1
|
Carcea M, Melloni S, Narducci V, Turfani V. Wheat Germ Agglutinin (WGA): Its Nature, Biological Role, Significance in Human Nutrition, and Possibility to Be Used as Marker of Whole-Grain Status in Wheat-Based Foods. Foods 2024; 13:2990. [PMID: 39335918 PMCID: PMC11431102 DOI: 10.3390/foods13182990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The growing scientific evidence on the health benefits of whole-grain food consumption has promoted the manufacturing of a great number of products differing in quality and content of whole-grain components. This is particularly true for commercial wheat-based products where it is not always clear how much whole wheat is present considering that in many cases, they are manufactured from reconstituted mill streams and that there is not a standardised globally accepted definition and metrics to objectively evaluate whole-grain status. Attempts have been made to assess the level of "wholegraininess" in wheat products by measuring specific constituents that correlate with different wheat tissues, especially those that are expected to be found in a true whole-grain wheat product. Wheat germ agglutinin (WGA), a small lectin protein present exclusively in the wheat-germ tissues, has been indicated by several scientists as one of these constituents and after founding that its level changes depending on the amount of germ found in a wheat flour, it has been indicated as a biomarker of whole-grain status for wheat products. In this review, the biochemistry of WGA, its methods of detection, and current knowledge on its possibility to be practically utilized as a reliable marker are critically discussed.
Collapse
Affiliation(s)
- Marina Carcea
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Sahara Melloni
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Valentina Narducci
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Valeria Turfani
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
2
|
Idaguko CA, Agoreyo G. Effect of Wheat ( Triticum aestivum Linn.) Diet on the Testes of Sprague-Dawley Rats. Balkan Med J 2024; 41:404-406. [PMID: 38984549 DOI: 10.4274/balkanmedj.galenos.2024.2024-2-67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Affiliation(s)
- Chika Anna Idaguko
- Department of Anatomy, Faculty of Basic Medical Sciences, Edo State University Uzairue, Edo State, Nigeria
| | - Gladys Agoreyo
- Department of Anatomy, Faculty of Basic Medical Sciences, Edo State University Uzairue, Edo State, Nigeria
| |
Collapse
|
3
|
Peña García VL, Di Chenna PH, Uhrig ML. Amphiphilic Low-Molecular-Weight Gelators Bearing β- S- N-Acetylglucosamine Linked to a Tartaric Acid Scaffold: Synthesis, Self-Assembly and Wheat Germ Agglutinin Binding. Gels 2023; 10:5. [PMID: 38275843 PMCID: PMC10815405 DOI: 10.3390/gels10010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The self-assembly of carbohydrate-based amphiphiles can lead to colloidal soft materials such as supramolecular gels featuring highly desirable characteristics like biodegradability and biocompatibility. The report herein presents the synthesis, characterization and supramolecular self-assembly, physical gelation and wheat lectin binding of two structurally related amphiphilic compounds having β-S-N-acetylglucosamine residues linked to a 2,3-diacyl-N,N'-dipropargylated-l-tartaric diamide. A 1-thio-β-N-acetyl-d-glucosamine precursor attached to a conveniently functionalized linker with an azido group was synthesized by means of a one-pot procedure followed by deprotection. A click reaction successfully led to the two amphiphiles, which differed in length of the fatty acid attached to the tartaric acid scaffold. Although both compounds are poorly soluble in water and organic solvents, the difference in terms of hydrophilic moieties provided them with distinct supramolecular gelation properties. While the presence of an octadecyl chain produced a hydrogelator, the dodecadecyl homologue would only form weak gels in DMSO. SEM and rheology experiments confirmed the characteristic fibrillar morphology and viscoelastic properties, in agreement with the presence of physical gels. Both amphiphiles were able to interact reversibly with wheat germ agglutinin (WGA), a lectin that specifically recognizes GlcNAc residues, indicating a potential use in the food industry, as a gluten sensitivity manager, as well as in health-related industries, for example, for drug delivery systems.
Collapse
Affiliation(s)
- Vicente Leafar Peña García
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, 3er piso, Pabellón 2, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina;
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)–Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)–Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Pablo Héctor Di Chenna
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, 3er piso, Pabellón 2, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina;
- Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)–Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - María Laura Uhrig
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, 3er piso, Pabellón 2, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina;
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)–Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
4
|
D’Amico V, Gänzle M, Call L, Zwirzitz B, Grausgruber H, D’Amico S, Brouns F. Does sourdough bread provide clinically relevant health benefits? Front Nutr 2023; 10:1230043. [PMID: 37545587 PMCID: PMC10399781 DOI: 10.3389/fnut.2023.1230043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
During the last decade, scientific interest in and consumer attention to sourdough fermentation in bread making has increased. On the one hand, this technology may favorably impact product quality, including flavor and shelf-life of bakery products; on the other hand, some cereal components, especially in wheat and rye, which are known to cause adverse reactions in a small subset of the population, can be partially modified or degraded. The latter potentially reduces their harmful effects, but depends strongly on the composition of sourdough microbiota, processing conditions and the resulting acidification. Tolerability, nutritional composition, potential health effects and consumer acceptance of sourdough bread are often suggested to be superior compared to yeast-leavened bread. However, the advantages of sourdough fermentation claimed in many publications rely mostly on data from chemical and in vitro analyzes, which raises questions about the actual impact on human nutrition. This review focuses on grain components, which may cause adverse effects in humans and the effect of sourdough microbiota on their structure, quantity and biological properties. Furthermore, presumed benefits of secondary metabolites and reduction of contaminants are discussed. The benefits claimed deriving from in vitro and in vivo experiments will be evaluated across a broader spectrum in terms of clinically relevant effects on human health. Accordingly, this critical review aims to contribute to a better understanding of the extent to which sourdough bread may result in measurable health benefits in humans.
