1
|
Li HT, Zhang W, Bao Y, Dhital S. Enhancing enzymatic resistance of starch through strategic application of food physical processing technologies. Crit Rev Food Sci Nutr 2024; 64:11826-11849. [PMID: 37589389 DOI: 10.1080/10408398.2023.2245031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The demand for clean-label starch, perceived as environmentally friendly in terms of production and less hazardous to health, has driven the advancement of food physical processing technologies aimed at modifying starch. One of the key objectives of these modifications has been to reduce the glycaemic potency and increase resistant starch content of starch, as these properties have the potential to positively impact metabolic health. This review provides a comprehensive overview of recent updates in typical physical processing techniques, including annealing, heat-moisture, microwave and ultrasonication, and a brief discussion of several promising recent-developed methods. The focus is on evaluating the molecular, supramolecular and microstructural changes resulting from these modifications and identifying targeted structures that can foster enzyme-digestion resistance in native starch and its forms relevant to food applications. After a comprehensive search and assessment, the current physical modifications have not consistently improved starch enzymatic resistance. The opportunities for enhancing the effectiveness of modifications lie in (1) identifying modification conditions that avoid the intensive disruption of the granular and supramolecular structure of starch and (2) exploring novel strategies that incorporate multi-type modifications.
Collapse
Affiliation(s)
- Hai-Teng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Wenyu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Sharma N, Sahu JK, Bansal V, Esua OJ, Rana S, Bhardwaj A, Punia Bangar S, Adedeji AA. Trends in millet and pseudomillet proteins - Characterization, processing and food applications. Food Res Int 2023; 164:112310. [PMID: 36737904 DOI: 10.1016/j.foodres.2022.112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Millets are small-seeded crops which have been well adopted globally owing to their high concentration of macro and micronutrients such as protein, dietary fibre, essential fatty acids, minerals and vitamins. Considering their climate resilience and potential role in nutritional and health security, the year 2023 has been declared as 'International Year of Millets' by the United Nations. Cereals being the major nutrient vehicle for a majority population, and proteins being the second most abundant nutrient in millets, these grains can be a suitable alternative for plant-based proteins. Therefore, this review was written with an aim to succinctly provide an overview of the available literature take on the characterization, processing and applications of millet-based proteins. This information would play an important role in realizing the research gap restricting the utilization of complete potential of millet proteins. This can be further used by researchers and food industries for understanding the scope of millet proteins as an ingredient for novel food product development.
Collapse
Affiliation(s)
- Nitya Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110 016, India
| | - Jatindra K Sahu
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110 016, India.
| | - Vasudha Bansal
- Department of Foods and Nutrition, Government Home Science College, Chandigarh 160 010, India
| | - Okon Johnson Esua
- Department of Agricultural and Food Engineering, University of Uyo, Uyo 520101, Nigeria; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Sudha Rana
- Department of Food Science and Technology, Punjab Agriculture University, Ludhiana, Punjab 141004, India
| | - Aastha Bhardwaj
- Department of Food Technology, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, 29631, USA
| | - Akinbode A Adedeji
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
3
|
Effective moisture diffusivity and activation energy during convective drying of bread containing clove oil/orange oil. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Singh V, Lee G, Son H, Amani S, Baunthiyal M, Shin JH. Anti-diabetic prospects of dietary bio-actives of millets and the significance of the gut microbiota: A case of finger millet. Front Nutr 2022; 9:1056445. [PMID: 36618686 PMCID: PMC9815516 DOI: 10.3389/fnut.2022.1056445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Finger millet (Eleusine coracana) is a staple food in several parts of the world because of its high nutritional value. In addition to its high nutrient content, finger millet contains numerous bioactive compounds, including polyphenol (10.2 mg/g TAE), flavonoid (5.54 mg/g CE), phytic acid (0.48%), and dietary fiber (15-20%). Polyphenols are known for their anti-oxidant and anti-diabetic role. Phytic