1
|
Guilherme Sebastião V, Batista D, Rebellato AP, Alves Macedo J, Steel CJ. Sustainable production of naturally colored extruded breakfast cereals from blends of broken rice and vegetable flours. Food Res Int 2023; 172:113078. [PMID: 37689858 DOI: 10.1016/j.foodres.2023.113078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 09/11/2023]
Abstract
There is a growing demand for practical and healthy food products. Obtaining naturally colored breakfast cereals with the incorporation of functional ingredients is a promising alternative for consumers that are looking for healthiness. This study aimed to evaluate the feasibility of using vegetable flours, rich in pigments, to obtain naturally colored breakfast cereals through thermoplastic extrusion. Vegetables considered "unsuitable for the retail market", classified as "type B", were used to prepare different flours from carrot (CF), spinach (SF) and beetroot (BF). Extrudates were produced from a mixture of 90% broken rice (BR) and 10% vegetable flour (CF, SF or BF). Besides giving the extrudates a natural color, the use of vegetable flours also provided nutritional and functional enrichment due to increased mineral, protein, lipid, fiber and phenolic compound contents, and greater antioxidant capacity. However, some of these components, such as fibers, affect extrudate physical structure and technological characteristics, evidenced by reduced expansion, hardness, paste viscosity and greater interaction with water present in milk under consumption conditions. In general, the evaluated flours proved to be an alternative for imparting a natural color to extruded breakfast cereals, in addition to positively contributing to their nutritional and functional value.
Collapse
Affiliation(s)
- Victor Guilherme Sebastião
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Daniel Batista
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Ana Paula Rebellato
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Juliana Alves Macedo
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Caroline Joy Steel
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Dehnad D, Ghorani B, Emadzadeh B, Emadzadeh M, Assadpour E, Rajabzadeh G, Jafari SM. Recent advances in iron encapsulation and its application in food fortification. Crit Rev Food Sci Nutr 2023; 64:12685-12701. [PMID: 37703437 DOI: 10.1080/10408398.2023.2256004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Iron (Fe) is an important element for our body since it takes part in a huge variety of metabolic processes. However, the direct incorporation of Fe into food fortification causes a number of problems along with undesirable organoleptic properties. Thus, encapsulation has been suggested to alleviate this problem. This study first sheds more light on the Fe encapsulation strategies and comprehensively explains the results of Fe encapsulation studies in the last decade. Then, the latest attempts to use Fe (in free or encapsulated forms) to fortify foods such as bakery products, dairy products, rice, lipid-containing foods, salt, fruit/vegetable-based products, and infant formula are presented. Double emulsions are highly effective at keeping their Fe content and display encapsulation efficiency (EE) > 88% although it decreases upon storage. The encapsulation by gel beads possesses several advantages including high EE, as well as reduced and great Fe release in gastric and duodenal conditions, respectively. Cereals, particularly bread and wheat, are common staple foods globally; they are very suitable for food fortification by Fe derivatives. Nevertheless, the majority of Fe in flour is available as salts of phytic acid (IP6) and phytates, reducing Fe bioavailability in the human body. The sourdough process degrades IP6 completely while Chorleywood Bread Making Process and conventional processes decrease it by 75% in comparison with whole meal flour.
Collapse
Affiliation(s)
- Danial Dehnad
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Maryam Emadzadeh
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ghadir Rajabzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
3
|
Tan C, Karaca AC, Assadpour E, Jafari SM. Influence of different nano/micro-carriers on the bioavailability of iron: Focus on in vitro-in vivo studies. Adv Colloid Interface Sci 2023; 318:102949. [PMID: 37348384 DOI: 10.1016/j.cis.2023.102949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
Anemia resulting from iron (Fe) deficiency is a global public health problem. The deficiency of Fe is usually due to insufficient dietary intake of iron, interaction of Fe with other food components, and thus low bioaccessibility/bioavailability. Fe encapsulation has the potential to tackle some major challenges in iron fortification of foods. Various nano/micro-carriers have been developed for encapsulation of Fe, including emulsions, liposomes, hydrogels, and spray-dried microcapsules. They could reduce the interactions of Fe with food components, increase iron tolerance and intestinal uptake, and decrease adverse effects. This article review covers the factors affecting the bioavailability of Fe along with emerging carriers that can be used as a solution of this issue. The application of Fe-loaded carriers in food supplements and products is also described. The advantages and limitations associated with the delivery efficiency of each carrier for Fe are highlighted.
