1
|
Li Z, Cao Y, Zhou M. Effects of acidification by traditional Jiaozi starter and neutralization with alkali (Na 2CO 3) on whole wheat dough properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6149-6156. [PMID: 38445560 DOI: 10.1002/jsfa.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Whole wheat steamed bread has been recommended for its potential nutritional benefits to human health. Given the positive role of both organic acid and alkali in improving dough development and product quality, the present study investigated the effects of neutralization by addition of alkali (Na2CO3) after dough acidification with traditional Jiaozi starter on the properties of whole wheat dough. RESULTS The population of yeast and lactic acid bacteria and the acidification level of the dough increased significantly after fermentation with Jiaozi. Incorporation of alkali greatly improved the leavening capacity of the remixed dough and the quality of steamed bread. Jiaozi fermentation and alkali addition changed the water distribution patterns (T2) and affected the secondary structures of gluten protein, starch crystallinity and pasting properties. The storage modulus (G') of the dough increased significantly with the alkali addition, which could be attributed to the promoted cross-linking of the gluten structure and the altered hydration state of the macromolecules. CONCLUSION The results of the present study indicate that a combination of Jiaozi fermentation and alkali addition could improve the technological properties of whole wheat dough and the quality of steamed bread. The results will help us to further explore the potential application of moderate acidification and alkali addition in the production of leavened whole wheat products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhijian Li
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
- Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Henan University of Technology, Zhengzhou, China
| | - Yu Cao
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Mengmeng Zhou
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
2
|
Wang H, Liu J, Zhang Y, Li S, Liu X, Zhang Y, Zhao X, Shen H, Xie F, Xu K, Zhang H. Insights into the hierarchical structure and physicochemical properties of starch isolated from fermented dough. Int J Biol Macromol 2024; 267:131315. [PMID: 38569985 DOI: 10.1016/j.ijbiomac.2024.131315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Understanding the hierarchical structure and physicochemical properties of starch isolated from fermented dough with different times (0-120 min) is valuable for improving the quality of fermented dough-based products. The results indicate that fermentation disrupted the starch granule surface and decreased the average particle size from 19.72 μm to 18.45 μm. Short-term fermentation (< 60 min) disrupted the crystalline, lamellar, short-range ordered molecular and helical structures of starch, while long-term fermentation (60-120 min) elevated the ordered degree of these structures. For example, relative crystallinity and double helix contents increased from 23.7 % to 26.8 % and 34.4 % to 37.2 %, respectively. During short-term fermentation, the structural amorphization facilitated interactions between starch molecular chains and water molecules, which increased the peak viscosity from 275.4 to 320.6 mPa·s and the swelling power from 7.99 to 8.52 g/g. In contrast, starches extracted from long-term fermented dough displayed the opposite results. Interestingly, the hardness and springiness of starch gels gradually decreased as fermentation time increased. These findings extend our understanding of the starch structure-property relationship during varied fermentation stages, potentially benefiting the production of better-fermented foods.
Collapse
Affiliation(s)
- Hongwei Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Jiajia Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yusong Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Shuaihao Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| | - Xingli Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yanyan Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Xuewei Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Huishan Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| | - Ke Xu
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Hua Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
3
|
Sakoui S, Derdak R, Pop OL, Vodnar DC, Jouga F, Teleky BE, Addoum B, Simon E, Suharoschi R, Soukri A, El Khalfi B. Exploring Technological, Safety and Probiotic Properties of Enterococcus Strains: Impact on Rheological Parameters in Fermented Milk. Foods 2024; 13:586. [PMID: 38397563 PMCID: PMC10887579 DOI: 10.3390/foods13040586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Enterococci, known for their resilience, are commonly found in food, the environment, and the gastrointestinal tracts of humans and animals. In recent research, six strains of enterococcus were isolated from bat guano. These include Enterococcus mundtii SRBG1, Enterococcus gallinarum SRBG3, Enterococcus faecium SRBG2, Enterococcus casseliflavus EC1, and Enterococcus devriesei CAU 1344. Identification was done using 16S DNA analysis. Each strain underwent evaluation for its technological properties (such as tolerances to various NaCl concentrations and temperatures, as well as amylolytic, β-galactosidase, lipolytic, and proteolytic activities, and EPS production) and selected probiotic properties (including safety profile, resistance to 0.3 percent bile salts and gastric juice with a pH of 2.5, lysozyme tolerance, and antibacterial and antibiofilm activities against four foodborne pathogens). The results were analyzed using Principal Component Analysis. This analysis revealed that E. mundtii SRBG1 and E. gallinarum SRBG3, followed by E. faecium SRBG2, were most closely associated with a broad range of technological characteristics and were subsequently used for fermenting skimmed milk. The rheological properties of the samples indicated a shear-thinning or non-Newtonian behavior. Furthermore, during storage of the fermented milk at 4 °C over periods of 1, 7, 14, and 21 days, there were no significant changes in bacterial count (at around 7 log10 CFU/mL) and pH when fermented with the three evaluated strains.
