1
|
Zhu D, Zheng X, Dong H, Liu X, Hu X, Chen M, Liu X, Shao Y. Effects of storage on volatile organic components and physiological properties of different storage-tolerant rice varieties. Food Chem X 2025; 25:102134. [PMID: 39844964 PMCID: PMC11751419 DOI: 10.1016/j.fochx.2024.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025] Open
Abstract
The effects of storage on rice flavor among different rice varieties have not been well studied. To address this gap, we analyzed volatile organic components (VOCs) identified by gas chromatography-ion mobility spectrometry (GC-IMS) and related physicochemical properties of different storage-tolerant rice varieties during storage. The results showed that VOCs of four rice varieties significantly changed after 6 months of storage; OPLS-DA analysis classified the four rice varieties into two groups. There were fewer (N81 and JH1) and more significant changes (N84 and ZJ96) after storage, and the hexanal and 2-pentylfuran were considered the key VOCs for flavor changes during storage. Lipoxygenase (LOX) activity first increased and then decreased, while antioxidant activities decreased during storage. Under these conditions, oleic and linoleic acids were hydrolyzed. These results provide a better understanding of rice flavor changes after storage between different storable rice varieties.
Collapse
Affiliation(s)
- Dawei Zhu
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Xin Zheng
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Huiyin Dong
- Department of Food Science, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Xingquan Liu
- Department of Food Science, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Xianqiao Hu
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Mingxue Chen
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Xin Liu
- Seed Management Station of Zhejiang Province, Hangzhou 310006, China
| | - Yafang Shao
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
2
|
Subramanian V, Dhandayuthapani UN, Kandasamy S, Sivaprakasam JV, Balasubramaniam P, Shanmugam MK, Nagappan S, Elangovan S, Subramani UK, Palaniyappan K, Vellingiri G, Muthurajan R. Unravelling the metabolomic diversity of pigmented and non-pigmented traditional rice from Tamil Nadu, India. BMC PLANT BIOLOGY 2024; 24:402. [PMID: 38745317 PMCID: PMC11095017 DOI: 10.1186/s12870-024-05123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Rice metabolomics is widely used for biomarker research in the fields of pharmacology. As a consequence, characterization of the variations of the pigmented and non-pigmented traditional rice varieties of Tamil Nadu is crucial. These varieties possess fatty acids, sugars, terpenoids, plant sterols, phenols, carotenoids and other compounds that plays a major role in achieving sustainable development goal 2 (SDG 2). Gas-chromatography coupled with mass spectrometry was used to profile complete untargeted metabolomics of Kullkar (red colour) and Milagu Samba (white colour) for the first time and a total of 168 metabolites were identified. The metabolite profiles were subjected to data mining processes, including principal component analysis (PCA), Orthogonal Partial Least Square Discrimination Analysis (OPLS-DA) and Heat map analysis. OPLS-DA identified 144 differential metabolites between the 2 rice groups, variable importance in projection (VIP) ≥ 1 and fold change (FC) ≥ 2 or FC ≤ 0.5. Volcano plot (64 down regulated, 80 up regulated) was used to illustrate the differential metabolites. OPLS-DA predictive model showed good fit (R2X = 0.687) and predictability (Q2 = 0.977). The pathway enrichment analysis revealed the presence of three distinct pathways that were enriched. These findings serve as a foundation for further investigation into the function and nutritional significance of both pigmented and non-pigmented rice grains thereby can achieve the SDG 2.
Collapse
Affiliation(s)
- Venkatesan Subramanian
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Udhaya Nandhini Dhandayuthapani
- Centre of Excellence in sustaining Soil Health, Anbil Dharmalingam Agricultural College & Research Institute, Trichy, Tamil Nadu, 620 027, India
| | - Senthilraja Kandasamy
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | | | - Prabha Balasubramaniam
- Department of Renewable Energy Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Mohan Kumar Shanmugam
- Agro-Climatic Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Sriram Nagappan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | | | - Umesh Kanna Subramani
- Office of the Vice Chancellor, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Kumaresan Palaniyappan
- Agribusiness Development, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Geethalakshmi Vellingiri
- Agro-Climatic Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
| | - Raveendran Muthurajan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
| |
Collapse
|
3
|
Mbanjo EGN, Pasion EA, Jones H, Carandang S, Misra G, Ignacio JC, Kretzschmar T, Sreenivasulu N, Boyd LA. Unravelling marker trait associations linking nutritional value with pigmentation in rice seed. THE PLANT GENOME 2023; 16:e20360. [PMID: 37589249 DOI: 10.1002/tpg2.20360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 08/18/2023]
Abstract
While considerable breeding effort has focused on increasing the yields of staple crops such as rice and the levels of micronutrients such as iron and zinc, breeding to address the problems of the double-burden of malnutrition has received less attention. Pigmented rice has higher nutritional value and greater health benefits compared to white rice. However, the genetic associations underlying pericarp coloration and accumulation of nutritionally valuable compounds is still poorly understood. Here we report the targeted genetic analysis of 364 rice accessions, assessing the genetic relationship between pericarp coloration (measured using multi-spectral imaging) and a range of phenolic compounds with potential nutritional and health-promoting characteristics. A genome-wide association study resulted in the identification of over 280 single nucleotide polymorphisms (SNPs) associated with the traits of interest. Many of the SNPs were associated with more than one trait, colocalization occurring between nutritional traits, and nutritional and color-related traits. Targeted association analysis identified 67 SNPs, located within 52 candidate genes and associated with 24 traits. Six haplotypes identified within the genes Rc/bHLH17 and OsIPT5 indicated that these genes have an important role in the regulation of a wide range of phenolic compounds, and not only those directly conferring pericarp color. These identified genetic linkages between nutritionally valuable phenolic compounds and pericarp color present not only a valuable resource for the enhancement of the nutritional value of rice but an easy method of selection of suitable genotypes.