Collapse
Affiliation(s)
- Vera D’Amico
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lisa Call
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Benjamin Zwirzitz
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heinrich Grausgruber
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Stefano D’Amico
- Institute for Animal Nutrition and Feed, AGES–Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Fred Brouns
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Ki H, Baek JS, Hawkes HJK, Kim YS, Hwang KY. Fermented Kamut Sprout Extract Decreases Cell Cytotoxicity and Increases the Anti-Oxidant and Anti-Inflammation Effect. Foods 2023; 12:foods12112107. [PMID: 37297352 DOI: 10.3390/foods12112107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Kamut sprouts (KaS) contain several biologically active compounds. In this study, solid-state fermentation using Saccharomyces cerevisiae and Latilactobacillus sakei was used to ferment KaS (fKaS-ex) for 6 days. The fKaS-ex showed a 26.3 mg/g dried weight (dw) and 46.88 mg/g dw of polyphenol and the β-glucan contents, respectively. In the Raw264.7 and HaCaT cell lines, the non-fermented KaS (nfKaS-ex) decreased cell viability from 85.3% to 62.1% at concentrations of 0.63 and 2.5 mg/mL, respectively. Similarly, the fKaS-ex decreased cell viability, but showed more than 100% even at 1.25 and 5.0 mg/mL concentrations, respectively. The anti-inflammatory effect of fKaS-ex also increased. At 600 µg/mL, the fKaS-ex exhibited a significantly higher ability to reduce cytotoxicity by suppressing COX-2 and IL-6 mRNA expressions as well as that for IL-1β mRNA. In summary, fKaS-ex exhibited significantly lower cytotoxicity and increased anti-oxidant and anti-inflammatory properties, indicating that fKaS-ex is beneficial for use in food and other industries.
Collapse
Affiliation(s)
- Hosam Ki
- Materials Science Research Institute, LABIO Co., Ltd., Seoul 08501, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Seok Baek
- Materials Science Research Institute, LABIO Co., Ltd., Seoul 08501, Republic of Korea
| | - Hye-Jin Kim Hawkes
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea
| | - Young Soo Kim
- Materials Science Research Institute, LABIO Co., Ltd., Seoul 08501, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Korea BioDefense Research Institute, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Nwaji AR, Arieri O, Anyang AS, Nguedia K, Abiade EB, Forcados GE, Oladipo OO, Makama S, Elisha IL, Ozele N, Gotep JG. Natural toxins and One Health: a review. SCIENCE IN ONE HEALTH 2022; 1:100013. [PMID: 39076609 PMCID: PMC11262277 DOI: 10.1016/j.soh.2023.100013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/28/2023] [Indexed: 07/31/2024]
Abstract
Background The One Health concept considers the interconnectivity, interactions and interdependence of humans, animals and the environment. Humans, animals and other organisms are constantly exposed to a wide range of natural toxins present in the environment. Thus, there is growing concern about the potential detrimental effects that natural toxins could pose to achieve One Health. Interestingly, alkaloids, steroids and bioactive peptides obtained from natural toxins could be used for the development of therapeutic agents. Methodology Our literature search focused on the following keywords; toxins, One Health, microbial toxins, mycotoxins, phytotoxins, phycotoxins, insect toxins and toxin effects. Google Scholar, Science Direct, PubMed and Web of Science were the search engines used to obtain primary databases. We chose relevant full-text articles and review papers published in English language only. The research was done between July 2022 and January 2023. Results Natural toxins are poisonous substances comprising bioactive compounds produced by microorganisms, invertebrates, plants and animals. These compounds possess diverse structures and differ in biological function and toxicity, posing risks to human and animal health through the contamination of the environment, causing disease or death in certain cases. Findings from the articles reviewed revealed that effects of natural toxins on animals and humans gained more attention than the impact of natural toxins on the environment and lower organisms, irrespective of the significant roles that lower organisms play to maintain ecosystem balance. Also, systematic approaches for toxin control in the environment and utilization for beneficial purposes are inadequate in many regions. Remarkably, bioactive compounds present in natural toxins have potential for the development of therapeutic agents. These findings suggest that global, comprehensive and coordinated efforts are required for improved management of natural toxins through an interdisciplinary, One Health approach. Conclusion Adopting a One Health approach is critical to addressing the effects of natural toxins on the health of humans, animals and the environment.
Collapse
Affiliation(s)
- Azubuike Raphael Nwaji
- Department of Physiology, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Onikisateinba Arieri
- Department of Industrial Chemistry and Petrochemical Technology, Faculty of Science Laboratory, University of Portharcourt, Nigeria
| | | | - Kaze Nguedia
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Cameroon
| | | | | | | | - Sunday Makama
- Biochemistry Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Ishaku Leo Elisha
- Drug Development Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Nonyelim Ozele
- Biochemistry Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Jurbe Gofwan Gotep
- Drug Development Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| |
Collapse
|
7
|
Reprograming of Gene Expression of Key Inflammatory Signaling Pathways in Human Peripheral Blood Mononuclear Cells by Soybean Lectin and Resveratrol. Int J Mol Sci 2022; 23:ijms232112946. [DOI: 10.3390/ijms232112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammation is linked to several human diseases like microbial infections, cancer, heart disease, asthma, diabetes, and neurological disorders. We have shown that the prototype inflammatory agonist LPS modulates the activity of Ubiquitin-Proteasome System (UPS) and regulates transcription factors such as NF-κB, leading to inflammation, tolerance, hypoxia, autophagy, and apoptosis of cells. We hypothesized that proteasome modulators resveratrol and soybean lectin would alter the gene expression of mediators involved in inflammation-induced signaling pathways, when administered ex vivo to human peripheral blood mononuclear blood cells (PBMCs) obtained from normal healthy controls. To test this hypothesis, analysis of RNA derived from LPS-treated human PBMCs, with or without resveratrol and soybean lectin, was carried out using Next Generation Sequencing (NGS). Collectively, the findings described herein suggest that proteasome modulators, resveratrol (proteasome inhibitor) and lectins (proteasome activator), have a profound capacity to modulate cytokine expression in response to proteasome modulators, as well as expression of mediators in multiple signaling pathways in PBMCs of control subjects. We show for the first-time that resveratrol downregulates expression of mediators involved in several key signaling pathways IFN-γ, IL-4, PSMB8 (LMP7), and a subset of LPS-induced genes, while lectins induced IFN-γ, IL-4, PSMB8, and many of the same genes as LPS that are important for innate and adaptive immunity. These findings suggest that inflammation may be influenced by common dietary components and this knowledge may be used to prevent or reverse inflammation-based diseases.
