1
|
Gaur VS, Sood S, Guzmán C, Olsen KM. Molecular insights on the origin and development of waxy genotypes in major crop plants. Brief Funct Genomics 2024; 23:193-213. [PMID: 38751352 DOI: 10.1093/bfgp/elad035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 06/14/2024] Open
Abstract
Starch is a significant ingredient of the seed endosperm with commercial importance in food and industry. Crop varieties with glutinous (waxy) grain characteristics, i.e. starch with high amylopectin and low amylose, hold longstanding cultural importance in some world regions and unique properties for industrial manufacture. The waxy character in many crop species is regulated by a single gene known as GBSSI (or waxy), which encodes the enzyme Granule Bound Starch Synthase1 with null or reduced activity. Several allelic variants of the waxy gene that contribute to varying levels of amylose content have been reported in different crop plants. Phylogenetic analysis of protein sequences and the genomic DNA encoding GBSSI of major cereals and recently sequenced millets and pseudo-cereals have shown that GBSSI orthologs form distinct clusters, each representing a separate crop lineage. With the rapidly increasing demand for waxy starch in food and non-food applications, conventional crop breeding techniques and modern crop improvement technologies such as gene silencing and genome editing have been deployed to develop new waxy crop cultivars. The advances in research on waxy alleles across different crops have unveiled new possibilities for modifying the synthesis of amylose and amylopectin starch, leading to the potential creation of customized crops in the future. This article presents molecular lines of evidence on the emergence of waxy genes in various crops, including their genesis and evolution, molecular structure, comparative analysis and breeding innovations.
Collapse
Affiliation(s)
- Vikram S Gaur
- Raja Bhoj College of Agriculture, Balaghat, JNKVV, Jabalpur, Madhya Pradesh, India
| | - Salej Sood
- ICAR-Central Potato Research Institute, Shimla- 171001, Himachal Pradesh, India
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, CeiA3, ES-14071, Córdoba, Spain
| | | |
Collapse
|
2
|
Zhang X, Karim H, Feng X, Lan J, Tang H, Guzmán C, Xu Q, Zhang Y, Qi P, Deng M, Ma J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. A single base change at exon of Wx-A1 caused gene inactivation and starch properties modified in a wheat EMS mutant line. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2012-2022. [PMID: 34558070 DOI: 10.1002/jsfa.11540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/10/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Wheat is an essential source of starch. The GBSS or waxy genes are responsible for synthesizing amylose in cereals. The present study identified a novel Wx-A1 null mutant line from an ethyl methanesulfonate (EMS)-mutagenized population of common wheat cv. SM126 using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and agarose gel analyses. RESULTS The alignment of the Wx-A1 gene sequences from the mutant and parental SM126 lines showed only one single nucleotide polymorphism causing the appearance of a premature stop codon and Wx-A1 inactivation. The lack of Wx-A1 protein resulted in decreased amylose, total starch and resistant starch. The starch morphology assessment revealed that starch from mutant seeds was more wrinkled, increasing its susceptibility to digestion. Regarding the starch thermodynamic properties, the gelatinization temperature was remarkably reduced in the mutant compared to parental line SM126. The digestibility of native, gelatinized, and retrograded starches was analyzed for mutant M4-627 and the parental SM126 line. In the M4-627 line, rapidly digestible starch contents were increased, whereas resistant starch was decreased in the three types of starch. CONCLUSION Waxy protein is essential for starch synthesis. The thermodynamic characteristics were decreased in the Wx-A1 mutant line. The digestibility properties of starch were also affected. Therefore, the partial waxy mutant M3-627 might play a significant role in food improvement. Furthermore, it might also be used to produce high-quality noodles. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuteng Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiuqin Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jingyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Cordoba, Spain