Collapse
Affiliation(s)
- Edwige Gaby Nkouaya Mbanjo
- International Rice Research Institute (IRRI), Los Baños, Philippines
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Erstelle A Pasion
- International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Huw Jones
- National Institute of Agricultural Botany (NIAB), Cambridge, UK
| | - Socorro Carandang
- International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Gopal Misra
- International Rice Research Institute (IRRI), Los Baños, Philippines
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Tobias Kretzschmar
- International Rice Research Institute (IRRI), Los Baños, Philippines
- Faculty of Science and Engineering, Southern Cross University, East Lismore, New South Wales, Australia
| | - Nese Sreenivasulu
- International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Lesley Ann Boyd
- National Institute of Agricultural Botany (NIAB), Cambridge, UK
| |
Collapse
|
4
|
Obadi M, Xu B. Effect of processing methods and storage on the bioactive compounds of black rice ( Oryza sativa L.): a review. Food Funct 2023; 14:9100-9122. [PMID: 37766517 DOI: 10.1039/d3fo02977h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Compared to brown and white rice, black rice contains more nutrients and numerous unique bioactive substances, such as essential amino acids, dietary fiber, γ-oryzanols, γ-aminobutyric acid, phenolic compounds, and anthocyanins, which makes it highly valuable for development and use. Whole-grain black rice typically requires a certain amount of processing prior to consumption, with the primary goal of enhancing the taste and texture of whole grains and their products. However, various new processing technologies have been effectively applied to the processing of black rice and the enhancement of its qualitative characteristics, but they also have both positive and negative effects on its nutritional quality. Therefore, evaluation of changes in concentrations of the bioactive substances as natural antioxidants due to processing and storage conditions is critical for establishing dietary guidelines for rice. This review highlights the primary bioactive components of black rice and provides a discussion of the impact of processing methods and storage on the bioactive components of black rice. Furthermore, we summarized the issues that currently exist in the processing and storage of black rice.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
5
|
Leonarski E, Kuasnei M, Cesca K, Oliveira DD, Zielinski AAF. Black rice and its by-products: anthocyanin-rich extracts and their biological potential. Crit Rev Food Sci Nutr 2023; 64:9261-9279. [PMID: 37194647 DOI: 10.1080/10408398.2023.2211169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recently, growing demand for products enriched with natural compounds that support human health has been observed. Black rice, its by-products, and residues are known to have in their composition a large amount of these compounds with biological potential, mainly anthocyanins. These compounds have reported effects on anti-obesity, antidiabetic, antimicrobial, anticancer, neuroprotective, and cardiovascular disease. Therefore, the extract from black rice or its by-products have great potential for application as ingredients in functional foods, supplements, or pharmacological formulations. This overview summarizes the methods employed for the extraction of anthocyanins from both black rice and its by-products. In addition, trends in applications of these extracts are also evaluated regarding their biological potential. Commonly, the extraction methods used to recover anthocyanins are conventional (maceration) and some emerging technologies (Ultrasound-Assisted Extraction - UAE, and Microwave-Assisted Extraction - MAE). Anthocyanin-rich extracts from black rice have presented a biological potential for human health. In vitro and in vivo assays (in mice) showed these compounds mainly with anti-cancer properties. However, more clinical trials are still needed to prove these potential biological effects. Extracts from black rice and its by-products have great potential in applying functional products with beneficial characteristics to humans and reducing agro-industrial residues.
Collapse
Affiliation(s)
- Eduardo Leonarski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Mayara Kuasnei
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Karina Cesca
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Acácio A F Zielinski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
6
|
Wang Q, Zhang D, Zhao L, Liu J, Shang B, Yang W, Duan X, Sun H. Metabolomic Analysis Reveals Insights into Deterioration of Rice Quality during Storage. Foods 2022; 11:foods11121729. [PMID: 35741928 PMCID: PMC9222621 DOI: 10.3390/foods11121729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
To determine the changes in the quality of rice during storage, this study investigated the comprehensive metabolomic profiles of Nanjing 9108 (typical japonica rice) and Jianzhen 2 (typical indica rice) varieties in China, using metabolomics. A total of 13 categories of 593 metabolites including lipids (134 species), phenolic acids (78 species), flavonoids (70 species), alkaloids (67 species), organic acids (64 species), amino acids and derivatives (64 species), saccharides and alcohols (44 species), nucleotides and derivatives (37 species), vitamins (14 species), lignans and coumarins (9 species), tannins (2 species), terpenoids (2 species), and others (8 species) were identified in both varieties. The result showed significant changes in 204 metabolites in Nanjing 9108, while only 26 were altered in Jianzhen 2 during storage. These metabolites involved 46 metabolic pathways. The TCA cycle, linoleic, and α-linolenic acid metabolic pathways were unique in Nanjing 9108. Finally, the results of quantitative mass spectrometry of 11 metabolites provided insight into biomarkers associated with quality deterioration of rice. This study provides insights into the mechanism of deterioration in the quality of rice during storage.