Collapse
Affiliation(s)
- Souraya Sakoui
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca 20000, Morocco; (S.S.); (R.D.); (F.J.); (A.S.)
| | - Reda Derdak
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca 20000, Morocco; (S.S.); (R.D.); (F.J.); (A.S.)
- Department of Biology, Faculty of Sciences El Jadida, Chouaïb Doukkali University, B.P 20, El Jadida 24000, Morocco
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (B.-E.T.); (E.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (B.-E.T.); (E.S.)
- Food Biotechnology and Molecular Gastronomy, CDS7, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania
| | - Fatimazahra Jouga
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca 20000, Morocco; (S.S.); (R.D.); (F.J.); (A.S.)
| | - Bernadette-Emőke Teleky
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (B.-E.T.); (E.S.)
| | - Boutaina Addoum
- Biology and Medical Research Unit, Centre National de l’Energie, des Sciences et des Techniques Nucléaires, Rabat 10001, Morocco;
| | - Elemér Simon
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (B.-E.T.); (E.S.)
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania; (O.L.P.); (D.C.V.); (B.-E.T.); (E.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3–5, 400372 Cluj-Napoca, Romania
| | - Abdelaziz Soukri
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca 20000, Morocco; (S.S.); (R.D.); (F.J.); (A.S.)
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca 20000, Morocco; (S.S.); (R.D.); (F.J.); (A.S.)
| |
Collapse
|
4
|
Zhang D. Effect of Proofing on the Rheology and Moisture Distribution of Corn Starch-Hydroxypropylmethylcellulose Gluten-Free Dough. Foods 2023; 12:foods12040695. [PMID: 36832771 PMCID: PMC9956097 DOI: 10.3390/foods12040695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Dough rheology, mainly enabled by gluten in the traditional dough, determines the end-products' quality, particularly by affecting gas production and retention capacities during proofing. Gluten-free dough has quite different rheological performance compared with gluten-containing dough. To deepen the understanding of gluten-free dough, variations of rheology and moisture distribution of corn starch-hydroxypropylmethylcellulose (CS-HPMC) gluten-free dough in the process of proofing were studied. Significant differences were found in terms of soluble carbohydrate composition, moisture distribution, and rheology. Arabinose, glucose, fructose, and mannose were the main composition of soluble carbohydrates in CS-HPMC dough, out of which glucose was preferentially utilized during proofing. Non-freezable water content and third relaxation time decreased from 44.24% and 2171.12 ms to 41.39% and 766.4 ms, respectively, whereas the amplitudes of T23 increased from 0.03% to 0.19%, indicating reduced bounded water proportion and improved water mobility with proofing time. Frequency dependence and the maximum creep compliance increased, whereas zero shear viscosity reduced, suggesting decreased molecular interactions and flowability, but improved dough rigidity. In conclusion, the reduced soluble carbohydrates and improved water mobility decreased molecular entanglements and hydrogen bonding. Furthermore, yeast growth restricted a large amount of water, resulting in declined flowability and increased rigidity.
Collapse
Affiliation(s)
- Duqin Zhang
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
5
|
Pashaei M, Mollakhalili‐Meybodi N, Sadeghizadeh J, Mirmoghtadaei L, Fallahzadeh H, Arab M. Technological characteristics of sodium reduced wheat bread: Effects of fermentation type and partial replacement of salt with potassium chloride. Food Sci Nutr 2022; 10:3282-3292. [PMID: 36249970 PMCID: PMC9548358 DOI: 10.1002/fsn3.2917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022] Open
Abstract
Rheological, physicochemical, textural, and sensory characteristics of wheat bread prepared by potassium chloride (KCl) substitution of sodium chloride (NaCl) at different ratio (0:100, 10:90, 20:80, 30:70, 40:60, 50:50) in the presence of two different fermentation types (Saccharomyces cerevisiae yeast starter (YSF) and mixed fermentation based on sourdough (MFSD)) were investigated. Considering the results obtained at this study, the technological characteristics change through KCl substitution ratio which depends on the type of fermentation. In other words, the enhanced activity of microflora in MFSD-fermented samples and decreased activity of yeast in YSF-fermented ones have been found by increasing the ratio of KCl incorporation level. Despite the increased activity of starter microflora in MFSD-fermented samples through increasing the KCl incorporation level, the lowest specific volume (p < .05) is found in SD50 (containing 50%w/w KCl in the presence of MFSD) with a quantity equal to 1.71 ± 0.47 cm3/g confirming its inability to restore gases. No significant difference has been found in KCl substitution levels up to 20%w/w in YSF-fermented samples (Y20) with control (p ≥ .05). The lowest crumb lightness (L*) (65.27 ± 0.12), highest cohesiveness (1.31 ± 0.07 mm), and springiness (0.76 ± 0.01) is also found in Y20. Considering sensory characteristics perception, no significant difference has been found in textural characteristics perception of Y10 and Y20 containing KCl at 10%w/w and 20% w/w, respectively, in the presence of YSF with control sample (Y). The overall acceptability is also found to be more influenced by texture perception(r = 0.827, p < .00).