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Alvarez JB, Castellano L, Huertas-García AB, Guzmán C. Molecular characterization of five novel Wx-A1 alleles in common wheat including one silent allele by transposon insertion. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110843. [PMID: 33691970 DOI: 10.1016/j.plantsci.2021.110843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/18/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 05/21/2023]
Abstract
Wheat starch is composed of two glucose polymers, amylose and amylopectin. Although several starch synthases are responsible for its synthesis, only the waxy protein is associated with the amylose synthesis. The waxy protein composition of 45 Spanish common wheat landraces from Andalusia (southern Spain) was evaluated. Within these materials, five novel alleles for the Wx-A1 gene were detected. Four of them showed functional proteins (Wx-A1p, Wx-A1q, Wx-A1r and Wx-A1s), although some amino acid changes were found in the mature protein sequence. However, one of them (Wx-A1t) exhibited loss of the Wx-A1 protein, and its base sequence contained one large insert (1,073 bp) in the tenth exon, that interrupted the ORF of the Wx-A1 gene. This insert exhibited the characteristics of a Class II transposon of the Mutator superfamily, which had not been described previously, and has been named Baetica. The conservation of such inserts could be related to their low effect on vital properties of the plants, as occurs with most of the genes associated with technological quality. In conclusion, the evaluation of old wheat landraces showed that, in addition to their use as alternative crops, these materials could be a useful source of interesting genes in wheat quality improvement.
Collapse
Affiliation(s)
- Juan B Alvarez
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, CeiA3, ES-14071, Córdoba, Spain.
| | - Laura Castellano
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, CeiA3, ES-14071, Córdoba, Spain.
| | - Ana B Huertas-García
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, CeiA3, ES-14071, Córdoba, Spain.
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, CeiA3, ES-14071, Córdoba, Spain.
| |
Collapse
|
4
|
Identification and molecular characterization of mutant line deficiency in three waxy proteins of common wheat (Triticum aestivum L.). Sci Rep 2021; 11:3510. [PMID: 33568721 PMCID: PMC7876011 DOI: 10.1038/s41598-021-82865-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022] Open
Abstract
Starch is the main component of wheat (Triticum aestivum L.) grain and a key factor in determining wheat processing quality. The Wx gene is the gene responsible for amylose synthesis. An ethyl methanesulfonate (EMS) mutagenized population was generated using common wheat cv. Gao 8901, a popular and high-quality cultivar in China. A waxy mutant (Wx-null) was isolated by screening M3 seeds with KI-I2 staining of endosperm starch. No obvious waxy proteins in Wx-null line were detected using Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). DNA sequencing revealed three SNPs and a 3-bp InDel in the first exon, and a 16-bp InDel at the junction region of the first Wx-A1 intron from the Wx-null line. Six SNPs were identified in Wx-B1 gene of Wx-null line compared to the wild-type Gao 8901, including four missense mutations. One nonsense mutation was found at position 857 in the fourth exon, which resulted in a premature stop codon. Expression levels of Wx genes were dramatically reduced in the Wx-null line. There were no detectable differences in granule size and morphology between Wx-null and wild-type, but the Wx-null line contained more B-type starch granules. The amylose content of the Wx-null line (0.22%) was remarkably lower compared to the wild-type Gao 8901 (24.71%). Total starch is also lower in the Wx-null line. The Wx-null line may provide a potential waxy material with high agronomic performance in wheat breeding programs.