Collapse
|
7
|
Integrated Metabolomics and Transcriptomics Analyses Reveal the Metabolic Differences and Molecular Basis of Nutritional Quality in Landraces and Cultivated Rice. Metabolites 2022; 12:metabo12050384. [PMID: 35629888 PMCID: PMC9142891 DOI: 10.3390/metabo12050384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Rice (Oryza sativa L.) is one of the most globally important crops, nutritionally and economically. Therefore, analyzing the genetic basis of its nutritional quality is a paramount prerequisite for cultivating new varieties with increased nutritional health. To systematically compare the nutritional quality differences between landraces and cultivated rice, and to mine key genes that determine the specific nutritional traits of landraces, a seed metabolome database of 985 nutritional metabolites covering amino acids, flavonoids, anthocyanins, and vitamins by a widely targeted metabolomic approach with 114 rice varieties (35 landraces and 79 cultivars) was established. To further reveal the molecular mechanism of the metabolic differences in landrace and cultivated rice seeds, four cultivars and six landrace seeds were selected for transcriptome and metabolome analysis during germination, respectively. The integrated analysis compared the metabolic profiles and transcriptomes of different types of rice, identifying 358 differentially accumulated metabolites (DAMs) and 1982 differentially expressed genes (DEGs), establishing a metabolite–gene correlation network. A PCA revealed anthocyanins, flavonoids, and lipids as the central differential nutritional metabolites between landraces and cultivated rice. The metabolite–gene correlation network was used to screen out 20 candidate genes postulated to be involved in the structural modification of anthocyanins. Five glycosyltransferases were verified to catalyze the glycosylation of anthocyanins by in vitro enzyme activity experiments. At the same time, the different mechanisms of the anthocyanin synthesis pathway and structural diversity in landrace and cultivated rice were systematically analyzed, providing new insights for the improvement and utilization of the nutritional quality of rice landrace varieties.
Collapse
|
8
|
Islam MZ, Shim M, Jeong S, Lee Y. Effects of soaking and sprouting on bioactive compounds of black and red pigmented rice cultivars. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mohammad Zahirul Islam
- Department of Food Science and Biotechnology Gachon University Seongnam 13120 Republic of Korea
| | - Min‐Jung Shim
- Department of Food Science and Biotechnology Gachon University Seongnam 13120 Republic of Korea
| | - Su‐Yeon Jeong
- Department of Food Science and Biotechnology Gachon University Seongnam 13120 Republic of Korea
| | - Young‐Tack Lee
- Department of Food Science and Biotechnology Gachon University Seongnam 13120 Republic of Korea
| |
Collapse
|
9
|
How anthocyanin biosynthesis affects nutritional value and anti-inflammatory effect of black rice. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Metabolite Profiling Reveals Distinct Modulation of Complex Metabolic Networks in Non-Pigmented, Black, and Red Rice ( Oryza sativa L.) Cultivars. Metabolites 2021; 11:metabo11060367. [PMID: 34207595 PMCID: PMC8230048 DOI: 10.3390/metabo11060367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
Comprehensive profiling of primary and secondary metabolites was performed to understand metabolic differences associated with color formation in pigmented rice (Oryza sativa L.). Overall, 110 metabolites from non-pigmented, black, and red rice cultivars were identified. Black and red rice contained high levels of flavonoids associated with plant color. Black rice also contained high levels of terpenoids (carotenoids, tocopherols, phytosterols, and monoterpenes). The non-pigmented rice contained relatively low levels of secondary metabolites. Multivariate and pathway analyses were performed to data-mine the metabolite profiles. Hierarchical clustering analysis of correlation coefficients revealed metabolite clusters based on nitrogen and carbon sources. These clusters suggested a negative correlation between nitrogen and carbon. Pathway analysis revealed that black rice was rich in carbon-based secondary metabolites, with relatively low levels of primary metabolites compared with other rice cultivars. These data highlight the complex interactions between nitrogen and carbon metabolism of primary and secondary metabolites in rice. For the first time, the relationships and metabolic differences in terpenoid content (monoterpenes, triterpenes, and tetraterpenes) of non-pigmented and pigmented rice cultivars were analyzed. These findings should greatly contribute to the understanding of pigmented rice metabolome and inform breeding programs for new rice cultivars.
Collapse
|
11
|
Colasanto A, Travaglia F, Bordiga M, Monteduro S, Arlorio M, Coïsson JD, Locatelli M. Cooking of Artemide Black Rice: Impact on Proximate Composition and Phenolic Compounds. Foods 2021; 10:foods10040824. [PMID: 33920178 PMCID: PMC8068815 DOI: 10.3390/foods10040824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
The consumption of black rice has grown in recent years due to its particular organoleptic properties and high content of antioxidant polyphenols, which make it a sort of natural functional food. However, heat treatment applied during cooking can influence the content and the composition of antioxidant components, particularly anthocyanins, the main compounds of black rice, responsible for its color. The aim of this work was to evaluate the impact of different cooking techniques (boiling, microwaves oven, under pressure pot and risotto preparation) on the chemical and nutritional composition of the Italian Artemide black rice. Different cooking methods had significant and different impact on rice composition. Proximate composition was not affected by cooking, except for moisture, which increased, and fiber content, which decreased. Total polyphenols, total anthocyanin content, and antioxidant capacity were reduced; moreover, anthocyanins and phenolic acids determined by HPLC-DAD generally decreased, with the only exception of protocatechuic acid. The risotto preparation was the most useful cooking technique to preserve anthocyanins and antioxidant activity. Our results demonstrated the importance to study cooking methods and to evaluate their impact on rice characteristics, in order to preserve its nutritional and beneficial properties.
