RNA sequencing results indicated that Brachypodium is actively involved in G. diazotrophicus colonization via cell wall synthesis. Jasmonic acid, ethylene, gibberellin biosynthesis. nitrogen assimilation, and primary and secondary metabolite pathways are also modulated to accommodate and control the extent of G. diazotrophicus colonization. Cellulose synthesis is significantly downregulated during colonization. The loss of function mutant for Brachypodium cellulose synthase 8 (BdCESA8) showed decreased cellulose content in xylem and increased resistance to G. diazotrophicus colonization. This result suggested that the cellulose synthesis of the secondary cell wall is involved in G. diazotrophicus colonization. The results of this study provide insights for future research in regard to gene manipulation for efficient colonization of nitrogen-fixing bacteria in Brachypodium and monocot crops.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Kathleen A Hill
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Ryan S Austin
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Lining Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| |
Collapse
|
2
|
Betekhtin A, Hus K, Rojek-Jelonek M, Kurczynska E, Nibau C, Doonan JH, Hasterok R. In Vitro Tissue Culture in Brachypodium: Applications and Challenges. Int J Mol Sci 2020; 21:E1037. [PMID: 32033195 PMCID: PMC7037373 DOI: 10.3390/ijms21031037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/29/2023] Open
Abstract
Brachypodium distachyon has become an excellent model for plant breeding and bioenergy grasses that permits many fundamental questions in grass biology to be addressed. One of the constraints to performing research in many grasses has been the difficulty with which they can be genetically transformed and the generally low frequency of such transformations. In this review, we discuss the contribution that transformation techniques have made in Brachypodium biology as well as how Brachypodium could be used to determine the factors that might contribute to transformation efficiency. In particular, we highlight the latest research on the mechanisms that govern the gradual loss of embryogenic potential in a tissue culture and propose using B. distachyon as a model for other recalcitrant monocots.
Collapse
Affiliation(s)
- Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| | - Karolina Hus
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| | - Magdalena Rojek-Jelonek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| | - Ewa Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| | - Candida Nibau
- National Plant Phenomics Centre, IBERS, Aberystwyth University, Aberystwyth SY23 3EE, UK; (C.N.); (J.H.D.)
| | - John H. Doonan
- National Plant Phenomics Centre, IBERS, Aberystwyth University, Aberystwyth SY23 3EE, UK; (C.N.); (J.H.D.)
| | - Robert Hasterok
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (K.H.); (M.R.-J.); (E.K.); (R.H.)
| |
Collapse
|
3
|
Głazowska S, Baldwin L, Mravec J, Bukh C, Fangel JU, Willats WG, Schjoerring JK. The source of inorganic nitrogen has distinct effects on cell wall composition in Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6461-6473. [PMID: 31504748 PMCID: PMC6859728 DOI: 10.1093/jxb/erz388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/19/2019] [Indexed: 05/22/2023]
Abstract
Plants have evolved different strategies to utilize various forms of nitrogen (N) from the environment. While regulation of plant growth and development in response to application of inorganic N forms has been characterized, our knowledge about the effect on cell wall structure and composition is quite limited. In this study, we analysed cell walls of Brachypodium distachyon supplied with three types of inorganic N (NH4NO3, NO3-, or NH4+). Cell wall profiles showed distinct alterations in both the quantity and structures of individual polymers. Nitrate stimulated cellulose, but inhibited lignin deposition at the heading growth stage. On the other hand, ammonium supply resulted in higher concentration of mixed linkage glucans. In addition, the chemical structure of pectins and hemicelluloses was strongly influenced by the form of N. Supply of only NO3- led to alteration in xylan substitution and to lower esterification of homogalacturonan. We conclude that the physiological response to absorption of different inorganic N forms includes pleotropic remodelling of type II cell walls.