Collapse
|
5
|
Netsvetaev VP, Kozelets YO, Ashcheulova AP, Nerubenko OE, Akinshina OV. Parameters of Grain Quality in Winter Common Wheat and the Effect of Hereditary Factors Associated with the Endosperm Carbohydrate Complex. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542012011x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
6
|
Maryami Z, Azimi MR, Guzman C, Dreisigacker S, Najafian G. Puroindoline ( Pina-D1 and Pinb-D1) and waxy ( Wx-1) genes in Iranian bread wheat ( Triticum aestivum L.) landraces. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1814866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Zahra Maryami
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Mohammad Reza Azimi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Carlos Guzman
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Sussane Dreisigacker
- Global Wheat Program, International Maize and Wheat Improvement Center(CIMMYT), Mexico D.F, Mexico
| | - Godarz Najafian
- Cereal Chemistry and Technology Unit, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| |
Collapse
|
7
|
Luo M, Ding J, Li Y, Tang H, Qi P, Ma J, Wang J, Chen G, Pu Z, Li W, Li Z, Harwood W, Lan X, Deng M, Lu Z, Wei Y, Zheng Y, Jiang Q. A single-base change at a splice site in Wx-A1 caused incorrect RNA splicing and gene inactivation in a wheat EMS mutant line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2097-2109. [PMID: 30993362 DOI: 10.1007/s00122-019-03340-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/09/2018] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
An EMS-induced single-base mutation at a splice site caused abnormal RNA splicing and resulted in the gene inactivation and the lack of Wx-A1 protein in a wheat EMS mutant line. An EMS-mutagenized population was generated using common wheat cv. SM126 consisting of 10,600 M2 plants. One Wx-A1 null mutant was identified through analyses of 390 grains produced from 130 M2 plants using electrophoresis analyses. The Wx-A1 sequences of parental line SM126 and M2-31 mutant were determined as 2781 bp, and there was only one SNP mutation between them. The SNP was a mutation from G to A at nucleotide sequence position 2168 bp (G2168A) downstream of the start codon which was located at the splicing site within the eighth intron. All 52 cDNA transcripts were found to be incorrectly spliced and can be summarized as five types of variations. The deletion of the exon and the exclusion of intron were structural features in abnormal splicing RNA. Together with the prediction of potential splice regulatory motifs, the mutation G2168A happened within the 5' splice site of the eighth intron and destroyed the splice donor site from GU to AU, which may have brought about a barrier against correct RNA splice, and generated abnormal mRNA, which was the mechanism of the inactivation of Wx-A1 in M2-31. The lack of Wx-A1 has resulted in changes in starch properties in the M2-31 mutant, with the reduction in amylose and starch contents. The increased grains hardness was observed in M2-31, which may be related to the lower expression level of Pinb-D1 gene. As the waxy wheat foods have a lot of advantages, the null waxy genes will be widely applied in breeding waxy wheat for varied amylose contents.
Collapse
Affiliation(s)
- Mi Luo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jinjin Ding
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Huaping Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhien Pu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhongyi Li
- CSIRO Agriculture and Food, Black Mountain, Canberra, ACT, 2601, Australia
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhenxiang Lu
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, T1J 4B1, Canada
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
8
|
Hernández-Espinosa N, Payne T, Huerta-Espino J, Cervantes F, Gonzalez-Santoyo H, Ammar K, Guzmán C. Preliminary characterization for grain quality traits and high and low molecular weight glutenins subunits composition of durum wheat landraces from Iran and Mexico. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2022]
|
9
|
Watson-Haigh NS, Suchecki R, Kalashyan E, Garcia M, Baumann U. DAWN: a resource for yielding insights into the diversity among wheat genomes. BMC Genomics 2018; 19:941. [PMID: 30558550 PMCID: PMC6296097 DOI: 10.1186/s12864-018-5228-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Democratising the growing body of whole genome sequencing data available for Triticum aestivum (bread wheat) has been impeded by the lack of a genome reference and the large computational requirements for analysing these data sets. RESULTS DAWN (Diversity Among Wheat geNomes) integrates data from the T. aestivum Chinese Spring (CS) IWGSC RefSeq v1.0 genome with public WGS and exome data from 17 and 62 accessions respectively, enabling researchers and breeders alike to investigate genotypic differences between wheat accessions at the level of whole chromosomes down to individual genes. CONCLUSIONS Using DAWN we show that it is possible to visualise small and large chromosomal deletions, identify haplotypes at a glance and spot the consequences of selective breeding. DAWN allows us to detect the break points of alien introgression segments brought into an accession when transferring desired genes. Furthermore, we can find possible explanations for reduced recombination in parts of a chromosome, we can predict regions with linkage drag, and also look at diversity in centromeric regions.