Collapse
|
12
|
Recent Insights into Anthocyanin Pigmentation, Synthesis, Trafficking, and Regulatory Mechanisms in Rice ( Oryza sativa L.) Caryopsis. Biomolecules 2021; 11:biom11030394. [PMID: 33800105 PMCID: PMC8001509 DOI: 10.3390/biom11030394] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/06/2021] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Anthocyanins are antioxidants used as natural colorants and are beneficial to human health. Anthocyanins contribute to reactive oxygen species detoxification and sustain plant growth and development under different environmental stresses. They are phenolic compounds that are broadly distributed in nature and are responsible for a wide range of attractive coloration in many plant organs. Anthocyanins are found in various parts of plants such as flowers, leaves, stems, shoots, and grains. Considering their nutritional and health attributes, anthocyanin-enriched rice or pigmented rice cultivars are a possible alternative to reduce malnutrition around the globe. Anthocyanin biosynthesis and storage in rice are complex processes in which several structural and regulatory genes are involved. In recent years, significant progress has been achieved in the molecular and genetic mechanism of anthocyanins, and their synthesis is of great interest to researchers and the scientific community. However, limited studies have reported anthocyanin synthesis, transportation, and environmental conditions that can hinder anthocyanin production in rice. Rice is a staple food around the globe, and further research on anthocyanin in rice warrants more attention. In this review, metabolic and pre-biotic activities, the underlying transportation, and storage mechanisms of anthocyanins in rice are discussed in detail. This review provides potential information for the food industry and clues for rice breeding and genetic engineering of rice.
Collapse
|
13
|
Jung YK, Joo KS, Rho SJ, Kim YR. pH-dependent antioxidant stability of black rice anthocyanin complexed with cycloamylose. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Zhao Q, Xue Y, Shen Q. Changes in the major aroma-active compounds and taste components of Jasmine rice during storage. Food Res Int 2020; 133:109160. [DOI: 10.1016/j.foodres.2020.109160] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 11/27/2022]
|
15
|
Semi-targeted metabolomic analysis provides the basis for enhanced antioxidant capacities in pigmented rice grains. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00367-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Mbanjo EGN, Kretzschmar T, Jones H, Ereful N, Blanchard C, Boyd LA, Sreenivasulu N. The Genetic Basis and Nutritional Benefits of Pigmented Rice Grain. Front Genet 2020; 11:229. [PMID: 32231689 PMCID: PMC7083195 DOI: 10.3389/fgene.2020.00229] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
Improving the nutritional quality of rice grains through modulation of bioactive compounds and micronutrients represents an efficient means of addressing nutritional security in societies which depend heavily on rice as a staple food. White rice makes a major contribution to the calorific intake of Asian and African populations, but its nutritional quality is poor compared to that of pigmented (black, purple, red orange, or brown) variants. The compounds responsible for these color variations are the flavonoids anthocyanin and proanthocyanidin, which are known to have nutritional value. The rapid progress made in the technologies underlying genome sequencing, the analysis of gene expression and the acquisition of global 'omics data, genetics of grain pigmentation has created novel opportunities for applying molecular breeding to improve the nutritional value and productivity of pigmented rice. This review provides an update on the nutritional value and health benefits of pigmented rice grain, taking advantage of both indigenous and modern knowledge, while also describing the current approaches taken to deciphering the genetic basis of pigmentation.
Collapse
Affiliation(s)
- Edwige Gaby Nkouaya Mbanjo
- International Rice Research Institute, Los Baños, Philippines
- International Institute for Tropical Agriculture, Ibadan, Oyo, Nigeria
| | - Tobias Kretzschmar
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Huw Jones
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Nelzo Ereful
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Christopher Blanchard
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Lesley Ann Boyd
- National Institute of Agricultural Botany, Cambridge, United Kingdom
| | | |
Collapse
|
17
|
Kotamreddy JNR, Barman M, Sharma L, Mitra A. Grain size and shape reflects variability in metabolite and elemental composition in traditional rice varieties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00273-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Ito VC, Lacerda LG. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chem 2019; 301:125304. [PMID: 31394335 DOI: 10.1016/j.foodchem.2019.125304] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
Black rice is a variety of pigmented rice. It contains numerous nutritional and bioactive components, including essential amino acids, functional lipids, dietary fibre, vitamins, minerals, anthocyanins, phenolic compounds, γ-oryzanols, tocopherols, tocotrienols, phytosterols and phytic acid. There have been several studies of black rice due to its alleged beneficial health effects when consumed regularly. This review focuses on the historical aspects, chemical composition, and nutritional and functional properties of black rice. Furthermore, a discussion of the development of new foods and beverages with applications and processing technologies designed to improve their quality attributes. The nutritional value of black rice means that it has the potential to be used in the production of healthy foods and beverages, such as functional products and gluten-free cereals, thereby providing extra health benefits to consumers.