Collapse
|
8
|
Samoilova NA, Krayukhina MA, Vyshivannaya OV, Blagodatskikh IV. Investigation of the Binding of Lectins with Polymer Glycoconjugates and the Glycoconjugates Containing Silver Nanoparticles by Means of Optical Spectroscopy and Light Scattering. POLYMER SCIENCE. SERIES A, CHEMISTRY, PHYSICS 2022; 64:277-289. [PMID: 35669311 PMCID: PMC9149672 DOI: 10.1134/s0965545x22700092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
The synthesis of glycoconjugates, lectin-specific polymers containing a carbohydrate ligand (spacered residue of N-acetyl-D-glucosamine, β-N-Gly-GlcNAc) has been carried out. Glyconanoparticles (glycol-NPs) containing a label detectable by means of spectrophotometry, silver nanoparticles, have been prepared on the basis of the glycoconjugates. Copolymers of maleic anhydride with ethylene or N-vinylpyrrolidone have been used as a carrier to introduce the carbohydrate ligand and a stabilizer of silver nanoparticles. Solutions of the glycoconjugates and the silver glyconanoparticles have been characterized by means of light scattering, UV-visible spectroscopy, and TEM. The interaction of the obtained glycoconjugates and silver glyconanoparticles with N-acetyl-D-glucosamine-specific lectins of Solanum tuberosum agglutinin (STA) and wheat germ agglutinin (WGA) has been investigated by means of light scattering and UV-visible spectro-scopy. The data obtained via these physical methods using the carbohydrate-containing derivatives labeled with silver nanoparticles have been in agreement. It has been shown that the glycoconjugates and silver glyconanoparticles based on more hydrophilic copolymer of maleic acid with N-vinylpyrrolidone are more sensitive than the respective systems based on more hydrophobic copolymer of maleic acid with ethylene. It has been also shown that the considered systems are more sensitive to the STA lectin than to the WGA lectin. The silver glyconanoparticles have allowed more accurate and reliable detection of the lectins by means of light scattering, as compared to the glycopolymer.
Collapse
Affiliation(s)
- N. A. Samoilova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| | - M. A. Krayukhina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| | - O. V. Vyshivannaya
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| | - I. V. Blagodatskikh
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
9
|
Armeli F, Bonucci A, Maggi E, Pinto A, Businaro R. Mediterranean Diet and Neurodegenerative Diseases: The Neglected Role of Nutrition in the Modulation of the Endocannabinoid System. Biomolecules 2021; 11:biom11060790. [PMID: 34073983 PMCID: PMC8225112 DOI: 10.3390/biom11060790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative disorders are a widespread cause of morbidity and mortality worldwide, characterized by neuroinflammation, oxidative stress and neuronal depletion. The broad-spectrum neuroprotective activity of the Mediterranean diet is widely documented, but it is not yet known whether its nutritional and caloric balance can induce a modulation of the endocannabinoid system. In recent decades, many studies have shown how endocannabinoid tone enhancement may be a promising new therapeutic strategy to counteract the main hallmarks of neurodegeneration. From a phylogenetic point of view, the human co-evolution between the endocannabinoid system and dietary habits could play a key role in the pro-homeostatic activity of the Mediterranean lifestyle: this adaptive balance among our ancestors has been compromised by the modern Western diet, resulting in a “clinical endocannabinoid deficiency syndrome”. This review aims to evaluate the evidence accumulated in the literature on the neuroprotective, immunomodulatory and antioxidant properties of the Mediterranean diet related to the modulation of the endocannabinoid system, suggesting new prospects for research and clinical interventions against neurodegenerative diseases in light of a nutraceutical paradigm.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessio Bonucci
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
- Correspondence:
| |
Collapse
|
10
|
Menéndez-Rey A, González-Martos R, Ye P, Quiroz-Troncoso J, Alegría-Aravena N, Sánchez-Díez M, Maestu-Unturbe C, Bensadon-Naeder L, Ramírez-Castillejo C. Quantification of lectins in Synsepalum dulcificum and comparison with reference foods. Food Chem 2021; 352:129341. [PMID: 33657483 DOI: 10.1016/j.foodchem.2021.129341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
A healthy life means a balance between physical activity and a diet rich in fruits and vegetables, however, some plant-based foods can have certain adverse effects due to the presence of anti-nutritional factors, such as lectins, capable of binding molecules and preventing their normal assimilation. The level of lectins in Synsepalum dulcificum fruit was determined by hemagglutination assays in human blood, and its comparison with foods characterized as having high and low lectin content. The relative hemagglutinating activity of berries from Synsepalum dulcificum compared to our positive high lectin content food reference (Pinto bean) corresponds to 3.13-6.25%, representing safe levels for nutritional food.