Collapse
Affiliation(s)
- Mitra Pashaei
- Department of food science and technologySchool of public healthShahid Sadoughi University of Medical SciencesYazdIran
| | - Neda Mollakhalili‐Meybodi
- Department of food science and technologySchool of public healthShahid Sadoughi University of Medical SciencesYazdIran
- Research Center for Food Hygiene and SafetyShahid Sadoughi University of Medical SciencesYazdIran
| | - Jalal Sadeghizadeh
- Department of food science and technologySchool of public healthShahid Sadoughi University of Medical SciencesYazdIran
| | - Leila Mirmoghtadaei
- Department of Food Science and TechnologyFaculty of Nutrition Sciences and Food TechnologyNational Nutrition and Food Technology Research InstituteShahid Beheshti University of SciencesTehranIran
| | - Hossein Fallahzadeh
- Departments of biostatistics and EpidemiologySchool of Public HealthCenter for Healthcare Data ModelingShahid Sadoughi University of Medical SciencesYazdIran
| | - Masoumeh Arab
- Department of food science and technologySchool of public healthShahid Sadoughi University of Medical SciencesYazdIran
- Research Center for Food Hygiene and SafetyShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
6
|
Hong J, Guo W, Chen P, Liu C, Wei J, Zheng X, Saeed Omer SH. Effects of Bifidobacteria Fermentation on Physico-Chemical, Thermal and Structural Properties of Wheat Starch. Foods 2022; 11:2585. [PMID: 36076770 PMCID: PMC9455791 DOI: 10.3390/foods11172585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria have been considered to be a very important species during sourdough fermentation. In order to explore the effects of bifidobacteria fermentation on thermal, physico-chemical and structural properties of wheat starch during dough fermentation, starch granules were separated from the fermented dough at different fermentation times, including 0 h, 2 h, 6 h, 9 h and 12 h. The results showed that the morphology of starch granules was destroyed gradually as the fermentation time increased, which appeared as erosion and rupture. With the increase in fermentation time, the solubility showed a significant increase, which changed from 8.51% (0 h) to 9.80% (12 h), and the swelling power was also increased from 9.31% (0 h) to 10.54% (12 h). As for the gelatinization property, the enthalpy was increased from 6.77 J/g (0 h) to 7.56 J/g (12 h), indicating a more stable thermal property of fermented starch, especially for the longer fermentation. The setback value was decreased with short fermentation time, indicating that the starch with a longer fermentation time was difficult to retrograde. The hardness of the gel texture was decreased significantly from 50.11 g to 38.66 g after fermentation for 12 h. The results show that bifidobacteria fermentation is an effective biological modification method of wheat starch for further applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueling Zheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | | |
Collapse
|
7
|
Potential of three different lactic acid Bacteria to use as starter culture for production of type II sourdough breadmaking. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Effects of Teff-Based Sourdoughs on Dough Rheology and Gluten-Free Bread Quality. Foods 2022; 11:foods11071012. [PMID: 35407099 PMCID: PMC8997562 DOI: 10.3390/foods11071012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022] Open
Abstract
Production of gluten-free bread (GFB) with good quality characteristics represents a technological challenge. Our study aimed to obtain nongluten bread from cereals and pseudocereals with applying single cultures of Pediococcus acidilactici, Pediococcus pentosaceus and Enteroccocus durans as sourdoughs. The effect of sourdoughs on the quality traits of gluten-free (GF) dough and GFB was explored. The structural and baking properties of GF dough composed of teff, rice, corn, and sorghum flours were improved by adding xanthan gum (0.6%), guar gum (1.0%) and carboxymethyl cellulose (1.0%). The tested strains reached 108 cfu/g in teff flour and produced sourdoughs with a pleasant lactic aroma. The sourdough-fermented doughs were softer and more elastic compared to control dough and yielded reduced baking loss. Strain Enterococcus durans ensured the best baking characteristics of GF dough and the highest softness of the GFB during storage. Strain Pediococcus pentosaceus had the most pronounced positive effect on aroma, taste and aftertaste. Pan baking was found to be more appropriate to obtain stable shape and good-looking products. A careful starter culture selection is necessary for GFB development since a significant effect of strain specificity on dough rheology and baking characteristics was observed.