Collapse
Affiliation(s)
- Vivian Cristina Ito
- Graduate Program in Food Science and Technology - State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti 4748 Uvaranas Campus, CEP 84.030-900, Ponta Grossa, PR, Brazil.
| | - Luiz Gustavo Lacerda
- Graduate Program in Food Science and Technology - State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti 4748 Uvaranas Campus, CEP 84.030-900, Ponta Grossa, PR, Brazil
| |
Collapse
|
19
|
Gusmão TAS, de Gusmão RP, Moura HV, Silva HA, Cavalcanti-Mata MERM, Duarte MEM. Production of prebiotic gluten-free bread with red rice flour and different microbial transglutaminase concentrations: modeling, sensory and multivariate data analysis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:2949-2958. [PMID: 31205350 PMCID: PMC6542973 DOI: 10.1007/s13197-019-03769-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 01/22/2023]
Abstract
The aim of this study was to develop gluten-free bread formulated with red rice flour and microbial transglutaminase and prebiotic (inulin). First, the physicochemical analysis of minerals present in red rice flour was performed. Response surface methodology was used to analyze the effects of microbial transglutaminase (MTgase) [0.5; 1.0 and 1.5%] in combination with fermentation time (FT) [60; 80 and 100 min] on the quality parameters of gluten-free bread. Acceptance test was used to evaluate the sensory characteristics of breads together with multivariate analysis of data. The addition of MTgase increased bread volume, hardness and chewiness. However, the cohesiveness and springiness of all breads remained unaffected. The formulation (1.0% MTgase and 80 min FT) presented the best sensory attributes through PCA (principal component analysis) and greater acceptance. Overall, red rice flour, prebiotic and MTgase are promisingly useful ingredients for the production of gluten-free quality bread.
Collapse
Affiliation(s)
| | - Rennan Pereira de Gusmão
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande, 58410-743 Brazil
| | - Henrique Valentim Moura
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande, 58410-743 Brazil
| | - Hanndson Araújo Silva
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande, 58410-743 Brazil
| | | | | |
Collapse
|
20
|
Li Q, Singh V, de Mejia EG, Somavat P. Effect of sulfur dioxide and lactic acid in steeping water on the extraction of anthocyanins and bioactives from purple corn pericarp. Cereal Chem 2019. [DOI: 10.1002/cche.10157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qian Li
- Department of Food Science and Human Nutrition University of Illinois at Urbana‐Champaign Urbana Illinois
| | - Vijay Singh
- Department of Agricultural and Biological Engineering University of Illinois at Urbana‐Champaign Urbana Illinois
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition University of Illinois at Urbana‐Champaign Urbana Illinois
| | - Pavel Somavat
- School of Earth, Environmental and Marine Sciences University of Texas at Rio Grande Valley Edinburg Texas
| |
Collapse
|
21
|
Fidan-Yardimci M, Akay S, Sharifi F, Sevimli-Gur C, Ongen G, Yesil-Celiktas O. A novel niosome formulation for encapsulation of anthocyanins and modelling intestinal transport. Food Chem 2019; 293:57-65. [PMID: 31151649 DOI: 10.1016/j.foodchem.2019.04.086] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/31/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023]
Abstract
The bioavailability of drugs can be improved by regulating the structural properties, particularly lipoid systems, such as niosomes, can increase cellular uptake. Herein, we optimized double emulsion and niosomal formulations for encapsulating anthocyanin-rich black carrot extract. Nanoparticles obtained by selected formulation were characterized in terms of morphology, particle size, drug encapsulation efficiency, in vitro release and cytotoxicity. The optimum conditions for niosomal formulation were elicited as 30 mg of cholesterol, 150 mg of Tween 20 and feeding time of 1 min at a stirring rate of 900 rpm yielding the lowest average particle size of 130 nm. In vitro release data showed the majority of the encapsulated anthocyanins were released at the end of 10 h. A mathematical model was developed to estimate the absorption of anthocyanins released from niosomes and cytotoxicity was assessed against neuroblastoma. Overall, these findings suggest that niosomal vesicles might be suitable delivery systems for anthocyanins.
Collapse
Affiliation(s)
- Melike Fidan-Yardimci
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - Seref Akay
- Department of Genetics & Bioengineering, Faculty of Engineering, Gumushane University, 29100 Gumushane, Turkey
| | - Fatemeh Sharifi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA; Mechanical Engineering Department, Faculty of Engineering, Sharif University of Technology, Tehran, Iran
| | - Canan Sevimli-Gur
- Department of Biology, Biotechnology Discipline, Science and Art Faculty, Kocaeli University, 41380 Izmit, Kocaeli, Turkey
| | - Gaye Ongen
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA.
| |
Collapse
|
22
|
Choi S, Seo HS, Lee KR, Lee S, Lee J, Lee J. Effect of milling and long-term storage on volatiles of black rice (Oryza sativa L.) determined by headspace solid-phase microextraction with gas chromatography–mass spectrometry. Food Chem 2019; 276:572-582. [DOI: 10.1016/j.foodchem.2018.10.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 11/15/2022]
|
23
|
Du H, Huo Y, Liu H, Kamal GM, Yang J, Zeng Y, Zhao S, Liu Y. Fast nutritional characterization of different pigmented rice grains using a combination of NMR and decision tree analysis. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2018.1545800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hongying Du
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Yinqiang Huo
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, P.R. China
| | - Huili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Ghulam Mustafa Kamal
- Department of Chemistry, Khawaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Pakistan
| | - Jiaren Yang
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Yongchao Zeng
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Siming Zhao
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Youming Liu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
24
|
Medina S, Pereira JA, Silva P, Perestrelo R, Câmara JS. Food fingerprints - A valuable tool to monitor food authenticity and safety. Food Chem 2018; 278:144-162. [PMID: 30583355 DOI: 10.1016/j.foodchem.2018.11.046] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022]
Abstract
In recent years, food frauds and adulterations have increased significantly. This practice is motivated by fast economical gains and has an enormous impact on public health, representing an important issue in food science. In this context, this review has been designed to be a useful guide of potential biomarkers of food authenticity and safety. In terms of food authenticity, we focused our attention on biomarkers reported to specify different botanical or geographical origins, genetic diversity or production systems, while at the food safety level, molecular evidences of food adulteration or spoilage will be highlighted. This report is the first to combine results from recent studies in a format that allows a ready overview of metabolites (<1200 Da) and potentially molecular routes to monitor food authentication and safety. This review has therefore the potential to unveil important aspects in food adulteration and safety, contributing to improve the current regulatory frameworks.