Collapse
Affiliation(s)
- Nathan S. Watson-Haigh
- School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, 5064 SA Australia
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005 Australia
| | - Radosław Suchecki
- School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, 5064 SA Australia
- CSIRO Agriculture and Food, Glen Osmond, Locked Bag 2, Adelaide, SA 5064 Australia
| | - Elena Kalashyan
- School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, 5064 SA Australia
| | - Melissa Garcia
- School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, 5064 SA Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, 5064 SA Australia
| |
Collapse
|
10
|
Zhang LL, Chen H, Luo M, Zhang XW, Deng M, Ma J, Qi PF, Wang JR, Chen GY, Liu YX, Pu ZE, Li W, Lan XJ, Wei YM, Zheng YL, Jiang QT. Transposon insertion resulted in the silencing of Wx-B1n in Chinese wheat landraces. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1321-1330. [PMID: 28314934 DOI: 10.1007/s00122-017-2878-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/08/2016] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
A novel Wx-B1 allele was characterized; a transposon insertion resulted in the loss of its function, which is different from the previously reported gene silencing mechanisms at the Wx-B1 locus. The waxy protein composition of 53 Chinese wheat landraces was analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional gel electrophoresis; of these, 10 did not show the expression of Wx-A1 (four accession) or Wx-B1 (six accessions) protein. The results of molecular marker detection revealed that the Wx-B1 allele (Wx-B1n) showed normal expression, inconsistent with the findings of SDS-PAGE for the Xiaobaipi accession. Further cloning of the 9160-bp region covering the Wx-B1 coding region and 3'-downstream region revealed that a 2178-bp transposon fragment had been inserted at 2462 bp within the tenth exon of Wx-B1n ORF, leading to the absence of Wx-B1 protein. Sequence analysis indicated that the insertion possessed the structural features of invert repeat and target repeat elements, we deduced that it was a transposon. Further PCR analysis revealed that this fragment had moved, but not copied itself, from 3B chromosome to the current location in Wx-B1n. Therefore, the reason for the inactivation of Wx-B1n was considerably different from those for the inactivation of Wx-B1b, Wx-B1k, and Wx-B1m; to our knowledge, this kind of structural mutation has never been reported in Wx-B1 alleles. This novel allele is interesting, because it was not associated with the deletion of other quality-related genes included in the 67 kb region lost with the common null allele Wx-B1b. The null Wx-B1n might be useful for investigating gene inactivation and expression as well as for enriching the genetic resource pool for the modification of the amylose/amylopectin ratio, thereby improving wheat quality.