Collapse
Affiliation(s)
- Sylwia Głazowska
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Laetitia Baldwin
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Christian Bukh
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jonathan U Fangel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - William Gt Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | |
Collapse
|
4
|
Oliveira EJ, Koehler AD, Rocha DI, Vieira LM, Pinheiro MVM, de Matos EM, da Cruz ACF, da Silva TCR, Tanaka FAO, Nogueira FTS, Otoni WC. Morpho-histological, histochemical, and molecular evidences related to cellular reprogramming during somatic embryogenesis of the model grass Brachypodium distachyon. PROTOPLASMA 2017; 254:2017-2034. [PMID: 28290060 DOI: 10.1007/s00709-017-1089-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/13/2017] [Indexed: 05/25/2023]
Abstract
The wild grass species Brachypodium distachyon (L.) has been proposed as a new model for temperate grasses. Among the biotechnological tools already developed for the species, an efficient induction protocol of somatic embryogenesis (SE) using immature zygotic embryos has provided the basis for genetic transformation studies. However, a systematic work to better understanding the basic cellular and molecular mechanisms that underlie the SE process of this grass species is still missing. Here, we present new insights at the morpho-histological, histochemical, and molecular aspects of B. distachyon SE pathway. Somatic embryos arose from embryogenic callus formed by cells derived from the protodermal-dividing cells of the scutellum. These protodermal cells showed typical meristematic features and high protein accumulation which were interpreted as the first observable steps towards the acquisition of a competent state. Starch content decreased along embryogenic callus differentiation supporting the idea that carbohydrate reserves are essential to morphogenetic processes. Interestingly, starch accumulation was also observed at late stages of SE process. Searches in databanks revealed three sequences available annotated as BdSERK, being two copies corresponding to SERK1 and one showing greater identity to SERK2. In silico analysis confirmed the presence of characteristic domains in a B. distachyon Somatic Embryogenesis Receptor Kinase genes candidates (BdSERKs), which suggests SERK functions are conserved in B. distachyon. In situ hybridization demonstrated the presence of transcripts of BdSERK1 in all development since globular until scutellar stages. The results reported in this study convey important information about the morphogenetic events in the embryogenic pathway which has been lacking in B. distachyon. This study also demonstrates that B. distachyon provides a useful model system for investigating the genetic regulation of SE in grass species.
Collapse
Affiliation(s)
- Evelyn Jardim Oliveira
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Andréa Dias Koehler
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Diego Ismael Rocha
- Instituto de Biociências, Universidade Federal de Goiás, Regional Jataí, BR 364, km 195, 75801-615, Jataí, GO, Brazil
| | - Lorena Melo Vieira
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Marcos Vinícius Marques Pinheiro
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Elyabe Monteiro de Matos
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Ana Claudia Ferreira da Cruz
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Thais Cristina Ribeiro da Silva
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Francisco André Ossamu Tanaka
- Departamento de Fitopatologia e Nematologia, Universidade de São Paulo/ESALQ, Av. Pádua Dias, 13418-900, Piracicaba, SP, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Laboratorio de Genética Molecular do Desenvolvimento Vegetal (LGMDV), Universidade de São Paulo/ESALQ, Av. Pádua Dias, 13418-900, Piracicaba, SP, Brazil.
| | - Wagner Campos Otoni
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
5
|
An T, Cai Y, Zhao S, Zhou J, Song B, Bux H, Qi X. Brachypodium distachyon T-DNA insertion lines: a model pathosystem to study nonhost resistance to wheat stripe rust. Sci Rep 2016; 6:25510. [PMID: 27138687 PMCID: PMC4853781 DOI: 10.1038/srep25510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/18/2016] [Indexed: 11/24/2022] Open
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most destructive diseases and can cause severe yield losses in many regions of the world. Because of the large size and complexity of wheat genome, it is difficult to study the molecular mechanism of interaction between wheat and PST. Brachypodium distachyon has become a model system for temperate grasses' functional genomics research. The phenotypic evaluation showed that the response of Brachypodium distachyon to PST was nonhost resistance (NHR), which allowed us to present this plant-pathogen system as a model to explore the immune response and the molecular mechanism underlying wheat and PST. Here we reported the generation of about 7,000 T-DNA insertion lines based on a highly efficient Agrobacterium-mediated transformation system. Hundreds of mutants either more susceptible or more resistant to PST than that of the wild type Bd21 were obtained. The three putative target genes, Bradi5g17540, BdMYB102 and Bradi5g11590, of three T-DNA insertion mutants could be involved in NHR of Brachypodium distachyon to wheat stripe rust. The systemic pathologic study of this T-DNA mutants would broaden our knowledge of NHR, and assist in breeding wheat cultivars with durable resistance.