Collapse
Affiliation(s)
- Adrián Menéndez-Rey
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; Medicinal Gardens S.L (Baïa Food), 28008 Madrid, Spain.
| | - Raquel González-Martos
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; Medicinal Gardens S.L (Baïa Food), 28008 Madrid, Spain
| | - Peng Ye
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; Medicinal Gardens S.L (Baïa Food), 28008 Madrid, Spain
| | - Josefa Quiroz-Troncoso
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; Medicinal Gardens S.L (Baïa Food), 28008 Madrid, Spain
| | - Nicolás Alegría-Aravena
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Marta Sánchez-Díez
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Ceferino Maestu-Unturbe
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
| | | | - Carmen Ramírez-Castillejo
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain.
| |
Collapse
|
11
|
Degradation of Wheat Germ Agglutinin during Sourdough Fermentation. Foods 2021; 10:foods10020340. [PMID: 33562539 PMCID: PMC7915439 DOI: 10.3390/foods10020340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Non Celiac Wheat Sensitivity (NCWS) is an intolerance to wheat products and individuals with NCWS often adhere to a gluten free diet. However, gluten free diets are often associated with a reduced sensory and nutritional quality. Wheat Germ Agglutinin (WGA) is one of the wheat components linked to NCWS. This study explored the fate of WGA during sourdough fermentation. To assess the role of thiol-exchange reactions and proteolysis, sourdoughs were fermented with Fructilactobacillus sanfranciscensis DSM20451, F. sanfranciscensis DSM20451ΔgshR, which lacks glutathione reductase activity, or Latilactobacillus sakei TMW1.22, with or without addition of fungal protease. The conversion of WGA was determined by size exclusion chromatography of fluorescence-labeled WGA, and by enzyme-linked immunosorbent assay (ELISA). Commercial whole wheat flour contained 6.6 ± 0.7 μg WGA/g. After fermentation with L. sakei TMW1.22 and F. sanfranciscensis DSM20451, the WGA content was reduced (p < 0.05) to 2.7 ± 0.4 and 4.3 ± 0.3 μg WGA/g, respectively, while the WGA content remained unchanged in chemically acidified controls or in doughs fermented with F. sanfranciscensis DSM20451ΔgshR. Protease addition did not affect the WGA content. In conclusion, the fate of WGA during sourdough fermentation relates to thiol-exchange reactions but not to proteolytic degradation.
Collapse
|
12
|
He S, Zhao J, Zhang Y, Zhu Y, Li X, Cao X, Ye Y, Li J, Sun H. Effects of Low-pH Treatment on the Allergenicity Reduction of Black Turtle Bean ( Phaseolus vulgaris L.) Lectin and Its Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1379-1390. [PMID: 33464885 DOI: 10.1021/acs.jafc.0c06524] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A high content of potentially allergenic lectin in Phaseolus vulgaris L. beans is of increasing health concerns; however, understanding of the protein allergenicity mechanism on the molecular basis is scarce. In the present study, low-pH treatments were applied to modify black turtle bean lectin allergen, and a sensitization procedure was performed using the BALB/c mice for the allergenicity evaluation, while the conformational changes were monitored by the spectral analyses and the details were explored by the molecular dynamics simulation. Much milder anaphylactic responses were observed in BALB/c mice experiments. At the molecular level, the protein was unfolded in low acidic environments because of protonation, and α-helix was reduced with the exposure of trypsin cleavage sites, especially the improvement of protease accessibility for Lys121, 134, and 157 in the B cell epitope structural alterations. These results indicate that a low-pH treatment might be an efficient method to improve the safety of legume protein consumption.
Collapse
Affiliation(s)
- Shudong He
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 255003, Shandong, PR China
| | - Yi Zhang
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3 V9, Canada
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xingjiang Li
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Xiaodong Cao
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Yongkang Ye
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Jing Li
- Department of Biological and Environmental Engineering, Hefei University, Hefei 230009, Anhui PR China
| | - Hanju Sun
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, PR China
| |
Collapse
|
13
|
Sharma A. A review on traditional technology and safety challenges with regard to antinutrients in legume foods. Journal of Food Science and Technology 2020; 58:2863-2883. [PMID: 34294949 DOI: 10.1007/s13197-020-04883-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/09/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
A large section of the human population relies on legumes as a staple food. Legumes are a rich source of nutrients and possess several health-related beneficial properties. However, the nutritional quality of legumes is challenged by the presence of a considerable amount of antinutrients. Consumption of inadequately processed legumes might affect normal metabolism and cause adverse human health-related effects. Effective processing becomes necessary to reduce these antinutritional factors before consumption. Optimizing the processing variables during preparation of legume-based traditional foods by using response surface methodology could be a valuable option to reduce antinutrients. The present review focuses on the efficacy of traditional household-scale processing unit operations vis-à-vis the reduction of antinutrients. Optimally prepared products should ensure meeting the consumer demand of improved, healthy, and more nutritious and safe foods. Modeling-based optimization approach will be helpful to define best practices at the small-, medium-, and large scale production alike. It should contribute towards effective utilization of legume resources, and to alleviate malnutrition and associated diseases world-wide.