Collapse
|
9
|
Hu Y, Zhang J, Wang S, Liu Y, Li L, Gao M. Lactic acid bacteria synergistic fermentation affects the flavor and texture of bread. J Food Sci 2022; 87:1823-1836. [PMID: 35257375 DOI: 10.1111/1750-3841.16082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/22/2022]
Abstract
Fermentation strains play a key role in the quality of bread. The combination of yeast and lactic acid bacteria (LAB) may effectively improve the function and nutritional properties of bread. In this study, the dough was fermented to make bread by using single strain (Saccharomyces cerevisiae, mode A), the combination of two strains (S. cerevisiae and Lactiplantibacillus plantarum, mode B; S. cerevisiae and Lactobacillus delbrueckii, mode C), or three strains (S. cerevisiae, L. plantarum, and L. delbrueckii, mode D). The specific volume, texture, and aroma substances of bread were evaluated. The possibility of mixed fermentation of selected yeast and LAB to replace natural fermentation dough was evaluated. The results showed that the specific volume of bread in mode B was 15.2% higher than that of mode A. The structure was softer and the taste was more vigorous in mode B bread. The content of volatile compounds was highest in mode B bread among the four mode bread. The characteristic flavors were ethyl 2-hydroxypropionate and z-3-hexenol. The cofermentation in mode B made the bread aroma richer and gave better aroma characteristics to bread. Therefore, the fermentation of S. cerevisiae and L. plantarum can be recommended to replace naturally fermented dough to improve the quality of bread. PRACTICAL APPLICATION: L. plantarum and L. delbrueckii, separately or together, assisted in yeast fermentation to make bread. The specific volume, texture, and aroma substances of bread were evaluated to replace natural fermented dough with mixed fermentation. L. plantarum-assisted yeast fermentation improved the specific volume, texture, and aroma of bread. The characteristic flavors were ethyl 2-hydroxypropionate and z-3-hexenol in bread. Therefore, the fermentation of S. cerevisiae and L. plantarum could replace naturally fermented dough to improve the quality of bread.
Collapse
Affiliation(s)
- Yuwei Hu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Jialan Zhang
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Shaojin Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yingbao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Li Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
10
|
Karimi N, Zeynali F, Rezazad Bari M, Nikoo M, Mohtarami F, Kadivar M. Amaranth selective hydrolyzed protein influence on sourdough fermentation and wheat bread quality. Food Sci Nutr 2021; 9:6683-6691. [PMID: 34925798 PMCID: PMC8645750 DOI: 10.1002/fsn3.2618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
Amaranth selective hydrolyzed protein (ASPH) may improve sourdough properties and bread quality. In this regard, this study focused on investigating the influence of protein hydrolysates on sourdough fermentation and bread properties. Based on the findings, ASPH further increased Lactobacillus plantarum and Saccharomyces cerevisiae growth in sourdough compared with amaranth protein isolates and amaranth flour. ASPH at 5 g/kg resulted in sourdough with higher pH and total titratable acidity (TTA) after 20 h of fermentation at 30°C. The prepared sourdough using APH (S-ASPH) at 3 g/kg increased the specific volume (4.57 ml/g) and TTA (4.76 ml) while decreasing water activity, hardness, cohesiveness, and chewiness of the bread (S-ASPH-B) compared with the control. Moreover, transition temperature and enthalpy reduced whereas sensory properties and shelf life represented an increase with S-ASPH addition. Overall, the obtained data indicated the improvement of bread quality by S-ASPH sourdough.
