1
|
Huang J, Zhang D, Lin W, Omedi JO, Wu M, Huang W. Expression and characterization of β-1,3-1,4-glucanase of Aspergillus usamii in Escherichia coli and its application in sourdough bread making. J Food Sci 2024; 89:1403-1413. [PMID: 38282363 DOI: 10.1111/1750-3841.16955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
A β-1,3-1,4-glucanase gene (Auglu12A) from Aspergillus usamii was successfully expressed in Escherichia coli BL21(DE3). The recombinant enzyme, reAuglu12A was efficiently purified using the one-step nickel-nitrilotriacetic acid affinity chromatography. The specific activity of reAuglu12A was 694.8 U/mg, with an optimal temperature of 55°C and pH of 5.0. The reAuglu12A exhibited stability at temperatures up to 60°C and within the pH range of 4.0-5.5. The reAuglu12A hydrolytic activity was increased in the presence of metal ions, especially K+ and Na+ , whereas it exhibited a Km and Vmax of 8.35 mg/mL and 1254.02 µmol/min/mg, respectively, toward barley β-glucan at pH 5.0 and 55°C. The addition of reAuglu12A significantly increased the specific volume (p < 0.05) and reduced crumb firmness and chewiness (p < 0.05) of wheat-barley sourdough bread during a 7-day storage period compared to the control. Overall, the quality of wheat-barley sourdough bread was improved after incorporation of reAuglu12A (especially at 3000 U/300 g). These changes were attributed to the synergistic effect of acidification by sourdough and its metabolites which provided a conducive environment for the optimal action of reAuglu12A in the degradation of β-glucans of barley flour in sourdough. This stabilized the dough structure, thereby enhancing the quality, texture, and shelf life of the bread. These findings suggest that reAuglu12A holds promise as a candidate for β-glucanase application in the baking industry.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Food Science and Technology, The Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Ingredient Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dong Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wenqian Lin
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jacob Ojobi Omedi
- State Key Laboratory of Food Science and Technology, The Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Ingredient Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Minchen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, The Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Ingredient Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Chen C, Huang J, Omedi JO, Huang C, Cheng X, Zhang B, Li N, Gao T, Liang L, Zheng J, Zeng Y, Zhou Z, Huang W. Characteristics of the microstructure and the key components of white kidney bean sourdough bread induced by mixed-strain fermentation and its influence on gut microbiota. Food Funct 2023; 14:7413-7425. [PMID: 37475602 DOI: 10.1039/d3fo01547e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
In this study, the effect of mixed-strain fermentation using Kluyveromyces marxianus with either Lactobacillus plantarum or Pediococcus pentosaceus on the physiochemical and nutritional properties of white kidney bean flour sourdough was investigated. The results indicated that mixed-strain fermentation reduced the anti-nutritional factors produced from the white kidney bean flour, especially in the sourdough fermented by L. plantarum and K. marxianus (WKS-LK) compared to that by P. pentosaceus and K. marxianus (WKS-JK). Meanwhile, the content of lactic acid and acetic acid and the proportion of peptides with molecular weights ranging from <500 to 5000 Da were increased in the sourdoughs (WKS-LK > WKS-JK). Compared to the control (WK), microstructural characteristics of the dough seemed to be improved in WKS-LK followed by WKS-JK in terms of their corresponding gluten network consistency. Moreover, mixed fermentation led to a reduced starch digestibility accompanied by a higher content of resistant starch and slowly digestible starch. In contrast, protein digestibility was enhanced in WKS-LK and WKS-JK sourdough breads. More importantly, the changes in gut microbiota composition, short-chain fatty acid (SCFA) production, systemic inflammation, glucose tolerance and liver tissue histopathology following 21-day consumption of the sourdough bread were also evaluated via an animal model. The intake of sourdough breads reduced the abundance of the pathogenic microbiota Escherichia shigella. In contrast, the corresponding abundance of Rikenellaceae, Akkermansiaceae, Erysipelotrichaceae, Prevotellaceae and Eubacterium coprostanoligenes was increased, followed by enhanced SCFA generation, with the highest in WKS-LK and then WKS-JK. Meanwhile, a reduced level of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α in the serum and improved glucose tolerance and liver tissue histopathology following the bread consumption were also achieved in the order of WKS-LK, then WKS-JK mice compared to WK.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jing Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jacob Ojobi Omedi
