1
|
Zhang X, Ma H, Jiang P, Chen Y, Ma W, Chen P, Ma H, Li X, Ma J, Sun Q. Transcriptome and metabolism study reveals impact of nitrogen fertilizer on triticale. PROTOPLASMA 2024:10.1007/s00709-024-01986-3. [PMID: 39302434 DOI: 10.1007/s00709-024-01986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Autumn-sown forage triticale can effectively leverage the optimal light and heat conditions in Ningxia, a region that boasts an abundance of light and heat resources sufficient for a single seasonal crop, but limited for two seasons. This not only fully utilizes the limited growing season but also significantly improves grass yield and economic efficiency per unit area. To enhance triticale yield in low-light and low-temperature environments, we investigated the impact of applying different concentrations of nitrogen fertilizer on triticale forage yield. Our findings revealed that nitrogen fertilizer application significantly increased triticale biomass, with the N4 treatment group exhibiting the most profound effect. To further explore the mechanisms behind nitrogen fertilizer's regulation of triticale growth and development, we conducted transcriptomic and metabolomic studies. These studies revealed that nitrogen fertilizer application significantly heightened transcription activity and protein synthesis in triticale, fostering the development of its seeds. Additionally, appropriate concentrations of nitrogen fertilizer significantly promoted photosynthesis. Metabolomic analysis revealed that nitrogen fertilizer application increased the levels of proline and O-phosphoethanolamine, enhancing triticale's stress resistance and supporting its growth and development under adverse conditions.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 756002, Ningxia, China
- Guyuan Branch, Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, 756009, Ningxia, China
| | - Hongxiu Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 756002, Ningxia, China
| | - Peng Jiang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 756002, Ningxia, China
| | - Yongwei Chen
- Agricultural Technology Extension and Service Center of Ningxia Agricultural Reclamation Management Bureau, Yinchuan, 7560021, Ningxia, China
| | - Wenli Ma
- Agricultural Technology Extension and Service Center of Ningxia Agricultural Reclamation Management Bureau, Yinchuan, 7560021, Ningxia, China
| | - Ping Chen
- Agricultural Technology Extension and Service Center of Ningxia Agricultural Reclamation Management Bureau, Yinchuan, 7560021, Ningxia, China
| | - Hongcai Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 756002, Ningxia, China
| | - Xuexue Li
- School of Agriculture, Ningxia University, Yinchuan, 756002, Ningxia, China
| | - Jiale Ma
- School of Agriculture, Ningxia University, Yinchuan, 756002, Ningxia, China
| | - Quan Sun
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 756002, Ningxia, China.
| |
Collapse
|
2
|
Thompson M, Okamoto M, Martin A, Seneweera S. Grain protein concentration at elevated [CO2] is determined by genotype dependent variations in nitrogen remobilisation and nitrogen utilisation efficiency in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:120-128. [PMID: 36228443 DOI: 10.1016/j.plaphy.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Predictions for wheat grown under future climate conditions indicate a decline in grain protein concentration accompanied with an increase in yield due to increasing carbon dioxide concentrations. Currently, there is a lack of understanding as to the complete mechanism that governs the response of grain protein concentration (GPC) to elevated carbon dioxide (e[CO2]). We investigated the GPC of 18 wheat genotypes from a doubled haploid wheat population and the two parental genotypes, Kukri and RAC0875. In addition, other nitrogen and biomass related traits were analysed to further elucidate which traits are connected with the decline in GPC. Wheat was grown under ambient and elevated [CO2] in an environmentally controlled glasshouse. Plant nitrogen and biomass accumulation were measured at anthesis and maturity. We found that GPC declined under e[CO2] and that the response of GPC to e[CO2] was negatively correlated with nitrogen utilisation efficiency and harvest index. The extent that total biomass (anthesis), harvest index, photosynthesis, nitrogen utilisation and remobilisation efficiency, total nitrogen remobilisation and post-anthesis nitrogen uptake impacted GPC in response to e[CO2] varied across genotype, suggesting that multiple mechanisms are responsible for GPC decline at e[CO2] and that these mechanisms are effected differentially across genotypes.