Collapse
Affiliation(s)
- Anand Sharma
- Present Address: Department of Botany, Shri Ramasamy Memorial University Sikkim, 5th Mile, Tadong, Sikkim 737 102 India.,Microbiology Laboratory, Department of Botany, University of North Bengal, Siliguri, 734013 India
| |
Collapse
|
14
|
Is There Such a Thing as "Anti-Nutrients"? A Narrative Review of Perceived Problematic Plant Compounds. Nutrients 2020; 12:nu12102929. [PMID: 32987890 PMCID: PMC7600777 DOI: 10.3390/nu12102929] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Plant-based diets are associated with reduced risk of lifestyle-induced chronic diseases. The thousands of phytochemicals they contain are implicated in cellular-based mechanisms to promote antioxidant defense and reduce inflammation. While recommendations encourage the intake of fruits and vegetables, most people fall short of their target daily intake. Despite the need to increase plant-food consumption, there have been some concerns raised about whether they are beneficial because of the various ‘anti-nutrient’ compounds they contain. Some of these anti-nutrients that have been called into question included lectins, oxalates, goitrogens, phytoestrogens, phytates, and tannins. As a result, there may be select individuals with specific health conditions who elect to decrease their plant food intake despite potential benefits. The purpose of this narrative review is to examine the science of these ‘anti-nutrients’ and weigh the evidence of whether these compounds pose an actual health threat.
Collapse
|
15
|
Affiliation(s)
- Khara Lucius
- Khara Lucius, ND, FABNO, is a naturopathic doctor at the Center for Integrative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Sourdough Fermentation Degrades Wheat Alpha-Amylase/Trypsin Inhibitor (ATI) and Reduces Pro-Inflammatory Activity. Foods 2020; 9:foods9070943. [PMID: 32708800 PMCID: PMC7404469 DOI: 10.3390/foods9070943] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
The ingestion of gluten-containing foods can cause wheat-related disorders in up to 15% of wheat consuming populations. Besides the role of gluten, α-amylase/trypsin inhibitors (ATI) have recently been identified as inducers of an innate immune response via toll-like receptor 4 in celiac disease and non-celiac wheat sensitivity. ATI are involved in plant self-defense against insects and possibly in grain development. Notably, they are largely resistant to gastrointestinal proteases and heat, and their inflammatory activity affects not only the intestine, but also peripheral organs. The aim of this study was to understand the changes of ATI throughout the sourdough and yeast-fermented bread-making processes. ATI tetramers were isolated, fluorescein-labelled, and added to a mini-dough bread-making system. When the pH decreased below 4.0 in sourdough fermentation, the ATI tetramers were degraded due to the activation of aspartic proteases, whilst in yeast fermentation, ATI tetramers remained intact. The amylase inhibitory activity after sourdough fermentation decreased significantly, while the concentration of free thiol groups increased. The glutathione reductase activity of Fructilactobacillus sanfranciscensis did not contribute to the reduction of ATI tetramers. Compared to the unfermented wheat, sourdough fermentation was able to decrease the release of pro-inflammatory cytokines monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor alpha (TNF-α) in quantitative ATI extracts added to the human monocytic cell line THP-1. The current data suggest that sourdough fermentation can degrade ATI structure and bioactivity, and point to strategies to improve product development for wheat sensitivity patients.
Collapse
|
17
|
Gänzle MG. Food fermentations for improved digestibility of plant foods – an essential ex situ digestion step in agricultural societies? Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Sharma N, Bhatia S, Chunduri V, Kaur S, Sharma S, Kapoor P, Kumari A, Garg M. Pathogenesis of Celiac Disease and Other Gluten Related Disorders in Wheat and Strategies for Mitigating Them. Front Nutr 2020; 7:6. [PMID: 32118025 PMCID: PMC7020197 DOI: 10.3389/fnut.2020.00006] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Wheat is a major cereal crop providing energy and nutrients to the billions of people around the world. Gluten is a structural protein in wheat, that is necessary for its dough making properties, but it is responsible for imparting certain intolerances among some individuals, which are part of this review. Most important among these intolerances is celiac disease, that is gluten triggered T-cell mediated autoimmune enteropathy and results in villous atrophy, inflammation and damage to intestinal lining in genetically liable individuals containing human leukocyte antigen DQ2/DQ8 molecules on antigen presenting cells. Celiac disease occurs due to presence of celiac disease eliciting epitopes in gluten, particularly highly immunogenic alpha-gliadins. Another gluten related disorder is non-celiac gluten-sensitivity in which innate immune-response occurs in patients along with gastrointestinal and non-gastrointestinal symptoms, that disappear upon removal of gluten from the diet. In wheat allergy, either IgE or non-IgE mediated immune response occurs in individuals after inhalation or ingestion of wheat. Following a life-long gluten-free diet by celiac disease and non-celiac gluten-sensitivity patients is very challenging as none of wheat cultivar or related species stands safe for consumption. Hence, different molecular biology, genetic engineering, breeding, microbial, enzymatic, and chemical strategies have been worked upon to reduce the celiac disease epitopes and the gluten content in wheat. Currently, only 8.4% of total population is affected by wheat-related issues, while rest of population remains safe and should not remove wheat from the diet, based on false media coverage.