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Chengye Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xin Cheng
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Binle Zhang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Ning Li
- Guangzhou Puratos Food Co. Ltd, Guangzhou 511400, China
| | - Tiecheng Gao
- Guangzhou Puratos Food Co. Ltd, Guangzhou 511400, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jianxian Zheng
- College of Food and Bioengineering, South China University of Technology, and Guangzhou Institute of Food Industry, Guangzhou, Guangdong 510000, China
| | - Yongqing Zeng
- College of Food and Bioengineering, South China University of Technology, and Guangzhou Institute of Food Industry, Guangzhou, Guangdong 510000, China
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Rheo-Fermentation Dough Properties, Bread-Making Quality and Aroma Characteristics of Red Bean ( Vigna angularis) Sourdough Induced by LAB Weissella confusa QS813 Strain Fermentation. Foods 2023; 12:foods12030605. [PMID: 36766134 PMCID: PMC9913992 DOI: 10.3390/foods12030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
This study investigated the impact of in situ-formed exopolysaccharides (EPS) in red bean (Vigna angularis) sourdough fermented by Weissella confusa QS813 on dough rheo-fermentation properties, bread-making quality and aroma characteristics of red bean sourdough bread. The EPS formed in red bean sourdough and sourdough-induced acidification improved the maximum dough fermentation height, gas retention coefficient and viscoelastic properties of dough. Doughs had a lower increase rate of total SDS-soluble gluten proteins, a low decline in GMP content and similar free sulfhydryl content to wheat dough. Resultantly, breads showed declines in baking loss and hardness, increase in specific volume and lower moisture loss and staling rate after 7 days of storage. Finally, despite a reduction in the total content of aroma compounds, new aroma compounds such as acetic acid and higher contents of 3-methyl-1-butanol and 2,3-butanediol were enriched in red bean sourdough bread. Sourdough acidification probably promoted interaction of EPS with gluten or red bean proteins through bond interactions to form structures which stabilized gluten in dough and increased water-binding ability in red bean sourdough bread. This study provided a better understanding of the role of EPS in sourdough in improving bread quality and of promising strategies to address consumer demand for nutritious and clean-label products.
Collapse
|
4
|
The Mechanisms of the Potential Probiotic Lactiplantibacillus plantarum against Cardiovascular Disease and the Recent Developments in its Fermented Foods. Foods 2022; 11:foods11172549. [PMID: 36076735 PMCID: PMC9455256 DOI: 10.3390/foods11172549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease (CVD) has become the leading cause of death worldwide. Many recent studies have pointed out that Lactiplantibacillus plantarum (Lb. plantarum) has great potential in reducing the risk of CVD. Lb. plantarum is a kind of lactic acid bacteria (LAB) widely distributed in fermented food and the human intestinal tract, some strains of which have important effects on human health and the potential to be developed into probiotics. In this review, we summarize the mechanism of potential probiotic strains of Lb. plantarum against CVD. It could regulate the body’s metabolism at the molecular, cellular, and population levels, thereby lowering blood glucose and blood lipids, regulating blood pressure, and ultimately reducing the incidence of CVD. Furthermore, since Lb. plantarum is widely utilized in food industry, we highlight some of the most important new developments in fermented food for combating CVD; providing an insight into these fermented foods can assist scientists in improving the quality of these foods as well as alleviating patients’ CVD symptoms. We hope that in the future functional foods fermented by Lb. plantarum can be developed and incorporated into the daily diet to assist medication in alleviating CVD to some extent, and maintaining good health.