Collapse
Affiliation(s)
- Michael Thompson
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia; Integrity Ag and Environment, Highfields, QLD, Australia
| | - Mamoru Okamoto
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Saman Seneweera
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
3
|
Xu A, Zhang L, Wang X, Cao B. Nitrogen fertilization and CO 2 concentration synergistically affect the growth and protein content of Agropyron mongolicum. PeerJ 2022; 10:e14273. [PMID: 36340197 PMCID: PMC9632468 DOI: 10.7717/peerj.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Background The nitrogen (N) and protein concentrations in plant tissues exposed to elevated CO2 (eCO2) generally decline , such declines in forage grass composition are expected to have negative implications for the nutritional and economic value of grass. Plants require N for the production of a photosynthetically active canopy and storage proteins in the tissues, whose functionality will strongly influence productivity and quality. The objective of this study was to investigate whether eCO2 plus N-fertilization increases growth and N nutrition of Agropyron mongolicum, and the dependence of this improvement on the coordination between root and leaf development. Methods We analyzed A. mongolicum from field-grown within the open-top chambers (OTCs) facility under two atmospheric CO2 (ambient, 400 ± 20 µmol mol-1, aCO2, and elevated, 800 ± 20 µmol mol-1, eCO2) and three N-fertigation treatments (control, low N-fertigation , and high N-fertigation) for two months. Results Elevated CO2 plus N-fertigation strongly increased shoot and root biomass, and the nitrogen and protein concentrations of A. mongolicum compared to those plants at aCO2 levels. Increased N content in leaves and reduced specific leaf area (SLA) at a high N supply could alleviate photosynthetic acclimation to eCO2 and drive the production of greater shoot biomass with the potential for higher photosynthesis, productivity, and nutritional quality. The increased root length (RL), the ratio of total aboveground N taken up per RL (TN/RL), stomatal conductance (Gs), and transpiration rate (Tr) contribute to the transpiration-driven mass flow of N, consequently increasing N uptake by roots. In addition, a smaller percentage of N remained as unassimilated nitrate ( NO 3 - ) under eCO2, indicating that assimilation of NO 3 - into proteins was not inhibited by eCO2. These findings imply that grass productivity and quality will enhance under anticipated elevated CO2 concentration when effective management measures of N-fertilization are employed.
Collapse
Affiliation(s)
- Aiyun Xu
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Lihua Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaojia Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Bing Cao
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
4
|
A S, Sathee L, Singh D, Jha SK, Chinnusamy V, Singh MP. Interactive effect of elevated CO 2 and nitrogen dose reprograms grain ionome and associated gene expression in bread wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:134-143. [PMID: 35344758 DOI: 10.1016/j.plaphy.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Wheat crop grown under elevated CO2 (EC) often have a lowered grain nitrogen (N) and protein concentration along with an altered grain ionome. The mechanistic understanding on the impact of CO2 x N interactions on the grain ionome and the expression of genes regulating grain ionome is scarce in wheat. In the present study, the interactive effect of EC and N dosage on grain yield, grain protein, grain ionome, tissue nitrate, and the expression of genes contributing to grain ionome (TaNAM-B1 and TaYSL6) are described. Three bread wheat genotypes were evaluated under two CO2 levels (Ambient CO2 (AC) of 400 ± 10 ppm and elevated CO2 (EC) of 700 ± 10 ppm) and two N levels (Low (LN) and Optimum N (ON). In EC, wheat genotypes HD2967 and HI 1500 recorded a significant decrease in grain nitrate content, while leaf and stem nitrate showed a significant increase. BT. Schomburgk (BTS), showed a significant increase in unassimilated nitrate and a decline in grain N and grain protein under EC. There was a general decline of grain ionome (N, P, K, Ca, Fe) in EC, except for grain Na content. The expression of genes TaNAM-B1 and TaYSL6 associated with protein and micronutrient remobilization to grains during senescence were affected by both EC and N treatments. For instance, in flag leaves of BTS, the expression of TaNAM-B1 and TaYSL6 were lower in EC-LN compared to AC-LN. In maturing spikes, transcript abundance of TaNAM-B1 and TaYSL6 were lower in EC in BTS. The altered transcript abundance of TaYSL6 and TaNAM-B1 in source and sink supports the change in grain ionome and suggests an N dependent transcriptional reprogramming in EC.