Collapse
Affiliation(s)
- Nayereh Karimi
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Fariba Zeynali
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Mahmoud Rezazad Bari
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Mehdi Nikoo
- Department of Pathobiology and Quality ControlArtemia and Aquaculture Research InstituteUrmia UniversityUrmiaIran
| | - Forogh Mohtarami
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesUrmia UniversityUrmiaIran
| | - Mahdi Kadivar
- Department of Food Science and TechnologyCollege of AgricultureIsfahan University of TechnologyIsfahanIran
| |
Collapse
|
11
|
Li M, Wang R, Xu Y, Liang F, Yang T, Zhang J. Effect of Different Levels of Phosphorus on the Efficiency of Fermentation by
Lactobacillus
and Physicochemical Properties of Potato Starch. STARCH-STARKE 2021. [DOI: 10.1002/star.202100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meng Li
- Bor S. Luh Food Safety Research Center School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- Wilmar Oleo Co., Ltd. 118 Gaodong Road Shanghai 200137 China
| | - Ruoyang Wang
- Department of Mathematics De Anza College 21250 Stevens Creek Blvd Cupertino CA USA
| | - Yihan Xu
- Bor S. Luh Food Safety Research Center School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fengzhu Liang
- Bor S. Luh Food Safety Research Center School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Tiankui Yang
- Wilmar Oleo Co., Ltd. 118 Gaodong Road Shanghai 200137 China
| | - Jianhua Zhang
- Bor S. Luh Food Safety Research Center School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
12
|
Neylon E, Arendt EK, Zannini E, Sahin AW. Fermentation as a Tool to Revitalise Brewers' Spent Grain and Elevate Techno-Functional Properties and Nutritional Value in High Fibre Bread. Foods 2021; 10:foods10071639. [PMID: 34359509 PMCID: PMC8307366 DOI: 10.3390/foods10071639] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Recycling of by-products from the food industry has become a central part of research to help create a more sustainable future. Brewers’ spent grain is one of the main side-streams of the brewing industry, rich in protein and fibre. Its inclusion in bread, however, has been challenging and requires additional processing. Fermentation represents a promising tool to elevate ingredient functionality and improve bread quality. Wheat bread was fortified with spray-dried brewers’ spent grain (BSG) and fermented brewers’ spent grain (FBSG) at two addition levels to achieve “source of fibre” and “high in fibre” claims according to EU regulations. The impact of BSG and FBSG on bread dough, final bread quality and nutritional value was investigated and compared to baker’s flour (BF) and wholemeal flour (WMF) breads. The inclusion of BSG and FBSG resulted in a stronger and faster gluten development; reduced starch pasting capacity; and increased dough resistance/stiffness. However, fermentation improved bread characteristics resulting in increased specific volume, reduced crumb hardness and restricted microbial growth rate over time. Additionally, the inclusion of FBSG slowed the release in reducing sugars over time during in vitro starch digestion. Thus, fermentation of BSG can ameliorate bread techno-functional properties and improve nutritional quality of breads.
Collapse
Affiliation(s)
- Emma Neylon
- School of Food and Nutritional Science, University College Cork, College Road, T12K8AF Cork, Ireland; (E.N.); (E.Z.); (A.W.S.)
| | - Elke K. Arendt
- School of Food and Nutritional Science, University College Cork, College Road, T12K8AF Cork, Ireland; (E.N.); (E.Z.); (A.W.S.)
- APC Microbiome Ireland, University College Cork, Western Road, T12K8AF Cork, Ireland
- Correspondence: ; Tel.: +35-32-1490-2064
| | - Emanuele Zannini
- School of Food and Nutritional Science, University College Cork, College Road, T12K8AF Cork, Ireland; (E.N.); (E.Z.); (A.W.S.)
| | - Aylin W. Sahin
- School of Food and Nutritional Science, University College Cork, College Road, T12K8AF Cork, Ireland; (E.N.); (E.Z.); (A.W.S.)
| |
Collapse
|
13
|
A Systematic Review of Gluten-Free Dough and Bread: Dough Rheology, Bread Characteristics, and Improvement Strategies. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186559] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-quality, gluten-free doughs and bakery products are clearly more difficult to produce than wheat flour-based products. The poor quality of the breads that are currently available demonstrates that manufacturing remains a significant technological problem. This is mainly due to the absence of gluten, which has a huge negative impact on dough rheology and bread characteristics. Gluten replacement is still the major challenge in the development of doughs and baked goods. The literature documents various improvement strategies. The most active approach seeks to identify alternative ingredients that can mimic the viscoelastic properties of the gluten network, notably hydrocolloids, enzymes, emulsifiers, and alternative sources of protein. However, other innovative strategies, such as high pressure, using heat to dry flour, and sourdough fermentation, have been investigated. In this context, the first aim of this review is to summarize current knowledge regarding gluten-free doughs, breads, and bakery products. Secondly, as it is clear that the manufacture of gluten-free products remains a key challenge, it suggests some improvement strategies that can boost their nutritional, technological, and sensorial characteristics.