Collapse
Affiliation(s)
- Natasha Sharma
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Simran Bhatia
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Venkatesh Chunduri
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Satveer Kaur
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Saloni Sharma
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Payal Kapoor
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Anita Kumari
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Monika Garg
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
19
|
Ryva B, Zhang K, Asthana A, Wong D, Vicioso Y, Parameswaran R. Wheat Germ Agglutinin as a Potential Therapeutic Agent for Leukemia. Front Oncol 2019; 9:100. [PMID: 30847305 PMCID: PMC6393371 DOI: 10.3389/fonc.2019.00100] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/04/2019] [Indexed: 01/22/2023] Open
Abstract
Dietary lectins are carbohydrate-binding proteins found in food sources. We used a panel of seven dietary lectins to analyze cytotoxicity against hematological cancers. Wheat germ agglutinin (WGA), even at low doses, demonstrated maximum toxicity toward acute myeloid leukemia (AML) cells. Using AML cell lines, we show time- and dose-dependent killing by WGA. We also show that low doses of WGA kills primary patient AML cells, irrespective of subtype, with no significant toxicity to normal cells. WGA caused AML cell agglutination, but failed to agglutinate RBC's at this dose. WGA, primarily, binds to N-acetyl-D-glucosamine (GlcNAc) and is also reported to interact with sialic-acid-containing glycoconjugates and oligosaccharides. After neuraminidase pre-treatment, which catalyzes the hydrolysis of terminal sialic acid residues, AML cells were less sensitive to WGA-induced cell death. AML cells were also not sensitive to succinyl-WGA, which does not react with sialic acid. Incubation with LEL lectin, which recognizes GlcNAc or SNA, which binds preferentially to sialic acid attached to terminal galactose in α-2,6 and to a lesser degree α-2,3 linkage, did not alter AML cell viability. These data indicate that WGA-induced AML cell death is dependent on both GlcNAc binding and interaction with sialic acids. We did not observe any in vitro or in vivo toxicity of WGA toward normal cells at the concentrations tested. Finally, low doses of WGA injection demonstrated significant in vivo toxicity toward AML cells, using xenograft mouse model. Thus, WGA is a potential candidate for leukemia therapy.
Collapse
Affiliation(s)
- Bradley Ryva
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Keman Zhang
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Abhishek Asthana
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Derek Wong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Yorleny Vicioso
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Reshmi Parameswaran
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
20
|
Low-pH induced structural changes, allergenicity and in vitro digestibility of lectin from black turtle bean (Phaseolus vulgaris L.). Food Chem 2019; 283:183-190. [PMID: 30722859 DOI: 10.1016/j.foodchem.2018.12.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 11/23/2022]
Abstract
Lectin was incubated in corresponding acidic buffers (pH 1.0-3.5) for a certain period (0.5, 1, 2, 4, 8, 12 and 24 h) at 25 °C. Low-pH induced changes in structure, allergenicity and in vitro digestibility of lectin from black turtle bean (Phaseolus vulgaris L.) were investigated in the present study. Results indicated that the alteration in structure was a progressive unfolding process mainly depending on pH environment, and the treated lectin attained a stable state at 8 h. Electrophoretic, dynamic light scattering (DLS) and size exclusion chromatography (SEC) analyses suggested that lectin monomers appeared in the solutions of pH < 2.0. Differential scanning calorimetry (DSC) confirmed that thermal stability of lectin weakened in low pH environments. Furthermore, ELISA and in vitro digestion assay showed allergenicity and digestibility significantly decreased with the structural alterations. These results showed low-pH treatments have great potential to reduce the damage of legumes protein consumption.
Collapse
|
21
|
Wang K, Liu C, Hou Y, Zhou H, Wang X, Mai K, He G. Differential Apoptotic and Mitogenic Effects of Lectins in Zebrafish. Front Endocrinol (Lausanne) 2019; 10:356. [PMID: 31231312 PMCID: PMC6560201 DOI: 10.3389/fendo.2019.00356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/20/2019] [Indexed: 01/06/2023] Open
Abstract
Plant lectins represent a major group of anti-nutritional factors that can be toxic to human and animals. However, the mechanisms by which lectins regulate cell fates are not well-understood. In the present study, the cellular and molecular impacts of three common lectins, agglutinins from wheat germ [wheat germ agglutinin (WGA)], soybean [soybean agglutinin (SBA)], and peanut [peanut agglutinin (PNA)] were examined in zebrafish embryo and liver cells. WGA and SBA were found to induce cell apoptosis both in vitro and in vivo, while PNA stimulated cell proliferation. WGA and SBA reduced levels of B cell lymphoma-2 (Bcl-2), phosphorylation of Bcl-2-associated death promoter (Bad), cyclin-dependent kinase 4 (Cdk4), and phosphorylation of the retinoblastoma (Rb). WGA and SBA also inhibited the activities of cell survival pathways including protein kinase B (Akt), extracellular signal-regulated protein kinases 1 and 2 (Erk1/2), and target of rapamycin (Tor). Furthermore, WGA and SBA shifted the cellular metabolism characterized by reduced expression of glucose-6-phosphate dehydrogenase (g6pd) and increased expression of glutamine synthetase (glul) and glutamate dehydrogenase (glud). However, PNA showed the opposite effects toward these molecular markers compared to those of WGA and SBA. Therefore, our results revealed some plant lectins (WGA and SBA) were toxic while the other (PNA) was mitogenic. Further characterization of the distinct functions of individual lectins should be valuable for both nutrition and other potential applications.
Collapse
Affiliation(s)
- Kaidi Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chengdong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yiying Hou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Huihui Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xuan Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Gen He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Gen He
| |
Collapse
|
22
|
Trends in the Use of Plant Non-Starch Polysaccharides within Food, Dietary Supplements, and Pharmaceuticals: Beneficial Effects on Regulation and Wellbeing of the Intestinal Tract. Sci Pharm 2018. [DOI: 10.3390/scipharm86040049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As the demand for healthy products targeted to prevent or ameliorate bowel disease and digestive disorders of the intestinal tract is increasing, this review describes non-starch polysaccharides, such as β-glucan, arabinoxylan, galactomannan, fructan, and heteropolysaccarides from mucilages, as useful sources for adequate and tailor-made products aimed for regulation of the colon and wellbeing effects on the gut microbiota. Their monosaccharide composition, structure, molecular dimensions, physicochemical characteristics and growth stimulation of lactobacilli and bifidobacteria in the gut microbiota is reported. Arabinoxylan from wheat and rye grains is discussed as an ingredient for gluten and lectin-free bread and baked goods. Galactomannans from legumes and their partially hydrolysed products are presented as sources for specific healthy products against bowel disease and digestive discomfort. Commercial fructan products obtained from inulin, fructan of agave, and fructooligosaccharides are discussed in detail as a selective substrate for fermentation by health-promoting bacteria in the colon, such as lactobacilli and bifidobacteria. Structurally different heteropolysaccharides from mucilages of traditional medicinal plants, such as seeds from psyllium, flax, chan, chia, and basil or cladodes from Opuntia spp., are discussed as useful sources of dietary fibre, with prebiotic characteristics and digestive regulation in the intestinal tract as well.