Collapse
|
5
|
Wang J, Xu L, Lv Y, Su Y, Gu L, Chang C, Zhang M, Yang Y, Li J. To improve the gel properties of liquid whole egg by short-term lactic acid bacteria fermentation. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Omedi JO, Huang J, Huang W, Zheng J, Zeng Y, Zhang B, Zhou L, Zhao F, Li N, Gao T. Suitability of pitaya fruit fermented by sourdough LAB strains for bread making: its impact on dough physicochemical, rheo-fermentation properties and antioxidant, antifungal and quality performance of bread. Heliyon 2021; 7:e08290. [PMID: 34778581 PMCID: PMC8577112 DOI: 10.1016/j.heliyon.2021.e08290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to investigate the suitability of incorporating pitaya fruit fermented by antifungal LAB strains Lactiplantibacillus plantarum and Pediococcus pentosaceus at 1: 30 °C for 24h or 2: 31 °C for 19.5h as an ingredient with respect to bread making performance and bio-preservation effect. Underlying mechanisms related to gluten protein hydrolysis, starch hydrolysis, and yeast activity in dough were explored. The antioxidant activity, antifungal activity and bread making performance of the resulted breads were analyzed. Also, the antifungal phenolic acids in the breads were identified and quantified. Incorporation of fermented substrates in dough increased yeast activity and gas production capacity, but decreased gas retention capacity. This was attributed to increased dough acidity after incorporating fruit substrates. As a result, reducing sugar and free sulfhydryl (SH) groups increased in these doughs which indicated higher starch and gluten protein hydrolysis, respectively. However, SH groups increased at lower rate in presence of substrates fermented by L. plantarum and P. pentosaceus at condition 2 than 1. This could be due to improvement of gluten network as revealed by decreased α-helix (%) and increased β-turn (%) in secondary gluten structures in these doughs which subsequently resulted in more homogeneous microstructural properties than in presence of unfermented substrate compared to wheat dough. Subsequently, bread specific volume increased (6.6–20.0%) in presence of fermented substrates, especially fermented by L. plantarum at (2). Moreover, bread incorporated with fermented substrates (P. pentosaceus than L. plantarum at 1 than 2) had enhanced antioxidant activities, lower fungal growth rates based on challenge tests and mold free shelf life. Antifungal phenolic acids such as gallic acids, caffeic acid, protocatechuic acid were only detected in bread incorporated with fruit substrates, and their total content higher in fermented substrates.
Collapse
Affiliation(s)
- Jacob Ojobi Omedi
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Ingredient Functionality Research, Jiangnan University, Wuxi 214122, China
| | - Jing Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Ingredient Functionality Research, Jiangnan University, Wuxi 214122, China
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Ingredient Functionality Research, Jiangnan University, Wuxi 214122, China
- Fujian Zunjin Health Science and Technology Co., Ltd., IBF International Inc., Quanzhou, Fujian 362200, China
- Corresponding author.
| | - Jianxian Zheng
- College of Food and Bioengineering, South China University of Technology, Guangzhou Institute of Food Industry, Guangzhou, 510000, China
- Fujian Zunjin Health Science and Technology Co., Ltd., IBF International Inc., Quanzhou, Fujian 362200, China
- Corresponding author.
| | - Yongqing Zeng
- College of Food and Bioengineering, South China University of Technology, Guangzhou Institute of Food Industry, Guangzhou, 510000, China
| | - Binle Zhang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Ingredient Functionality Research, Jiangnan University, Wuxi 214122, China
- Fujian Zunjin Health Science and Technology Co., Ltd., IBF International Inc., Quanzhou, Fujian 362200, China
| | - Liyuan Zhou
- Fujian Zunjin Health Science and Technology Co., Ltd., IBF International Inc., Quanzhou, Fujian 362200, China