Collapse
Affiliation(s)
- Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
4
|
Mihaly Cozmuta A, Nicula C, Peter A, Mihaly Cozmuta L, Nartea A, Kuhalskaya A, Pacetti D, Silvi S, Fiorini D, Pruteanu L. Cricket and yellow mealworm powders promote higher bioaccessible fractions of mineral elements in functional bread. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
5
|
Rebellato AP, Grazielle Siqueira Silva J, Probio de Moraes P, Trajano B, Azevedo Lima Pallone J. Static in vitro digestion methods for assessing essential minerals in processed meat products. Food Res Int 2022; 155:111121. [DOI: 10.1016/j.foodres.2022.111121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
|
6
|
Brites LTGF, Rebellato AP, Meinhart AD, Godoy HT, Pallone JAL, Steel CJ. Technological, sensory, nutritional and bioactive potential of pan breads produced with refined and whole grain buckwheat flours. Food Chem X 2022; 13:100243. [PMID: 35499026 PMCID: PMC9040025 DOI: 10.1016/j.fochx.2022.100243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
Breads made with 30% refined buckwheat flour or 30% whole grain buckwheat flour had minor interference in technological quality. Breads made with 30% or 45% whole grain buckwheat flour presented higher mineral contents. Breads made with refined buckwheat flour presented higher mineral bioaccessibility. After baking, rutin and quercetin levels increased, mainly in breads with 45% whole grain buckwheat flour. Breads made with 30% refined buckwheat flour or 30% whole grain buckwheat flour were well accepted by consumers.
The nutritional quality and bioactive potential of breads made with partial replacement of refined wheat flour (RWF) with 30% or 45% refined buckwheat flour (RBF) or whole buckwheat flour (WGBF) was assessed through mineral bioaccessibility, starch digestibility, dietary fiber content and bioactive potential by determining rutin and quercetin levels during processing. Moreover, technological quality and sensory acceptance were also evaluated. Breads made with 30% or 45% WGBF showed higher mineral and fiber contents compared to the control, while the formulations with RBF showed higher bioaccessibility. No changes were observed in the rutin levels of the dough before and after fermentation, but after baking, rutin and quercetin levels increased. The highest starch hydrolysis was found in the formulation containing 45% RBF. The formulations made with 30% RBF or 30% WGBF were well accepted by consumers. Our study shows interesting results, as few studies report the effect of processing on bioactive compounds.