Collapse
Affiliation(s)
- Sinto A
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dalveer Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shailendra K Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Madan Pal Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
5
|
Gao Y, de Bang TC, Schjoerring JK. Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO 2. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1209-1221. [PMID: 30525274 PMCID: PMC6576097 DOI: 10.1111/pbi.13046] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/23/2018] [Accepted: 11/09/2018] [Indexed: 05/23/2023]
Abstract
Cytosolic glutamine synthetase (GS1) plays a central role in nitrogen (N) metabolism. The importance of GS1 in N remobilization during reproductive growth has been reported in cereal species but attempts to improve N utilization efficiency (NUE) by overexpressing GS1 have yielded inconsistent results. Here, we demonstrate that transformation of barley (Hordeum vulgare L.) plants using a cisgenic strategy to express an extra copy of native HvGS1-1 lead to increased HvGS1.1 expression and GS1 enzyme activity. GS1 overexpressing lines exhibited higher grain yields and NUE than wild-type plants when grown under three different N supplies and two levels of atmospheric CO2 . In contrast with the wild-type, the grain protein concentration in the GS1 overexpressing lines did not decline when plants were exposed to elevated (800-900 μL/L) atmospheric CO2 . We conclude that an increase in GS1 activity obtained through cisgenic overexpression of HvGS1-1 can improve grain yield and NUE in barley. The extra capacity for N assimilation obtained by GS1 overexpression may also provide a means to prevent declining grain protein levels under elevated atmospheric CO2 .
Collapse
Affiliation(s)
- Yajie Gao
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| | - Thomas C. de Bang
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| | - Jan K. Schjoerring
- Department of Plant and Environmental SciencesFaculty of ScienceCopenhagen UniversityFrederiksbergDenmark
| |
Collapse
|
6
|
Torralbo F, González-Moro MB, Baroja-Fernández E, Aranjuelo I, González-Murua C. Differential Regulation of Stomatal Conductance as a Strategy to Cope With Ammonium Fertilizer Under Ambient Versus Elevated CO 2. FRONTIERS IN PLANT SCIENCE 2019; 10:597. [PMID: 31178873 PMCID: PMC6542952 DOI: 10.3389/fpls.2019.00597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/24/2019] [Indexed: 05/08/2023]
Abstract
While nitrogen (N) derived from ammonium would be energetically less expensive than nitrate-derived N, the use of ammonium-based fertilizer is limited by the potential for toxicity symptoms. Nevertheless, previous studies have shown that exposure to elevated CO2 favors ammonium assimilation in plants. However, little is known about the impact of different forms of N fertilizer on stomatal opening and their consequent effects on CO2 and H2O diffusion in wheat plants exposed to ambient and elevated CO2. In this article, we have examined the response of the photosynthetic machinery of durum wheat (Triticum durum, var. Amilcar) grown with different types of N fertilizer (NO3 -, NH4 +, and NH4NO3) at 400 versus 700 ppm of CO2. Alongside gas exchange and photochemical parameters, the expression of genes involved in CO2 (PIP1.1 and PIP2.3) and H2O (TIP1) diffusion as well as key C and N primary metabolism enzymes and metabolites were studied. Our results show that at 400 ppm CO2, wheat plants fertilized with ammonium as the N source had stress symptoms and a strong reduction in stomatal conductance, which negatively affected photosynthetic rates. The higher levels of PIP1.1 and PIP2.3 expression in ammonium-fertilized plants at 400 ppm CO2 might reflect the need to overcome limitations to the CO2 supply to chloroplasts due to restrictions in stomatal conductance. This stomatal limitation might be associated with a strategy to reduce ammonium transport toward leaves. On the other hand, ammonium-fertilized plants at elevated CO2 did not show stress symptoms, and no differences were detected in stomatal opening or water use efficiency (WUE). Moreover, similar gene expression of the aquaporins TIP1, PIP1.1, and PIP2.3 in ammonium-fertilized plants grown at 700 ppm compared to nitrate and ammonium nitrate plants would suggest that an adjustment in CO2 and H2O diffusion is not required. Therefore, in the absence of a stress context triggered by elevated CO2, ammonium- and ammonium nitrate-fertilized plants were able to increase their photosynthetic rates, which were translated eventually into higher leaf protein content.
Collapse
Affiliation(s)
- Fernando Torralbo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | | | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB)-CSIC, Mutilva, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|