Collapse
Affiliation(s)
- Sonia Medina
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Jorge A Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
25
|
Thuengtung S, Niwat C, Tamura M, Ogawa Y. In vitro examination of starch digestibility and changes in antioxidant activities of selected cooked pigmented rice. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2017.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Pramai P, Abdul Hamid NA, Mediani A, Maulidiani M, Abas F, Jiamyangyuen S. Metabolite profiling, antioxidant, and α-glucosidase inhibitory activities of germinated rice: nuclear-magnetic-resonance-based metabolomics study. J Food Drug Anal 2018; 26:47-57. [PMID: 29389588 PMCID: PMC9332653 DOI: 10.1016/j.jfda.2016.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/09/2016] [Accepted: 11/21/2016] [Indexed: 01/03/2023] Open
Abstract
In an attempt to profile the metabolites of three different varieties of germinated rice, specifically black (GBR), red, and white rice, a 1H-nuclear-magnetic-resonance-based metabolomics approach was conducted. Multivariate data analysis was applied to discriminate between the three different varieties using a partial least squares discriminant analysis (PLS-DA) model. The PLS model was used to evaluate the relationship between chemicals and biological activities of germinated rice. The PLS-DA score plot exhibited a noticeable separation between the three rice varieties into three clusters by PC1 and PC2. The PLS model indicated that α-linolenic acid, γ-oryzanol, α-tocopherol, γ-aminobutyric acid, 3-hydroxybutyric acid, fumaric acid, fatty acids, threonine, tryptophan, and vanillic acid were significantly correlated with the higher bioactivities demonstrated by GBR that was extracted in 100% ethanol. Subsequently, the proposed biosynthetic pathway analysis revealed that the increased quantities of secondary metabolites found in GBR may contribute to its nutritional value and health benefits.
Collapse
|
27
|
Akram MI, Vincent IM, Siddiqui AJ, Musharraf SG. Polymeric hydrophilic interaction liquid chromatography coupled with Orbitrap mass spectrometry and chemometric analysis for untargeted metabolite profiling of natural rice variants. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi) Improves Glucose and Bone Metabolisms in Ovariectomized Rats. Nutrients 2016; 8:nu8100658. [PMID: 27775654 PMCID: PMC5084044 DOI: 10.3390/nu8100658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
The effect of germinated Superhongmi, a reddish brown pigmented rice cultivar, on the glucose profile and bone turnover in the postmenopausal-like model of ovariectomized rats was determined. The ovariectomized Sprague-Dawley rats were randomly divided into three dietary groups (n = 10): normal control diet (NC) and normal diet supplemented with non-germinated Superhongmi (SH) or germinated Superhongmi (GSH) rice powder. After eight weeks, the SH and GSH groups showed significantly lower body weight, glucose and insulin concentrations, levels of bone resorption markers and higher glycogen and 17-β-estradiol contents than the NC group. The glucose metabolism improved through modulation of adipokine production and glucose-regulating enzyme activities. The GSH rats exhibited a greater hypoglycemic effect and lower bone resorption than SH rats. These results demonstrate that germinated Superhongmi rice may potentially be useful in the prevention and management of postmenopausal hyperglycemia and bone turnover imbalance.
Collapse
|
29
|
Arslan S, Erbaş M, Candal C, Mutlu C. Effects of processing on the chemical composition of rice. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2016. [DOI: 10.3920/qas2015.0656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- S. Arslan
- Akdeniz University, Engineering Faculty, Department of Food Engineering, 07070 Antalya, Turkey
- Firat University, Engineering Faculty, Department of Food Engineering, 23119 Elazig, Turkey
| | - M. Erbaş
- Akdeniz University, Engineering Faculty, Department of Food Engineering, 07070 Antalya, Turkey
| | - C. Candal
- Akdeniz University, Engineering Faculty, Department of Food Engineering, 07070 Antalya, Turkey
| | - C. Mutlu
- Akdeniz University, Engineering Faculty, Department of Food Engineering, 07070 Antalya, Turkey
- Balikesir University, Engineering Faculty, Department of Food Engineering, 10145 Balikesir, Turkey
| |
Collapse
|
30
|
Loypimai P, Moongngarm A, Chottanom P. Thermal and pH degradation kinetics of anthocyanins in natural food colorant prepared from black rice bran. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:461-70. [PMID: 26787965 PMCID: PMC4711436 DOI: 10.1007/s13197-015-2002-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/28/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
The study of the stability of anthocyanins in food colorant powder is important to predict the quality changes occurring as the food products are processed, to prevent and control the degradation of the anthocyanins. The objectives of this study were to identify anthocyanin components in natural food colorants obtained from black rice bran, and investigate their thermal stability at 60, 80, and 100 °C, pH stability from 2.0 to 5.0 and also their correlation with visual color, L (*), C (*), and h°. Results showed that only six types of anthocyanins, cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside, delphinidin, cyanidin, pelargonidin and malvidin were present in raw black rice bran (BRB) and black rice bran colorant powder (BCP). The thermal degradation of both the visual color and the anthocyanin content in the BCP followed a first-order kinetic reaction model. The temperature-dependent degradation was adequately fitted to the Arrhenius equation. In terms of the pH stability, increasing pH values resulted in lower activation energies (E a ) and higher half-life (t 1/2 ) values for both color parameters and individual anthocyanins when heating from 60 to 100 °C. Moreover, the degradation rate constant (k) increased with increasing temperature and pH value. The degradation of cyanidin-3-O-glucoside and total anthocyanins showed a strong positive correlation with C (*). The changes in visual color may be used as an on-line quality control indicator during thermal processing of food products containing rice bran colorants which have high anthocyanin content.