- Shandong Daoxiancun Food Industry Co., Ltd., Heze, Shandong 274000, China
| | - Faqun Zhao
- Fujian Zunjin Health Science and Technology Co., Ltd., IBF International Inc., Quanzhou, Fujian 362200, China
| | - Ning Li
- Fujian Zunjin Health Science and Technology Co., Ltd., IBF International Inc., Quanzhou, Fujian 362200, China
| | - Tiecheng Gao
- Fujian Zunjin Health Science and Technology Co., Ltd., IBF International Inc., Quanzhou, Fujian 362200, China
| |
Collapse
|
7
|
Zhang B, Omedi JO, Zheng J, Huang W, Jia C, Zhou L, Zou Q, Li N, Gao T. Exopolysaccharides in sourdough fermented by Weissella confusa QS813 protected protein matrix and quality of frozen gluten-red bean dough during freeze-thaw cycles. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Teleky BE, Martău GA, Vodnar DC. Physicochemical Effects of Lactobacillus plantarum and Lactobacillus casei Cocultures on Soy-Wheat Flour Dough Fermentation. Foods 2020; 9:E1894. [PMID: 33353037 PMCID: PMC7766497 DOI: 10.3390/foods9121894] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
In contemporary food production, an important role is given to the increase in the nutritional quality of foodstuff. In the bakery industry, one of the main cereals used is wheat flour (WF), which creates bread with proper sensory evaluation but is nutritionally poor. Soy-flour (SF) has increased nutrient content, and its consumption is recommended due to several health benefits. Dough fermentation with lactic acid bacteria (LAB) increases bread shelf life, improves flavor, and its nutritional quality, mostly due to its high organic acid production capability. In the present study, the addition of SF to WF, through fermentation with the cocultures of Lactobacillus plantarum and Lactobacillus casei was analyzed. Three different batches were performed by using WF supplemented with SF, as follows: batch A consisting of 90% WF and 10% SF; batch B-95% WF and 5% SF; batch C-100% WF. The fermentation with these two LABs presented several positive effects, which, together with increased SF content, improved the dough's rheological and physicochemical characteristics. The dynamic rheological analysis exhibited a more stable elastic-like behavior in doughs supplemented with SF (G' 4936.2 ± 12.7, and G″ 2338.4 ± 9.1). Organic acid production changes were the most significant, especially for the lactic, citric, and tartaric content.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (B.-E.T.); (G.A.M.)
| | - Gheorghe Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (B.-E.T.); (G.A.M.)
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (B.-E.T.); (G.A.M.)
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Tian L, Hu S, Jia J, Tan W, Yang L, Zhang Q, Liu X, Duan X. Effects of short-term fermentation with lactic acid bacteria on the characterization, rheological and emulsifying properties of egg yolk. Food Chem 2020; 341:128163. [PMID: 33035853 DOI: 10.1016/j.foodchem.2020.128163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/07/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Lactic acid bacteria fermentation is a safe and green technology that can modify the function of food ingredients (including proteins). In this article, egg yolks were subjected to fermentation with commercial lactic acid bacteria for 0, 3, 6 and 9 h, respectively. After fermentation treatment, the microbial composition has changed obviously (Streptococcus thermophilus increased significantly). The free sulfhydryl group (SH) contents and surface hydrophobicity of egg yolk proteins were significantly reduced. The rheological results indicated that the treated egg yolks possessed a decreased apparent viscosity. Correspondingly, the emulsifying activity of egg yolk was enhanced from 9.07 to 19.55, 23.40 and 24.61 m2/g for 3, 6 and 9 h of fermentation, respectively. And the emulsifying stability reached the maximum after 3 h of fermentation. This study investigated the relationship between structure and properties of yolk proteins, and showed that lactic acid fermentation endued egg yolk with better emulsifying properties.