Collapse
Affiliation(s)
- Tianyue An
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Yanli Cai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Suzhen Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jianghong Zhou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Bo Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hadi Bux
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Institute of Plant Sciences, University of Sindh, Jamshoro, 76080, Pakistan
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
6
|
do Amaral FP, Pankievicz VCS, Arisi ACM, de Souza EM, Pedrosa F, Stacey G. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. PLANT MOLECULAR BIOLOGY 2016; 90:689-697. [PMID: 26873699 DOI: 10.1007/s11103-016-0449-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.
Collapse
Affiliation(s)
- Fernanda P do Amaral
- Divisions of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Vânia C S Pankievicz
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, 81531-980, Brazil
| | - Ana Carolina M Arisi
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, 88034-001, Brazil
| | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, 81531-980, Brazil
| | - Fabio Pedrosa
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, 81531-980, Brazil
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
7
|
Fitzgerald TL, Powell JJ, Schneebeli K, Hsia MM, Gardiner DM, Bragg JN, McIntyre CL, Manners JM, Ayliffe M, Watt M, Vogel JP, Henry RJ, Kazan K. Brachypodium as an emerging model for cereal-pathogen interactions. ANNALS OF BOTANY 2015; 115:717-31. [PMID: 25808446 PMCID: PMC4373291 DOI: 10.1093/aob/mcv010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/03/2014] [Accepted: 12/22/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND Cereal diseases cause tens of billions of dollars of losses annually and have devastating humanitarian consequences in the developing world. Increased understanding of the molecular basis of cereal host-pathogen interactions should facilitate development of novel resistance strategies. However, achieving this in most cereals can be challenging due to large and complex genomes, long generation times and large plant size, as well as quarantine and intellectual property issues that may constrain the development and use of community resources. Brachypodium distachyon (brachypodium) with its small, diploid and sequenced genome, short generation time, high transformability and rapidly expanding community resources is emerging as a tractable cereal model. SCOPE Recent research reviewed here has demonstrated that brachypodium is either susceptible or partially susceptible to many of the major cereal pathogens. Thus, the study of brachypodium-pathogen interactions appears to hold great potential to improve understanding of cereal disease resistance, and to guide approaches to enhance this resistance. This paper reviews brachypodium experimental pathosystems for the study of fungal, bacterial and viral cereal pathogens; the current status of the use of brachypodium for functional analysis of cereal disease resistance; and comparative genomic approaches undertaken using brachypodium to assist characterization of cereal resistance genes. Additionally, it explores future prospects for brachypodium as a model to study cereal-pathogen interactions. CONCLUSIONS The study of brachypodium-pathogen interactions appears to be a productive strategy for understanding mechanisms of disease resistance in cereal species. Knowledge obtained from this model interaction has strong potential to be exploited for crop improvement.