Collapse
Affiliation(s)
- Patiwit Loypimai
- Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand
| | - Anuchita Moongngarm
- Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand
| | - Pheeraya Chottanom
- Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand
| |
Collapse
|
31
|
Na Jom K, Lorjaroenphon Y, Udompijitkul P. Differentiation of Four Varieties of Germinating Thai Colored Indica Rice ( Oryza sativa L.) by Metabolite Profiling. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kriskamol Na Jom
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University
| | - Yaowapa Lorjaroenphon
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University
| | - Pathima Udompijitkul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University
| |
Collapse
|
32
|
de Leonardis AM, Fragasso M, Beleggia R, Ficco DBM, de Vita P, Mastrangelo AM. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain. Int J Mol Sci 2015; 16:30382-404. [PMID: 26703576 PMCID: PMC4691181 DOI: 10.3390/ijms161226241] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 11/27/2022] Open
Abstract
Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: "Primadur", an elite cultivar with high yellow index, and "T1303", an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in "Primadur", with a general decrease in "T1303". Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways.
Collapse
Affiliation(s)
- Anna Maria de Leonardis
- Cereal Research Centre, Council for Agricultural Research and Economics, Foggia 71122, Italy.
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, S.S. 673 Km 25,200, Foggia 71122, Italy.
| | - Mariagiovanna Fragasso
- Cereal Research Centre, Council for Agricultural Research and Economics, Foggia 71122, Italy.
| | - Romina Beleggia
- Cereal Research Centre, Council for Agricultural Research and Economics, Foggia 71122, Italy.
| | | | - Pasquale de Vita
- Cereal Research Centre, Council for Agricultural Research and Economics, Foggia 71122, Italy.
| | - Anna Maria Mastrangelo
- Cereal Research Centre, Council for Agricultural Research and Economics, Foggia 71122, Italy.
| |
Collapse
|
33
|
High-quality Italian rice cultivars: Chemical indices of ageing and aroma quality. Food Chem 2015; 172:305-13. [DOI: 10.1016/j.foodchem.2014.09.082] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/22/2022]
|
34
|
Pedro AC, Granato D, Rosso ND. Extraction of anthocyanins and polyphenols from black rice (Oryza sativa L.) by modeling and assessing their reversibility and stability. Food Chem 2015; 191:12-20. [PMID: 26258696 DOI: 10.1016/j.foodchem.2015.02.045] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 12/27/2022]
Abstract
This study was aimed the extraction of total flavonoids, anthocyanins and phenolics, as well as the antioxidant activity of black rice (Oryza sativa) and to study the stability in relation to pH, light and copigmentation. Variations in temperature (10-50°C), time (20-80min), and solid-solvent ratio (1:15-1:45) were studied using a Box-Behnken design. The regression models were significant (P<0.001) and determination coefficients ⩾0.900. Extraction at 34.7°C for 80min using a solid:solvent ratio of 1:30 rendered an extract with 51.26mg 100g(-1) of flavonoids, 116.58mg 100g(-1) of anthocyanins, 520.17mg 100g(-1) of phenolics and 46.50% inhibition of the DPPH radical. A decrease in the color intensity was observed when pH values were changed while anthocyanins were reversible in the process of protonation/deprotonation. The addition of glucose, phytic and gallic acids in the optimized extract exposed to light displayed an intermolecular copigmentation. The main anthocyanin identified in black rice was cyanidin-3-glucoside.
Collapse
Affiliation(s)
- Alessandra Cristina Pedro
- Graduate Program in Food Science and Technology, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, CEP 84030-900 Ponta Grossa, PR, Brazil
| | - Daniel Granato
- Graduate Program in Food Science and Technology, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, CEP 84030-900 Ponta Grossa, PR, Brazil
| | - Neiva Deliberali Rosso
- Graduate Program in Food Science and Technology, State University of Ponta Grossa, Av. Carlos Cavalcanti, 4748, CEP 84030-900 Ponta Grossa, PR, Brazil.
| |
Collapse
|
35
|
Surh J, Koh E. Effects of four different cooking methods on anthocyanins, total phenolics and antioxidant activity of black rice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:3296-3304. [PMID: 25513670 DOI: 10.1002/jsfa.6690] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND Two cultivars of black rice were investigated for the effects of different cooking methods on anthocyanins, total phenolic compounds and antioxidant activities. RESULTS There was a significant loss of anthocyanins during cooking: roasting resulted in the greatest decrease (94%), followed by steaming (88%), pan-frying (86%) and boiling (77%). Contents of phenolic compounds decreased drastically after cooking, with significantly lower retention in the black rice cultivar that had higher amylose content. DPPH radical-scavenging activity of black rice decreased after cooking. In contrast, metal-chelating activity increased significantly after cooking. Anthocyanins showed a high positive correlation with total phenolic compounds (r2 = 0.936) but a significant negative correlation with metal-chelating activity (r2 = 0.6107). CONCLUSION The results indicate that cooking degraded anthocyanins and other phenolic compounds, but with a concomitant increase in phenolics from possible degradation of anthocyanins, which resulted in the enhancement of metal-chelating activity.