Collapse
Affiliation(s)
- Liangjie Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Shuting Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Wen Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Lu Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Qinjun Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
10
|
Influencing factor of resistant starch formation and application in cereal products: A review. Int J Biol Macromol 2020; 149:424-431. [DOI: 10.1016/j.ijbiomac.2020.01.264] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/03/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
|
11
|
Karrar E, Musa A, Sheth S, Huang W, Sarpong F, Wang X. Effect of sorghum sourdough and nabag (zizyphus spina-christi) pulp powder on dough fermentation and quality characteristics of bread. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00307-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Omedi JO, Huang W, Zheng J. Effect of sourdough lactic acid bacteria fermentation on phenolic acid release and antifungal activity in pitaya fruit substrate. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Zhang G, Tu J, Sadiq FA, Zhang W, Wang W. Prevalence, Genetic Diversity, and Technological Functions of theLactobacillus sanfranciscensisin Sourdough: A Review. Compr Rev Food Sci Food Saf 2019; 18:1209-1226. [DOI: 10.1111/1541-4337.12459] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Guohua Zhang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | - Jian Tu
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | | | - Weizhen Zhang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| | - Wei Wang
- School of Life ScienceShanxi Univ. Taiyuan 030006 China
| |
Collapse
|
14
|
Omedi JO, Huang W, Zhang B, Li Z, Zheng J. Advances in present-day frozen dough technology and its improver and novel biotech ingredients development trends-A review. Cereal Chem 2019. [DOI: 10.1002/cche.10122] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jacob O. Omedi
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
| | - Binle Zhang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
- MagiBake GS International; Jinjiang; Quanzhou China
| | - Zhibin Li
- MagiBake GS International; Jinjiang; Quanzhou China
| | | |
Collapse
|
15
|
Rezaei A, Amirdivani S, Asl AK, Malekinejad H, Zomorodi S, Hosseinmardi F. Inhibition of the Angiotensin I Converting Enzyme (ACE) and proteolysis of non-fat probiotic yogurt. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2019. [DOI: 10.1590/1981-6723.23418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Abstract Yogurt is an important source of many biologically active peptides with specific health benefits. The majority of the bioactive peptides produced during yogurt manufacture are related to angiotensin converting enzyme inhibitory (ACE-I) peptides. The present study evaluated the proteolysis and angiotensin converting enzyme (ACE) inhibitory activities of non-fat probiotic yogurt supplemented with sodium caseinate (0 to 4%), and Mentha piperita (peppermint) extract (0 to 0.4%) during 20 days of storage. Good correlation (R = 0.90) was found between the growth of Lactobacillus casei LFTI® L26 and ACE inhibition in all samples during the initial stages of storage, as compared to the control yogurt, with a significant (p < 0.05) decrease after storage. The results showed that the addition of sodium caseinate and peppermint extract had a significant (p < 0.05) effect on proteolysis and the viability of L. casei LFTI® L26, enhancing the ACE activity. The IC50 values of the sample containing 0.4% of peppermint and of the sample containing 4% of sodium caseinate were 0.12 and 0.02 mg/mL respectively. The results showed that the use of 4% of sodium caseinate and 0.4% of peppermint extract could provide higher probiotic viability (1.3×107cfu/g) on the 20th day of storage.
Collapse
|
16
|
Zhang B, Yang Z, Huang W, Omedi JO, Wang F, Zou Q, Zheng J. Isoflavone aglycones enrichment in soybean sourdough bread fermented by lactic acid bacteria strains isolated from traditional Qu starters: Effects on in vitro gastrointestinal digestion, nutritional, and baking properties. Cereal Chem 2018. [DOI: 10.1002/cche.10116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Binle Zhang
- State Key Laboratory of Food Science and Technology, the Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Ingredient Functionality Research Jiangnan University Wuxi China
| | - Zixuan Yang
- State Key Laboratory of Food Science and Technology, the Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Ingredient Functionality Research Jiangnan University Wuxi China
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, the Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Ingredient Functionality Research Jiangnan University Wuxi China
| | - Jacob Ojobi Omedi
- State Key Laboratory of Food Science and Technology, the Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Ingredient Functionality Research Jiangnan University Wuxi China
| | - Feng Wang
- MagiBake International Inc. Wuxi Jiangsu China
| | - Qibo Zou
- MagiBake International Inc. Wuxi Jiangsu China
| | - Jianxin Zheng
- Institute of Food and Bioengineering South China University of Technology Guangzhou Guangdong China
| |
Collapse
|
17
|
Gan RY, Li HB, Gunaratne A, Sui ZQ, Corke H. Effects of Fermented Edible Seeds and Their Products on Human Health: Bioactive Components and Bioactivities. Compr Rev Food Sci Food Saf 2017; 16:489-531. [DOI: 10.1111/1541-4337.12257] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ren-You Gan
- Dept. of Food Science and Engineering, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 China
- School of Biological Sciences; The Univ. of Hong Kong; Pokfulam Road Hong Kong
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health; Sun Yat-sen Univ.; Guangzhou 510080 China
| | - Anil Gunaratne
- Faculty of Agricultural Sciences; Sabaragamuwa Univ. of Sri Lanka; P.O. Box 02 Belihuloya Sri Lanka
| | - Zhong-Quan Sui
- Dept. of Food Science and Engineering, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 China
| | - Harold Corke
- Dept. of Food Science and Engineering, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 China
| |
Collapse
|