Collapse
Affiliation(s)
- Ling-Ling Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hu Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mi Luo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiao-Wei Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Peng-Fei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ji-Rui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guo-Yue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ya-Xi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhi-En Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiu-Jin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu-Ming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qian-Tao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
11
|
Crossa J, Jarquín D, Franco J, Pérez-Rodríguez P, Burgueño J, Saint-Pierre C, Vikram P, Sansaloni C, Petroli C, Akdemir D, Sneller C, Reynolds M, Tattaris M, Payne T, Guzman C, Peña RJ, Wenzl P, Singh S. Genomic Prediction of Gene Bank Wheat Landraces. G3 (BETHESDA, MD.) 2016; 6:1819-34. [PMID: 27172218 PMCID: PMC4938637 DOI: 10.1534/g3.116.029637] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/21/2016] [Accepted: 04/15/2016] [Indexed: 12/30/2022]
Abstract
This study examines genomic prediction within 8416 Mexican landrace accessions and 2403 Iranian landrace accessions stored in gene banks. The Mexican and Iranian collections were evaluated in separate field trials, including an optimum environment for several traits, and in two separate environments (drought, D and heat, H) for the highly heritable traits, days to heading (DTH), and days to maturity (DTM). Analyses accounting and not accounting for population structure were performed. Genomic prediction models include genotype × environment interaction (G × E). Two alternative prediction strategies were studied: (1) random cross-validation of the data in 20% training (TRN) and 80% testing (TST) (TRN20-TST80) sets, and (2) two types of core sets, "diversity" and "prediction", including 10% and 20%, respectively, of the total collections. Accounting for population structure decreased prediction accuracy by 15-20% as compared to prediction accuracy obtained when not accounting for population structure. Accounting for population structure gave prediction accuracies for traits evaluated in one environment for TRN20-TST80 that ranged from 0.407 to 0.677 for Mexican landraces, and from 0.166 to 0.662 for Iranian landraces. Prediction accuracy of the 20% diversity core set was similar to accuracies obtained for TRN20-TST80, ranging from 0.412 to 0.654 for Mexican landraces, and from 0.182 to 0.647 for Iranian landraces. The predictive core set gave similar prediction accuracy as the diversity core set for Mexican collections, but slightly lower for Iranian collections. Prediction accuracy when incorporating G × E for DTH and DTM for Mexican landraces for TRN20-TST80 was around 0.60, which is greater than without the G × E term. For Iranian landraces, accuracies were 0.55 for the G × E model with TRN20-TST80. Results show promising prediction accuracies for potential use in germplasm enhancement and rapid introgression of exotic germplasm into elite materials.
Collapse
Affiliation(s)
- José Crossa
- Genetic Resources Program and the Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico
| | - Diego Jarquín
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 321 Keim Hall, Lincoln, Nebraska 68583-0915
| | - Jorge Franco
- Departamento de Biometría, Estadística y Computación, Facultad de Agronomía, Universidad de la República (Udelar), Paysandú, Uruguay
| | | | - Juan Burgueño
- Genetic Resources Program and the Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico
| | - Carolina Saint-Pierre
- Genetic Resources Program and the Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico
| | - Prashant Vikram
- Genetic Resources Program and the Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico
| | - Carolina Sansaloni
- Genetic Resources Program and the Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico
| | - Cesar Petroli
- Genetic Resources Program and the Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico
| | - Deniz Akdemir
- Department of Plant Breeding & Genetics, Cornell University, Ithaca, New York 14853
| | - Clay Sneller
- Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691
| | - Matthew Reynolds
- Genetic Resources Program and the Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico
| | - Maria Tattaris
- Genetic Resources Program and the Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico
| | - Thomas Payne
- Genetic Resources Program and the Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico
| | - Carlos Guzman
- Genetic Resources Program and the Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico
| | - Roberto J Peña
- Genetic Resources Program and the Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico
| | - Peter Wenzl
- Genetic Resources Program and the Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico
| | - Sukhwinder Singh
- Genetic Resources Program and the Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 06600, Mexico, DF, Mexico
| |
Collapse
|
12
|
Vikram P, Franco J, Burgueño-Ferreira J, Li H, Sehgal D, Saint Pierre C, Ortiz C, Sneller C, Tattaris M, Guzman C, Sansaloni CP, Fuentes-Davila G, Reynolds M, Sonders K, Singh P, Payne T, Wenzl P, Sharma A, Bains NS, Singh GP, Crossa J, Singh S. Unlocking the genetic diversity of Creole wheats. Sci Rep 2016; 6:23092. [PMID: 26976656 PMCID: PMC4791556 DOI: 10.1038/srep23092] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2015] [Accepted: 02/25/2016] [Indexed: 01/01/2023] Open
Abstract
Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement.