Collapse
|
23
|
Sharma A, Kumari S, Nout MJR, Sarkar PK. Preparation of antinutrients-reduced dhokla using response surface process optimisation. Journal of Food Science and Technology 2018; 55:2048-2058. [PMID: 29892105 DOI: 10.1007/s13197-018-3119-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/30/2023]
Abstract
Dhokla, a popular indigenous savoury dish of India, is prepared by soaking bengalgram dal and rice, grinding separately, mixing the batters, and spontaneously fermenting and steaming of mixed batter. Central composite rotatable response surface designs for soaking, fermentation and steaming at five-level combinations were used for optimising preparation of dhokla to achieve reduced contents of antinutrients. Optimum soaking of bengalgram dal (dal-water ratio of 1:5 w/w, pH 7.0, 23 °C, 20 h) and rice (rice-water ratio of 1:5 w/w, pH 5.6, 16 °C, 18 h) resulted in reduced levels of all the antinutrients, except total biogenic amines in rice. Fermentation of dal-rice (3:1 v/v) mixed batter under optimum condition (added NaCl of 8 g/kg, 32 °C, 18 h) further reduced their levels, but total biogenic amines content was enhanced. However, optimum steaming of dal-rice mixed fermented batter for 20 min was effective in reducing all the tested antinutrients. In dhokla, the content of tannins, phytic acid and total biogenic amines reduced by 100, 94 and 20%, respectively; trypsin inhibitor and haemagglutinating activities reduced by 92 and 100%, respectively, over raw ingredients. The optimally prepared product (dhokla) ranked "excellent" in terms of overall sensory quality.
Collapse
Affiliation(s)
- Anand Sharma
- 1Microbiology Laboratory, Department of Botany, University of North Bengal, Siliguri, 734 013 India
| | - Sarita Kumari
- 1Microbiology Laboratory, Department of Botany, University of North Bengal, Siliguri, 734 013 India
| | - Martinus J R Nout
- 2Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Prabir K Sarkar
- 1Microbiology Laboratory, Department of Botany, University of North Bengal, Siliguri, 734 013 India
| |
Collapse
|
24
|
Rogerson D. Vegan diets: practical advice for athletes and exercisers. J Int Soc Sports Nutr 2017; 14:36. [PMID: 28924423 PMCID: PMC5598028 DOI: 10.1186/s12970-017-0192-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/03/2017] [Indexed: 02/07/2023] Open
Abstract
With the growth of social media as a platform to share information, veganism is becoming more visible, and could be becoming more accepted in sports and in the health and fitness industry. However, to date, there appears to be a lack of literature that discusses how to manage vegan diets for athletic purposes. This article attempted to review literature in order to provide recommendations for how to construct a vegan diet for athletes and exercisers. While little data could be found in the sports nutrition literature specifically, it was revealed elsewhere that veganism creates challenges that need to be accounted for when designing a nutritious diet. This included the sufficiency of energy and protein; the adequacy of vitamin B12, iron, zinc, calcium, iodine and vitamin D; and the lack of the long-chain n-3 fatty acids EPA and DHA in most plant-based sources. However, via the strategic management of food and appropriate supplementation, it is the contention of this article that a nutritive vegan diet can be designed to achieve the dietary needs of most athletes satisfactorily. Further, it was suggested here that creatine and β-alanine supplementation might be of particular use to vegan athletes, owing to vegetarian diets promoting lower muscle creatine and lower muscle carnosine levels in consumers. Empirical research is needed to examine the effects of vegan diets in athletic populations however, especially if this movement grows in popularity, to ensure that the health and performance of athletic vegans is optimised in accordance with developments in sports nutrition knowledge.
Collapse
Affiliation(s)
- David Rogerson
- Academy of Sport and Physical Activity, Sheffield Hallam University, S10 2BP, Sheffield, UK
| |
Collapse
|
25
|
Ismaya WT, Efthyani A, Tjandrawinata RR, Rachmawati H. Biological responses in Balb/c mice after long-term parenteral administration of the light subunit of mushroom tyrosinase. J Biochem Mol Toxicol 2017; 31. [PMID: 28700109 DOI: 10.1002/jbt.21958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022]
Abstract
Light subunit of mushroom tyrosinase (LSMT) is a protein of unknown function from mushroom Agaricus bisporus that has been demonstrated to permeate through rat intestine ex vivo. Thus, it can be absorbed in the intestine, thereby holding a promise as a drug carrier for oral administration, similar to HA-33 protein from botulinum, one of the closest structural homologs of LSMT. However, the safety of LSMT should be ensured prior to its use. Here, we described biological response of LSMT upon weekly intraperitoneal administration of 50 μg/day to the Balb/c mice for 12 weeks. Motoric and behavior profiles, as well as the index of main organs (liver, spleen, lung, heart, and kidney), and body weight, were not significantly changed as compared with the control group. Also, no IgG was detected in the serum. The results suggest that LSMT is safe for further development.