Collapse
|
14
|
Qi X, Yang S, Zhao D, Liu J, Wu Q, Yang Q. Changes in Structural and Physicochemical Properties of Corn Flour after Fermentation with
Lactobacillus plantarum
Y1. STARCH-STARKE 2020. [DOI: 10.1002/star.201900285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xin Qi
- College of Food Shenyang Agricultural University Shenyang Liaoning 110866 China
| | - Shu Yang
- College of Life Science and Bioengineering Shenyang University Shenyang Liaoning 110034 China
| | - Dongya Zhao
- College of Food Shenyang Agricultural University Shenyang Liaoning 110866 China
| | - Jing Liu
- School of innovation and entrepreneurship Dalian University of Science and Technology Dalian Liaoning 116000 China
| | - Qingkuo Wu
- College of Food Shenyang Agricultural University Shenyang Liaoning 110866 China
| | - Qiang Yang
- College of Food Shenyang Agricultural University Shenyang Liaoning 110866 China
| |
Collapse
|
15
|
Xu Y, Ding J, Gong S, Li M, Yang T, Zhang J. Physicochemical properties of potato starch fermented by amylolytic Lactobacillus plantarum. Int J Biol Macromol 2020; 158:656-661. [PMID: 32387358 DOI: 10.1016/j.ijbiomac.2020.04.245] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/22/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
This study investigated the effect of fermentation by Lactobacillus plantarum CGMCC 14177 strain on physicochemical properties and morphological characteristics of potato starch. The maximum total amylase and α-amylase production of L. plantarum CGMCC 14177 were 286.8 and 208.1 U/g, respectively. Fermented granules clearly exhibited pocked and dimpled surfaces. The granule properties changed to have a 1.9% increase in relative crystallinity. Overall the starch changed to have slight increases in onset and peak temperature, but resulted decreases of conclusion temperature and enthalpy. Fermentation decreased peak viscosity and breakdown value, while increased trough viscosity, final viscosity, and setback. Further analysis showed that fermentation increased the gel hardness and chewiness of the potato starch, but made little differences in the springiness, cohesiveness and resilience. Collectively, these results provide insight on how Lactobacillus strains can be used to modify the physicochemical properties of potato starch in ways that extend its use in industrial applications.
Collapse
Affiliation(s)
- Yihan Xu
- School of Agriculture and Biology, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jingyu Ding
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenhuan Road, Shanghai 201306, China
| | - Shengxiang Gong
- School of Agriculture and Biology, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meng Li
- School of Agriculture and Biology, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Wilmar Oleo Co., Ltd., 118 Gaodong Road, Shanghai 200137, China
| | - Tiankui Yang
- Wilmar Oleo Co., Ltd., 118 Gaodong Road, Shanghai 200137, China
| | - Jianhua Zhang
- School of Agriculture and Biology, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
16
|
Xu Y, Zhou T, Tang H, Li X, Chen Y, Zhang L, Zhang J. Probiotic potential and amylolytic properties of lactic acid bacteria isolated from Chinese fermented cereal foods. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Abstract
Maize and its derived fermented products, as with other cereals, are fundamental for human nutrition in many countries of the world. Mixed cultures, principally constituted by lactic acid bacteria (LAB) and yeasts, are responsible for maize fermentation, thus increasing its nutritional value and extending the products’ shelf-life. Other microorganisms involved, such as molds, acetic acid bacteria, and Bacillus spp. can contribute to the final product characteristics. This review gives an overview of the impact of the activities of this complex microbiota on maize product development and attributes. In particular, starting from amylolytic activity, which is able to increase sugar availability and influence the microbial succession and production of exopolysaccharides, vitamins, and antimicrobial compounds, which improve the nutritional value. Further activities are also considered with positive effects on the safety profile, such as phytates detoxification and mycotoxins reduction.
Collapse
|
18
|
Liu R, Sun W, Zhang Y, Huang Z, Hu H, Zhao M, Li W. Development of a novel model dough based on mechanically activated cassava starch and gluten protein: Application in bread. Food Chem 2019; 300:125196. [DOI: 10.1016/j.foodchem.2019.125196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
19
|
Yu Y, Wang L, Qian H, Zhang H, Li Y, Wu G, Qi X, Xu M, Rao Z. Effect of selected strains on physical and organoleptic properties of breads. Food Chem 2019; 276:547-553. [PMID: 30409631 DOI: 10.1016/j.foodchem.2018.10.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/04/2023]
Abstract
The use of selected Saccharomyces cerevisiae PS7314, Lactobacillus rossiae NOS7307, Lactobacillus brevis NOS7311, and Lactobacillus plantarum NOS7315 as mono-culture or co-culture for production of sourdoughs, their breads showed different physical and organoleptic properties. The pH of breads fermented with sourdoughs incubated with mono-culture or co-culture all decreased. An opposite trend was found for TTA. The use of single lactobacillus for the dough fermentation decreased the specific volume of bread, which was 4.15-19.10% lower than that of control bread (CB). However, the synergetic fermentation helped the improvement of bread quality. Compared to CB, the mixed culture 4 sourdough remarkably decreased the hardness by 52.08%, increased the specific volume by 5.29%, improved porosity of final product by 24.90%, and gave a preferable sensory characteristic to bread. Thus, the MC4 could be recommended for replacing spontaneous sourdough for improving the quality of bread.