Collapse
|
36
|
Kim GR, Jung ES, Lee S, Lim SH, Ha SH, Lee CH. Combined mass spectrometry-based metabolite profiling of different pigmented rice (Oryza sativa L.) seeds and correlation with antioxidant activities. Molecules 2014; 19:15673-86. [PMID: 25268721 PMCID: PMC6271636 DOI: 10.3390/molecules191015673] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 11/16/2022] Open
Abstract
Nine varieties of pigmented rice (Oryza sativa L.) seeds that were black, red, or white were used to perform metabolite profiling by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography (GC) TOF-MS, to measure antioxidant activities. Clear grouping patterns determined by the color of the rice seeds were identified in principle component analysis (PCA) derived from UPLC-Q-TOF-MS. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimer, proanthocyanidin trimer, apigenin-6-C-glugosyl-8-C-arabiboside, tricin-O-rhamnoside-O-hexoside, and lipids were identified as significantly different secondary metabolites. In PCA score plots derived from GC-TOF-MS, Jakwangdo (JKD) and Ilpoom (IP) species were discriminated from the other rice seeds by PC1 and PC2. Valine, phenylalanine, adenosine, pyruvate, nicotinic acid, succinic acid, maleic acid, malonic acid, gluconic acid, xylose, fructose, glucose, maltose, and myo-inositol were significantly different primary metabolites in JKD species, while GABA, asparagine, xylitol, and sucrose were significantly distributed in IP species. Analysis of antioxidant activities revealed that black and red rice seeds had higher activity than white rice seeds. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimers, proanthocyanidin trimers, and catechin were highly correlated with antioxidant activities, and were more plentiful in black and red rice seeds. These results are expected to provide valuable information that could help improve and develop rice-breeding techniques.
Collapse
Affiliation(s)
- Ga Ryun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Sarah Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Sun-Hyung Lim
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Sun-Hwa Ha
- Department of Genetic Engineering and Crop Biotech Institute, College of Life Sciences, Kyung Hee University, Suwon 446-701, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
37
|
Pereira-Caro G, Cros G, Yokota T, Crozier A. Phytochemical profiles of black, red, brown, and white rice from the Camargue region of France. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7976-86. [PMID: 23889299 DOI: 10.1021/jf401937b] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Secondary metabolites in black, red, brown, and white rice grown in the Camargue region of France were investigated using HPLC-PDA-MS(2). The main compounds in black rice were anthocyanins (3.5 mg/g), with cyanidin 3-O-glucoside and peonidin 3-O-glucoside predominating, followed by flavones and flavonols (0.5 mg/g) and flavan-3-ols (0.3 mg/g), which comprised monomeric and oligomeric constituents. Significant quantities of γ-oryzanols, including 24-methylenecycloartenol, campesterol, cycloartenol, and β-sitosterol ferulates, were also detected along with lower levels of carotenoids (6.5 μg/g). Red rice was characterized by a high amount of oligomeric procyanidins (0.2 mg/g), which accounted >60% of secondary metabolite content with carotenoids and γ-oryzanol comprising 26.7%, whereas flavones, flavonols and anthocyanins were <9%. Brown and white rice contained lower quantities of phytochemicals, in the form of flavones/flavonols (21-24 μg/g) and γ-oryzanol (12.3-8.2 μg/g), together with trace levels of the carotenoids lutein and zeaxanthin. Neither anthocyanins nor procyanidins were detected in brown and white rice. By describing the profile of the heterogeneous mixture of phytochemicals present in different rice varieties, this study provides a basis for defining the potential health effects related to pigmented and nonpigmented rice consumption by humans.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
38
|
Metabolic profiling and biological mechanisms of body fat reduction in mice fed the ethanolic extract of black-colored rice. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Phytochemical profile of a Japanese black-purple rice. Food Chem 2013; 141:2821-7. [PMID: 23871029 DOI: 10.1016/j.foodchem.2013.05.100] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 11/23/2022]
Abstract
Black-purple rice is becoming popular with health conscious food consumers. In the present study, the secondary metabolites in dehulled black-purple rice cv. Asamurasaki were analysed using HPLC-PDA-MS(2). The seeds contained a high concentration of seven anthocyanins (1400 μg/g fresh weight) with cyanidin-3-O-glucoside and peonidin-3-O-glucoside predominating. Five flavonol glycosides, principally quercetin-3-O-glucoside and quercetin-3-O-rutinoside, and flavones were detected at a total concentration of 189 μg/g. The seeds also contained 3.9 μg/g of carotenoids consisting of lutein, zeaxanthin, lycopene and β-carotene. γ-Oryzanol (279 μg/g) was also present as a mixture of 24-methylenecycloartenol ferulate, campesterol ferulate, cycloartenol ferulate and β-sitosterol ferulate. No procyanidins were detected in this variety of black-purple rice. The results demonstrate that the black-purple rice in the dehulled form in which it is consumed by humans contains a rich heterogeneous mixture of phytochemicals which may provide a basis for the potential health benefits, and highlights the possible use of the rice as functional food.
Collapse
|
40
|
Effect of genotype, environment and genotype-by-environment interaction on metabolite profiling in durum wheat (Triticum durum Desf.) grain. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2012.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|