Collapse
Affiliation(s)
- Timothy L Fitzgerald
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jonathan J Powell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Katharina Schneebeli
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - M Mandy Hsia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jennifer N Bragg
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - C Lynne McIntyre
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - John M Manners
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Mick Ayliffe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Michelle Watt
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - John P Vogel
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Robert J Henry
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Brisbane, QLD 4067, Australia, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| |
Collapse
|
8
|
Rancour DM, Hatfield RD, Marita JM, Rohr NA, Schmitz RJ. Cell wall composition and digestibility alterations in Brachypodium distachyon achieved through reduced expression of the UDP-arabinopyranose mutase. FRONTIERS IN PLANT SCIENCE 2015; 6:446. [PMID: 26136761 PMCID: PMC4470266 DOI: 10.3389/fpls.2015.00446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/31/2015] [Indexed: 05/09/2023]
Abstract
Nucleotide-activated sugars are essential substrates for plant cell-wall carbohydrate-polymer biosynthesis. The most prevalent grass cell wall (CW) sugars are glucose (Glc), xylose (Xyl), and arabinose (Ara). These sugars are biosynthetically related via the UDP-sugar interconversion pathway. We sought to target and generate UDP-sugar interconversion pathway transgenic Brachypodium distachyon lines resulting in CW carbohydrate composition changes with improved digestibility and normal plant stature. Both RNAi-mediated gene-suppression and constitutive gene-expression approaches were performed. CWs from 336 T0 transgenic plants with normal appearance were screened for complete carbohydrate composition. RNAi mutants of BdRGP1, a UDP-arabinopyranose mutase, resulted in large alterations in CW carbohydrate composition with significant decreases in CW Ara content but with minimal change in plant stature. Five independent RNAi-RGP1 T1 plant lines were used for in-depth analysis of plant CWs. Real-time PCR analysis indicated that gene expression levels for BdRGP1, BdRGP2, and BdRGP3 were reduced in RNAi-RGP1 plants to 15-20% of controls. CW Ara content was reduced by 23-51% of control levels. No alterations in CW Xyl and Glc content were observed. Corresponding decreases in CW ferulic acid (FA) and ferulic acid-dimers (FA-dimers) were observed. Additionally, CW p-coumarates (pCA) were decreased. We demonstrate the CW pCA decrease corresponds to Ara-coupled pCA. Xylanase-mediated digestibility of RNAi-RGP1 Brachypodium CWs resulted in a near twofold increase of released total carbohydrate. However, cellulolytic hydrolysis of CW material was inhibited in leaves of RNAi-RGP1 mutants. Our results indicate that targeted manipulation of UDP-sugar biosynthesis can result in biomass with substantially altered compositions and highlights the complex effect CW composition has on digestibility.
Collapse
Affiliation(s)
- David M. Rancour
- U.S. Dairy Forage Research Center, United States Department of Agriculture – Agricultural Research Service, MadisonWI, USA
| | - Ronald D. Hatfield
- U.S. Dairy Forage Research Center, United States Department of Agriculture – Agricultural Research Service, MadisonWI, USA
- *Correspondence: Ronald D. Hatfield, U.S. Dairy Forage Research Center, United States Department of Agriculture – Agricultural Research Service, 1925 Linden Drive, Madison, WI 53706, USA,
| | - Jane M. Marita
- U.S. Dairy Forage Research Center, United States Department of Agriculture – Agricultural Research Service, MadisonWI, USA
| | | | | |
Collapse
|
9
|
Tanackovic V, Svensson JT, Jensen SL, Buléon A, Blennow A. The deposition and characterization of starch in Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5179-92. [PMID: 25056772 PMCID: PMC4157704 DOI: 10.1093/jxb/eru276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 05/26/2023]
Abstract
Brachypodium distachyon is a non-domesticated cereal. Nonetheless, Brachypodium was recently introduced as a model plant for temperate cereals. This study compares grain starch metabolism in Brachypodium and barley (Hordeum vulgare). In Brachypodium, we identified and annotated 28 genes involved in starch metabolism and identified important motifs including transit peptides and putative carbohydrate-binding modules (CBMs) of the families CBM20, CBM45, CBM48, and CBM53. Starch content was markedly lower in Brachypodium grains (12%) compared to barley grains (47%). Brachypodium starch granules were doughnut shaped and bimodally distributed into distinct small B-type (2.5-10 µm) and very small C-type (0.5-2.5 µm) granules. Large A-type granules, typical of cereals, were absent. Starch-bound phosphate, important for starch degradation, was 2-fold lower in Brachypodium compared with barley indicating different requirements for starch mobilization. The amylopectin branch profiles were similar and the amylose content was only slightly higher compared with barley cv. Golden Promise. The crystallinity of Brachypodium starch granules was low (10%) compared to barley (20%) as determined by wide-angle X-ray scattering (WAXS) and molecular disorder was confirmed by differential scanning calorimetry (DSC). The expression profiles in grain for most genes were distinctly different for Brachypodium compared to barley, typically showing earlier decline during the course of development, which can explain the low starch content and differences in starch molecular structure and granule characteristics. High transitory starch levels were observed in leaves of Brachypodium (2.8% after 14h of light) compared to barley (1.9% after 14h of light). The data suggest important pre-domesticated features of cereals.