Collapse
Affiliation(s)
- Yafang Yu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Yan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Meijuan Xu
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Zhiming Rao
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
20
|
Guimarães RM, Pimentel TC, de Rezende TAM, Silva JDS, Falcão HG, Ida EI, Egea MB. Gluten-free bread: effect of soy and corn co-products on the quality parameters. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03261-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Brandt MJ. Industrial production of sourdoughs for the baking branch - An overview. Int J Food Microbiol 2018; 302:3-7. [PMID: 30219200 DOI: 10.1016/j.ijfoodmicro.2018.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 01/29/2023]
Abstract
Sourdoughs are produced both in artisanal and industrial size. Sourdough manufacturers deliver the baking branch either with starters for production of in-house sourdoughs or with fully fermented sourdough products. In the latter case sourdough production is separated in time and space from the bread production. A big part of this convenience products are dried sourdoughs, which are mainly produced from rye and wheat flour, but also from other starch containing plants, like pseudocereals or legumes. The requirements regarding the raw materials used differ from that used for baking bread. The most applied drying techniques for sourdoughs are drum and spray-drying. Compared with other foods, sourdough and sourdough products have only a low risk regarding food safety due to pH < 4.2, however formation of biogenic amines or acrylamide has taken into account. More tools for sourdough authentication are needed but, before developing and validating methods, it would be necessary to include different sourdough products in a clear regulatory framework.
Collapse
Affiliation(s)
- Markus J Brandt
- Ernst Böcker GmbH & Co. KG, Ringstrasse 55-57, 32423 Minden, Germany.
| |
Collapse
|
22
|
Nyembwe PM, de Kock HL, Taylor JR. Potential of defatted marama flour-cassava starch composites to produce functional gluten-free bread-type dough. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Ceballos-González C, Bolívar-Monsalve J, Ramírez-Toro C, Bolívar GA. Effect of lactic acid fermentation on quinoa dough to prepare gluten-free breads with high nutritional and sensory quality. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carlos Ceballos-González
- Microbiología y Biotecnología Aplicada Group (MIBIA), Departamento de Biología; Universidad del Valle, Calle 13 # 100-00; Cali Colombia
| | - Johana Bolívar-Monsalve
- Microbiología y Biotecnología Aplicada Group (MIBIA), Departamento de Biología; Universidad del Valle, Calle 13 # 100-00; Cali Colombia
| | - Cristina Ramírez-Toro
- Microbiología y Biotecnología Aplicada Group (MIBIA), Departamento de Biología; Universidad del Valle, Calle 13 # 100-00; Cali Colombia
| | - Germán A. Bolívar
- Microbiología y Biotecnología Aplicada Group (MIBIA), Departamento de Biología; Universidad del Valle, Calle 13 # 100-00; Cali Colombia
| |
Collapse
|
24
|
Elhassan MS, Emmambux MN, Taylor JR. Transgenic sorghum with suppressed synthesis of kafirin subclasses: Effects on flour and dough rheological characteristics. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Smith BM, Bean SR, Selling G, Sessa D, Aramouni FM. Effect of Salt and Ethanol Addition on Zein-Starch Dough and Bread Quality. J Food Sci 2017; 82:613-621. [DOI: 10.1111/1750-3841.13637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 12/01/2022]
Affiliation(s)
| | - Scott R. Bean
- USDA-ARS Center for Grain and Animal Health Research; Manhattan KS 66502 U.S.A
| | - Gordon Selling
- USDA-ARS Natl. Center for Agriculture Utilization Center; Peoria IL 61604 U.S.A
| | - David Sessa
- USDA-ARS Natl. Center for Agriculture Utilization Center; Peoria IL 61604 U.S.A
| | - Fadi M. Aramouni
- Food Science Inst.; Kansas State Univ.; Manhattan KS 66506 U.S.A
| |
Collapse
|
26
|
Foschia M, Horstmann S, Arendt EK, Zannini E. Nutritional therapy – Facing the gap between coeliac disease and gluten-free food. Int J Food Microbiol 2016; 239:113-124. [DOI: 10.1016/j.ijfoodmicro.2016.06.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022]
|
27
|
|
28
|
Cappa C, Lucisano M, Raineri A, Fongaro L, Foschino R, Mariotti M. Gluten-Free Bread: Influence of Sourdough and Compressed Yeast on Proofing and Baking Properties. Foods 2016; 5:foods5040069. [PMID: 28231163 PMCID: PMC5302438 DOI: 10.3390/foods5040069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 12/28/2022] Open
Abstract
The use of sourdough is the oldest biotechnological process to leaven baked goods, and it represents a suitable technology to improve traditional bread texture, aroma, and shelf life. A limited number of studies concerning the use of sourdough in gluten-free (GF) breadmaking have been published in comparison to those on traditional bread. The aim of this study was to compare the properties of GF breads obtained by using a previously in-lab developed GF-sourdough (SD), compressed yeast (CY; Saccharomyces cerevisiae) or their mixture (SDCY) as leavening agents; more specifically, it aims to confirm the findings of a previous studies and to further improve (both in terms of recipe and process) the features of the resulting GF breads. Dough pH and rheological properties were measured. Fresh and stored breads were characterized for weight, height, specific volume, crust and crumb color, moisture, water activity, crumb hardness, and porosity. The combination SDCY was effective in improving bread volume and softness when compared to SD only. Furthermore, SD- and SDCY-crumbs exhibited a less crumbly behavior during storage (69 h, 25 °C, 60% of relative humidity) in comparison to CY-breads. This study confirms the positive effect of SD in GF breadmaking, in particular when used in combination with CY.