Collapse
Affiliation(s)
- Prashant Vikram
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| | - Jorge Franco
- Departamento de Biometría, Estadística y Computación, Facultad de Agronomía, Udelar, Ruta 3, Km. 363, Paysandú, Uruguay
| | - Juan Burgueño-Ferreira
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| | - Huihui Li
- Institute of Crop Science, CIMMYT-China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| | - Carolina Saint Pierre
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| | - Cynthia Ortiz
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| | | | - Maria Tattaris
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| | - Carlos Guzman
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| | - Carolina Paola Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| | | | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| | - Kai Sonders
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| | - Pawan Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| | - Thomas Payne
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| | - Peter Wenzl
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| | | | | | | | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico DF, Mexico
| |
Collapse
|
13
|
Guzmán C, Alvarez JB. Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1-16. [PMID: 26276148 DOI: 10.1007/s00122-015-2595-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/05/2015] [Accepted: 08/05/2015] [Indexed: 05/21/2023]
Abstract
The starch fraction, comprising about 70% of the total dry matter in the wheat grain, can greatly affect the end-use quality of products made from wheat kernels, especially Asian noodles. Starch is associated with the shelf life and nutritional value (glycaemic index) of different wheat products. Starch quality is closely associated with the ratio of amylose to amylopectin, the two main macromolecules forming starch. In this review, we briefly summarise the discovery of waxy proteins-shown to be the sole enzymes responsible for amylose synthesis in wheat. The review particularly focuses on the different variants of these proteins, together with their molecular characterisation and evaluation of their effects on starch composition. There have been 19 different waxy protein variants described using protein electrophoresis; and at a molecular level 19, 15 and seven alleles described for Wx-A1, Wx-B1 and Wx-D1, respectively. This large variability, found in modern wheat and genetic resources such as wheat ancestors and wild relatives, is in some cases not properly ordered. The proper ordering of all the data generated is the key to enhancing use in breeding programmes of the current variability described, and thus generating wheat with novel starch properties to satisfy the demand of industry and consumers for novel high-quality processed food.
Collapse
Affiliation(s)
- Carlos Guzmán
- CIMMYT. Global Wheat Program, Km 45 Carretera México-Veracruz, El Batán, C.P. 56237, Texcoco, Estado De México, Mexico.
| | - Juan B Alvarez
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
14
|
Ayala M, Alvarez JB, Yamamori M, Guzmán C. Molecular characterization of waxy alleles in three subspecies of hexaploid wheat and identification of two novel Wx-B1 alleles. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2427-2435. [PMID: 26276149 DOI: 10.1007/s00122-015-2597-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/30/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Two novel Wx - B1 null alleles that enlarge the genetic variability for this wheat gene were characterized, whose effects on wheat quality could be different to those of the Wx - B1b allele. The starch composition of wheat grain has a primary influence on flour quality. Wheat starch consists of two types of glucose polymers: amylose (22-35% of the total) and amylopectin (68-75% of the total). Amylose is synthesized by waxy proteins. Several studies have contributed to the catalogue of waxy alleles available for breeders, and the search for novel alleles of these and other proteins related to flour quality continues. In this report, we describe the characterization of two novel Wx-B1 alleles (Wx-B1k and Wx-B1m) in a collection of macha, Indian dwarf and club wheat. Several accessions lacking Wx-B1 protein were detected, and some were caused by the common Wx-B1b null allele. Of the other accessions, four from Indian dwarf wheat showed the insertion of 4 bp within the seventh exon, and one from club wheat had a deletion of four nucleotides in the second exon. These mutations were novel and provisionally catalogued as Wx-B1k and Wx-B1m, respectively, and could be used to enlarge the genetic variability for this gene.
Collapse
Affiliation(s)
- Marcela Ayala
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain
- División de Fitomejoramiento, Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Juan B Alvarez
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain.
| | - Makoto Yamamori
- NARO Institute of Crop Science, National Agriculture and Food Research organization (NARO), Tsukuba, Ibaraki, Japan
| | - Carlos Guzmán
- Wheat Chemistry and Quality Laboratory, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|