Collapse
Affiliation(s)
- Vanja Tanackovic
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, DK-1871, Denmark
| | - Jan T Svensson
- Nordic Genetic Resource Centre, P.O. Box 41, SE-230 53 Alnarp, Sweden
| | - Susanne L Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, DK-1871, Denmark
| | - Alain Buléon
- UR1268 Biopolymeres Interactions Assemblages, INRA, F-44300 Nantes, France
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, DK-1871, Denmark
| |
Collapse
|
10
|
Goddard R, Peraldi A, Ridout C, Nicholson P. Enhanced disease resistance caused by BRI1 mutation is conserved between Brachypodium distachyon and barley (Hordeum vulgare). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1095-106. [PMID: 24964059 DOI: 10.1094/mpmi-03-14-0069-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study investigated the impact of brassinosteroid (BR)-insensitive 1 (BRI1) mutation, the main receptor of BR in both Brachypodium distachyon and barley, on disease resistance against a range of fungal pathogens of cereals exhibiting different trophic lifestyles. Results presented here show that i) disruption of BRI1 has pleiotropic effects on disease resistance in addition to affecting plant development. BR signaling functions antagonistically with mechanisms of disease resistance that are effective against a broad range of cereal pathogens. ii) Disruption of BRI1 results in increased disease resistance against necrotrophic and hemibiotrophic pathogens that exhibit only a marginal asymptomatic phase but has no effect on biotrophic pathogens or those with a prolonged asymptomatic phase, and iii) disruption of BRI1 has a similar effect on disease resistance in B. distachyon and barley, indicating that defense mechanisms are conserved between these species. This work presents the first evidence for conservation of disease resistance mechanisms between the model species B. distachyon and the cereal crop barley and validates B. distachyon for undertaking model-to-crop translation studies of disease resistance.
Collapse
|
11
|
Hull R. Replication of Plant Viruses. PLANT VIROLOGY 2014. [PMCID: PMC7184227 DOI: 10.1016/b978-0-12-384871-0.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses co-infecting cells. Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses coinfecting cells.
Collapse
|
12
|
Trafford K, Haleux P, Henderson M, Parker M, Shirley NJ, Tucker MR, Fincher GB, Burton RA. Grain development in Brachypodium and other grasses: possible interactions between cell expansion, starch deposition, and cell-wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5033-5047. [PMID: 24052531 DOI: 10.1093/jxb/ert292] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To explain the low levels of starch, high levels of (1,3;1,4)-β-glucan, and thick cell walls in grains of Brachypodium distachyon L. relative to those in other Pooideae, aspects of grain development were compared between B. distachyon and barley (Hordeum vulgare L.). Cell proliferation, cell expansion, and endoreduplication were reduced in B. distachyon relative to barley and, consistent with these changes, transcriptional downregulation of the cell-cycle genes CDKB1 and cyclin A3 was observed. Similarly, reduced transcription of starch synthase I and starch-branching enzyme I was observed as well as reduced activity of starch synthase and ADP-glucose pyrophosphorylase, which are consistent with the lowered starch content in B. distachyon grains. No change was detected in transcription of the major gene involved in (1,3;1,4)-β-glucan synthesis, cellulose synthase-like F6. These results suggest that, while low starch content results from a reduced capacity for starch synthesis, the unusually thick cell walls in B. distachyon endosperm probably result from continuing (1,3;1,4)-β-glucan deposition in endosperm cells that fail to expand. This raises the possibility that endosperm expansion is linked to starch deposition.