Collapse
Affiliation(s)
- Carola Cappa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via G. Celoria 2, 20133 Milan, Italy.
| | - Mara Lucisano
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via G. Celoria 2, 20133 Milan, Italy.
| | - Andrea Raineri
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via G. Celoria 2, 20133 Milan, Italy.
| | - Lorenzo Fongaro
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, P.O. Box 23 40, 76125 Karlsruhe, Germany.
| | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via G. Celoria 2, 20133 Milan, Italy.
| | - Manuela Mariotti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via G. Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
29
|
Elsanhoty RM, Ghonamy A, El-Adly N, Fawzy Ramadan M. Impact of Lactic Acid Bacteria and Bifidobacterium on the Survival of Bacillus subtilus
During Fermentation of Wheat Sourdough. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.13086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Rafaat M. Elsanhoty
- MAX Rubner Institute, Federal Research Institute of Nutrition and Food; Detmold Germany
- Industrial Biotechnology Department; Food and Dairy Biotechnology Branch, Genetic Engineering and Biotechnology Institute (GEBRI), Sadat City University; Minufiya Egypt
| | - A.G. Ghonamy
- Food Technology Research Institute, Agricultural Research Center; Giza Egypt
| | - N.A. El-Adly
- Food Technology Research Institute, Agricultural Research Center; Giza Egypt
| | - Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture; Zagazig University; Zagazig 44519 Egypt
| |
Collapse
|
30
|
Rheological and thermal properties of dough and textural and microstructural features of bread obtained from nixtamalized corn/wheat flour blends. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Masure HG, Fierens E, Delcour JA. Current and forward looking experimental approaches in gluten-free bread making research. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2015.09.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Functionality of the storage proteins in gluten-free cereals and pseudocereals in dough systems. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2015.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Li T, Tu C, Rui X, Gao Y, Li W, Wang K, Xiao Y, Dong M. Study of water dynamics in the soaking, steaming, and solid-state fermentation of glutinous rice by LF-NMR: a novel monitoring approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3261-3270. [PMID: 25775016 DOI: 10.1021/acs.jafc.5b00769] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Solid-state fermentation (SSF) of starchy grain is a traditional technique for food and alcoholic beverage production in East Asia. In the present study, low-field nuclear magnetic resonance (LF-NMR) was introduced for the elucidation of water dynamics and microstructure alternations during the soaking, steaming, and SSF of glutinous rice as a rapid real-time monitoring method. Three different proton fractions with different mobilities were identified based on the degree of interaction between biopolymers and water. Soaking and steaming significantly changed the proton distribution of the sample. The different phases of SSF were reflected by the T2 parameters. In addition, the variations in the T2 parameters were explained by the microstructure changes of rice induced by SSF. The fermentation time and T2 parameters were sigmoidally correlated. Thus, LF-NMR may be an effective real-time monitoring method for SSF in starch systems.
Collapse
Affiliation(s)
- Teng Li
- †College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China
| | - Chuanhai Tu
- †College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China
| | - Xin Rui
- †College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China
| | - Yangwen Gao
- ‡Institute of Innovation Research, Shanghai Niumag Corporation, Shanghai 200333, P. R. China
| | - Wei Li
- †College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China
| | - Kun Wang
- †College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China
| | - Yu Xiao
- †College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China
| | - Mingsheng Dong
- †College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|