Collapse
Affiliation(s)
- Lara T G F Brites
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, R. Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil
| | - Ana P Rebellato
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, R. Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil
| | - Adriana D Meinhart
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, R. Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil
| | - Helena T Godoy
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, R. Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil
| | - Juliana A L Pallone
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, R. Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil
| | - Caroline J Steel
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, R. Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Taglieri I, Macaluso M, Bianchi A, Sanmartin C, Quartacci MF, Zinnai A, Venturi F. Overcoming bread quality decay concerns: main issues for bread shelf life as a function of biological leavening agents and different extra ingredients used in formulation. A review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1732-1743. [PMID: 32914410 DOI: 10.1002/jsfa.10816] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
As is widely accepted, the quality decay of freshly baked bread that affects product shelf life is the result of a complex multifactorial process that involves physical staling, together with microbiological, chemical and sensorial spoilage. In this context, this paper provides a critical review of the recent literature about the main factors affecting shelf life of bread during post-baking. An overview of the recent findings about the mechanism of bread staling is firstly provided. Afterwards, the effect on staling induced by baker's yeasts and sourdough as well as by the extra ingredients commonly utilized for bread fortification is also addressed and discussed. As inclusion/exclusion criteria, only papers dealing with wheat bread and not with long-life bread or gluten-free bakery products are taken into consideration. Despite recent developments in international scientific literature, the whole mechanism that induces bread staling is far from being completely understood and the best analytical methods to be adopted to measure and/or describe in depth this process appear still debated. In this topic, the effects induced on bread shelf life by the use of biological leavening agents (baker's yeasts and sourdough) as well as by some extra ingredients included in the bread recipe have been individuated as two key issues to be addressed and discussed in terms of their influence on the kinetics of bread staling. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Mike Frank Quartacci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Man Y, Xu T, Adhikari B, Zhou C, Wang Y, Wang B. Iron supplementation and iron-fortified foods: a review. Crit Rev Food Sci Nutr 2021; 62:4504-4525. [PMID: 33506686 DOI: 10.1080/10408398.2021.1876623] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
About one-third of the world population is suffering from iron deficiency. Delivery of iron through diet is a practical, economical, and sustainable approach. Clinical studies have shown that the consumption of iron-fortified foods is one of the most effective methods for the prevention of iron deficiency. However, supplementing iron through diet can cause undesirable side-effects. Thus, it is essential to develop new iron-rich ingredients, iron-fortified products with high bioavailability, better stability, and lower cost. It is also essential to develop newer processing technologies for more effective fortification. This review compared the iron supplementation strategies used to treat the highly iron-deficient population and the general public. We also reviewed the efficacy of functional (iron-rich) ingredients that can be incorporated into food materials to produce iron-fortified foods. The most commonly available foods, such as cereals, bakery products, dairy products, beverages, and condiments are still the best vehicles for iron fortification and delivery.Scope of reviewThe manuscript aims at providing a comprehensive review of the latest publications that cover three aspects: administration routes for iron supplementation, iron-rich ingredients used for iron supplementation, and iron-fortified foods.
Collapse
Affiliation(s)
- Yaxing Man
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, PR China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Australia
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yuchuan Wang
- School of Food Engineering, Jiangnan University, Wuxi, PR China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
9
|
Rebellato AP, Caramês ETDS, Moraes PPD, Pallone JAL. Minerals assessment and sodium control in hamburger by fast and green method and chemometric tools. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Codină G, Ropciuc S, Voinea A, Dabija A. Evaluation of rheological parameters of dough with ferrous lactate and ferrous gluconate. FOODS AND RAW MATERIALS 2019. [DOI: 10.21603/2308-4057-2019-1-185-192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to analyse the effect ferrous gluconate and ferrous lactate on the rheological be- haviour of dough from a high extraction rate. For fortification of wheat flour, we used iron ions in a divalent form in amounts of 3, 4, and 5 mg/100 g. To record the rheological characteriscics of the fortified wheat flour dough, Farino- graph, Amilograph, Falling Number, Rheofermentometer, and Thermo Haake Mars dynamic rheometer were applied. The Farinograph did not show significant changes in the water absortion values in the samples with ferrous salts. As for dough development time and dough stability, small amounts of ferrous additives increased and large amounts de- creased those parameters. The effect was more significant in the samples with ions from gluconate form than from lactate salt. The Amylograph recorded an increased peak viscosity with an increasing ferrous salt quantity. That was the case for both ferrous salt forms. The increased was in a similar way for both types of ferrous salt forms used. The total CO volume production and the retention coefficient obtained with the help of the Rheofermentometer device increased in the dough samples with 3 and 4 mg of iron/100 g. However, the addition of 5 mg of iron decreased those indicarors. The decrease was more significant for iron ions from ferrous ferrous gluconate than from ferrous lactate. The fundamental rheological properties of the dough were analysed by using a frequency sweep and oscillatory tem- perature sweep test. Ferrous lactate and ferrous gluconate influenced both the fundamental and empirical rheological properrties og the dough in similar way.
Collapse
|
11
|
Bredariol P, Spatti M, Vanin FM. Different baking conditions may produce breads with similar physical qualities but unique starch gelatinization behaviour. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|