Collapse
Affiliation(s)
- Kay Trafford
- National Institute of Agricultural Botany, Huntingdon Road, Cambridge CB3 0LE, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Benavente E, García-Toledano L, Carrillo J, Quemada M. Thermographic Imaging: Assessment of Drought and Heat Tolerance in Spanish Germplasm of Brachypodium Distachyon. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.proenv.2013.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
López-Alvarez D, López-Herranz ML, Betekhtin A, Catalán P. A DNA barcoding method to discriminate between the model plant Brachypodium distachyon and its close relatives B. stacei and B. hybridum (Poaceae). PLoS One 2012; 7:e51058. [PMID: 23240000 PMCID: PMC3519806 DOI: 10.1371/journal.pone.0051058] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/29/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Brachypodium distachyon s. l. has been widely investigated across the world as a model plant for temperate cereals and biofuel grasses. However, this annual plant shows three cytotypes that have been recently recognized as three independent species, the diploids B. distachyon (2n = 10) and B. stacei (2n = 20) and their derived allotetraploid B. hybridum (2n = 30). METHODOLOGY/PRINCIPAL FINDINGS We propose a DNA barcoding approach that consists of a rapid, accurate and automatable species identification method using the standard DNA sequences of complementary plastid (trnLF) and nuclear (ITS, GI) loci. The highly homogenous but largely divergent B. distachyon and B. stacei diploids could be easily distinguished (100% identification success) using direct trnLF (2.4%), ITS (5.5%) or GI (3.8%) sequence divergence. By contrast, B. hybridum could only be unambiguously identified through the use of combined trnLF+ITS sequences (90% of identification success) or by cloned GI sequences (96.7%) that showed 5.4% (ITS) and 4% (GI) rate divergence between the two parental sequences found in the allopolyploid. CONCLUSION/SIGNIFICANCE Our data provide an unbiased and effective barcode to differentiate these three closely-related species from one another. This procedure overcomes the taxonomic uncertainty generated from methods based on morphology or flow cytometry identifications that have resulted in some misclassifications of the model plant and its allies. Our study also demonstrates that the allotetraploid B. hybridum has resulted from bi-directional crosses of B. distachyon and B. stacei plants acting either as maternal or paternal parents.
Collapse
Affiliation(s)
- Diana López-Alvarez
- Department of Agriculture and Environmental Sciences, University of Zaragoza, Huesca, Spain
| | | | - Alexander Betekhtin
- Department of Agriculture and Environmental Sciences, University of Zaragoza, Huesca, Spain
- Department of Plant Anatomy and Cytology, University of Silesia, Katowice, Poland
| | - Pilar Catalán
- Department of Agriculture and Environmental Sciences, University of Zaragoza, Huesca, Spain
- * E-mail:
| |
Collapse
|
15
|
Hong JJ, Park YS, Bravo A, Bhattarai KK, Daniels DA, Harrison MJ. Diversity of morphology and function in arbuscular mycorrhizal symbioses in Brachypodium distachyon. PLANTA 2012; 236:851-865. [PMID: 22711284 DOI: 10.1007/s00425-012-1677-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/25/2012] [Indexed: 05/28/2023]
Abstract
Brachypodium distachyon is a grass species that serves as a useful model for wheat and also for many of the grass species proposed as feedstocks for bioenergy production. Here, we monitored B. distachyon symbioses with five different arbuscular mycorrhizal (AM) fungi and identified symbioses that vary functionally with respect to plant performance. Three symbioses promoted significant increases in shoot phosphorus (P) content and shoot growth of Brachypodium, while two associations were neutral. The Brachypodium/Glomus candidum symbiosis showed a classic 'Paris-type' morphology. In the other four AM symbioses, hyphal growth was exclusively intracellular and linear; hyphal coils were not observed and arbuscules were abundant. Expression of the Brachypodium ortholog of the symbiosis-specific phosphate (Pi) transporter MtPT4 did not differ significantly in these five interactions indicating that the lack of apparent functionality did not result from a failure to express this gene or several other AM symbiosis-associated genes. Analysis of the expression patterns of the complete PHT1 Pi transporter gene family and AMT2 gene family in B. distachyon/G. intraradices mycorrhizal roots identified additional family members induced during symbiosis and again, transcript levels were similar in the different Brachypodium AM symbioses. This initial morphological, molecular and functional characterization provides a framework for future studies of functional diversity in AM symbiosis in B. distachyon.