Collapse
Affiliation(s)
- Wangsa T Ismaya
- Dexa Laboratories of Biomolecular Sciences, JABABEKA II Industrial Estate, Cikarang, 17550, Indonesia
| | - Alida Efthyani
- School of Pharmacy, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Raymond R Tjandrawinata
- Dexa Laboratories of Biomolecular Sciences, JABABEKA II Industrial Estate, Cikarang, 17550, Indonesia
| | - Heni Rachmawati
- School of Pharmacy, Institut Teknologi Bandung, Bandung, 40132, Indonesia.,Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
26
|
He S, Simpson BK, Sun H, Ngadi MO, Ma Y, Huang T. Phaseolus vulgaris lectins: A systematic review of characteristics and health implications. Crit Rev Food Sci Nutr 2017; 58:70-83. [PMID: 26479307 DOI: 10.1080/10408398.2015.1096234] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Legume lectins are carbohydrate-binding proteins of non-immune origin. Significant amounts of lectins have been found in Phaseolus vulgaris beans as far back as in the last century; however, many questions about their potential biological roles still remain obscure. Studies have shown that lectins are anti-nutritional factors that can cause intestinal disorders. Owing to their ability to act as toxic allergens and hemagglutinins, the Phaseolus vulgaris lectins are of grave concern for human health and safety. Nonetheless, their potential beneficial health effects, such as anti-cancer, anti-human immunodeficiency virus (anti-HIV), anti-microbial infection, preventing mucosal atrophy, reducing type 2 diabetes and obesity, promoting nutrients absorption and targeting drugs, are of immense interest. The significance of Phaseolus vulgaris lectins in biological researches and the potential biomedical applications have placed tremendous emphasis on the development of purification strategies to obtain the protein in pure and stable forms. These purification strategies entail considerations such as effects of proteolysis, heating, gamma radiation, and high-hydrostatic-pressure that can have crucial outcomes in either eliminating or improving bioactivities of the lectins. Thus, up-to-date research findings of Phaseolus vulgaris lectins on different aspects such as anti-nutritional and health impacts, purification strategies and novel processing trends, are systematically reviewed.
Collapse
Affiliation(s)
- Shudong He
- a School of Biotechnology and Food Engineering , Hefei University of Technology , Hefei , Anhui , China.,b School of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China.,c Department of Food Science and Agricultural Chemistry , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Benjamin K Simpson
- c Department of Food Science and Agricultural Chemistry , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Hanju Sun
- a School of Biotechnology and Food Engineering , Hefei University of Technology , Hefei , Anhui , China
| | - Michael O Ngadi
- d Department of Bioresource Engineering , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Ying Ma
- b School of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China
| | - Tiemin Huang
- e Advanced Electrophoresis Solutions Ltd. , Cambridge , Ontario , Canada
| |
Collapse
|
27
|
Seleet FL, Assem FM, Abd El-Gawad MAM, Dabiza NM, Abd El-Salam MH. Development of a novel milk-based fermented product fortified with wheat germ. INT J DAIRY TECHNOL 2016. [DOI: 10.1111/1471-0307.12241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Faten L Seleet
- Dairy Department; National Research Centre; El-Behos St. Dokki Cairo Egypt
| | - Fayza M Assem
- Dairy Department; National Research Centre; El-Behos St. Dokki Cairo Egypt
| | | | - Nadia M Dabiza
- Dairy Department; National Research Centre; El-Behos St. Dokki Cairo Egypt
| | | |
Collapse
|
28
|
M. Abbas H, M.S. Husse A, L. Seleet F, M. Bayoumi H, Abd El-Azi M. Quality of some Dairy By-products Supplemented with Wheat Germ as Functional Beverages. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ijds.2015.266.277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Stutz K, Kaech A, Aebi M, Künzler M, Hengartner MO. Disruption of the C. elegans Intestinal Brush Border by the Fungal Lectin CCL2 Phenocopies Dietary Lectin Toxicity in Mammals. PLoS One 2015; 10:e0129381. [PMID: 26057124 PMCID: PMC4461262 DOI: 10.1371/journal.pone.0129381] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022] Open
Abstract
Lectins are non-immunoglobulin carbohydrate-binding proteins without enzymatic activity towards the bound carbohydrates. Many lectins of e.g. plants or fungi have been suggested to act as toxins to defend the host against predators and parasites. We have previously shown that the Coprinopsis cinerea lectin 2 (CCL2), which binds to α1,3-fucosylated N-glycan cores, is toxic to Caenorhabditis elegans and results in developmental delay and premature death. In this study, we investigated the underlying toxicity phenotype at the cellular level by electron and confocal microscopy. We found that CCL2 directly binds to the intestinal apical surface and leads to a highly damaged brush border with loss of microvilli, actin filament depolymerization, and invaginations of the intestinal apical plasma membrane through gaps in the terminal web. We excluded several possible toxicity mechanisms such as internalization and pore-formation, suggesting that CCL2 acts directly on intestinal apical plasma membrane or glycocalyx proteins. A genetic screen for C. elegans mutants resistant to CCL2 generated over a dozen new alleles in bre 1, ger 1, and fut 1, three genes required for the synthesis of the sugar moiety recognized by CCL2. CCL2-induced intestinal brush border defects in C. elegans are similar to the damage observed previously in rats after feeding the dietary lectins wheat germ agglutinin or concanavalin A. The evolutionary conserved reaction of the brush border between mammals and nematodes might allow C. elegans to be exploited as model organism for the study of dietary lectin-induced intestinal pathology in mammals.
Collapse
Affiliation(s)
- Katrin Stutz
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Markus Aebi
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Markus Künzler
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|