Collapse
Affiliation(s)
- Jeon J Hong
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
16
|
Giraldo P, Rodríguez-Quijano M, Vázquez JF, Carrillo JM, Benavente E. Validation of microsatellite markers for cytotype discrimination in the model grass Brachypodium distachyon. Genome 2012; 55:523-7. [PMID: 22788413 DOI: 10.1139/g2012-039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brachypodium distachyon (L.) P. Beauv. (2n = 2x = 10) is a small annual grass species where the existence of three different cytotypes (10, 20, and 30 chromosomes) has long been regarded as a case of autopolyploid series with x = 5. However, it has been demonstrated that the cytotypes assumed to be polyploids represent two separate Brachypodium species recently named as Brachypodium stacei (2n = 2x = 20) and Brachypodium hybridum (2n = 4x = 30). The aim of this study was to find a PCR-based alternative approach that could replace standard cytotyping methods (i.e., chromosome counting and flow cytometry) to characterize each of the three Brachypodium species. We have analyzed with four microsatellite (SSR) markers 83 B. distachyon-type lines from varied locations in Spain, including the Balearic and Canary Islands. Within this set of lines, 64, 4, and 15 had 10, 20, and 30 chromosomes, respectively. The surveyed markers produced cytotype-specific SSR profiles. So, a single amplification product was generated in the diploid samples, with nonoverlapping allelic ranges between the 2n = 10 and 2n = 20 cytotypes, whereas two bands, one in the size range of each of the diploid cytotypes, were amplified in the 2n = 30 lines. Furthermore, the remarkable size difference obtained with the SSR ALB165 allowed the identification of the Brachypodium species by simple agarose gel electrophoresis.
Collapse
Affiliation(s)
- Patricia Giraldo
- Departamento de Biotecnología (Genética), Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040-Madrid, Spain.
| | | | | | | | | |
Collapse
|
17
|
Thole V, Peraldi A, Worland B, Nicholson P, Doonan JH, Vain P. T-DNA mutagenesis in Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:567-76. [PMID: 22090444 DOI: 10.1093/jxb/err333] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
During the past decade, Brachypodium distachyon has emerged as an attractive experimental system and genomics model for grass research. Numerous molecular tools and genomics resources have already been developed. Functional genomics resources, including mutant collections, expression/tiling microarray, mapping populations, and genome re-sequencing for natural accessions, are rapidly being developed and made available to the community. In this article, the focus is on the current status of systematic T-DNA mutagenesis in Brachypodium. Large collections of T-DNA-tagged lines are being generated by a community of laboratories in the context of the International Brachypodium Tagging Consortium. To date, >13 000 lines produced by the BrachyTAG programme and USDA-ARS Western Regional Research Center are available by online request. The utility of these mutant collections is illustrated with some examples from the BrachyTAG collection at the John Innes Centre-such as those in the eukaryotic initiation factor 4A (eIF4A) and brassinosteroid insensitive-1 (BRI1) genes. A series of other mutants exhibiting growth phenotypes is also presented. These examples highlight the value of Brachypodium as a model for grass functional genomics.
Collapse
Affiliation(s)
- Vera Thole
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | | | | | | |
Collapse
|
18
|
Borowska N, Idziak D, Hasterok R. DNA methylation patterns of Brachypodium distachyon chromosomes and their alteration by 5-azacytidine treatment. Chromosome Res 2011; 19:955-67. [PMID: 22076608 PMCID: PMC3228944 DOI: 10.1007/s10577-011-9243-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 01/07/2023]
Abstract
Sequential immunolocalisation of 5-methylcytosine (5-MeC) and fluorescence in situ hybridisation with chromosome-specific BAC clones were performed on Brachypodium distachyon mitotic metaphase chromosomes to determine specific DNA methylation patterns of each chromosome in the complement. In the majority of cells examined, chromosomes Bd4 and Bd5, which bear the loci of 5S and 35S ribosomal DNA, respectively, had characteristic 5-MeC patterns. In contrast, the distribution of 5-MeC along the metacentric chromosome pairs Bd1, Bd2 and Bd3 was more variable. There were numerous differences in distribution of methylated sites between homologous chromosomes as well as between chromosome arms. Some chromosome sites, such as pericentromeric regions, were highly methylated in all chromosomes. Additionally, the influence of a hypomethylating agent, 5-azacytidine, on B. distachyon chromosome methylation patterns was confirmed. It was found that some chromosome pairs underwent demethylation more easily than others, but there was no apparent regularity in demethylation of particular chromosome segments.
Collapse
Affiliation(s)
- Natalia Borowska
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland
| | | | | |
Collapse
|