acid, previously considered an anti-nutritive substance, is now regarded as a nutraceutical as it reduces carbohydrate digestibility and thus controls post-prandial glucose levels and obesity. Thus, finger millet is an attractive diet for patients with diabetes. Recent findings have revealed that the anti-oxidant activity and bio-accessibility of finger millet polyphenols increased significantly (P < 0.05) in the colon, confirming the role of the gut microbiota. The prebiotic content of finger millet was also utilized by the gut microbiota, such as Faecalibacterium, Eubacterium, and Roseburia, to generate colonic short-chain fatty acids (SCFAs), and probiotic Bifidobacterium and Lactobacillus, which are known to be anti-diabetic in nature. Notably, finger millet-induced mucus-degrading Akkermansia muciniphila can also help in alleviate diabetes by releasing propionate and Amuc_1100 protein. Various millet bio-actives effectively controlled pathogenic gut microbiota, such as Shigella and Clostridium histolyticum, to lower gut inflammation and, thus, the risk of diabetes in the host. In the current review, we have meticulously examined the role of gut microbiota in the bio-accessibility of millet compounds and their impact on diabetes.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sliti Amani
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mamta Baunthiyal
- Department of Biotechnology, Govind Ballabh Pant Institute of Engineering and Technology, Ghurdauri, India,*Correspondence: Mamta Baunthiyal,
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea,Jae-Ho Shin,
| |
Collapse
|
5
|
Lux (neé Bantleon) T, Kardell M, Reimold F, Erdoes A, Floeter E. Functional, rheological, and microstructural properties of hydrothermal puffed and raw amaranth flour suspensions. Food Sci Nutr 2022; 10:3724-3735. [PMID: 36348795 PMCID: PMC9632225 DOI: 10.1002/fsn3.2970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 05/28/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
The pseudocereal amaranth is commonly used in food as whole puffed grain. To improve the utilization of amaranth, hydrothermally treated suspensions of puffed and raw Amaranthus caudatus flour and their blends were investigated in this study. The suspensions were hydrothermally treated at 20, 50, and 80°C for 1, 5, and 24 h. The blends were treated at 80°C for 1 h. The effect of hydrothermal treatments of the suspensions on their morphological (color, SEM), water-binding, and rheological-functional properties was studied. The puffed amaranth suspensions exhibited cold swelling properties by rapid viscosity increase and significant water absorption properties. It was found that hydrothermal treatment at 80°C for 1 h significantly increased water absorption and viscosity in puffed and raw flour suspensions. However, the puffed suspensions showed significantly higher values in water binding and viscosity. Suspensions of raw amaranth flour showed increasing color differences with increasing temperature. Blends of raw and puffed amaranth flour resulted in a decreasing color change with increasing puffed flour content. Water absorption of the samples increased with an increasing puffed flour content. Raw amaranth flour and the 50/50 (puffed/raw) blend had the lowest, 10/90 and 20/80 (puffed/raw), and showed similar viscosity profiles to suspensions of pure puffed flour.
Collapse
Affiliation(s)
- Tanja Lux (neé Bantleon)
- Department of Food Processing TechnologyTechnische Universität Berlin, Institute for Food Technology and Food ChemistryBerlinGermany
- Institute for Agricultural and Urban Ecological Projects (IASP) Affiliated to Humboldt Universität BerlinBerlinGermany
| | - Martha Kardell
- Department of Food Processing TechnologyTechnische Universität Berlin, Institute for Food Technology and Food ChemistryBerlinGermany
| | - Frederike Reimold
- University of Applied Sciences Bremerhaven, Food Technology of Animal ProductsBremerhavenGermany
| | - Adam Erdoes
- Institute for Agricultural and Urban Ecological Projects (IASP) Affiliated to Humboldt Universität BerlinBerlinGermany
| | - Eckhard Floeter
- Department of Food Processing TechnologyTechnische Universität Berlin, Institute for Food Technology and Food ChemistryBerlinGermany
| |
Collapse
|
6
|
Wang Y, Jian C. Sustainable plant-based ingredients as wheat flour substitutes in bread making. NPJ Sci Food 2022; 6:49. [PMID: 36307422 PMCID: PMC9614748 DOI: 10.1038/s41538-022-00163-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Bread as a staple food has been predominantly prepared from refined wheat flour. The world's demand for food is rising with increased bread consumption in developing countries where climate conditions are unsuitable for wheat cultivation. This reliance on wheat increases the vulnerability to wheat supply shocks caused by force majeure or man-made events, in addition to negative environmental and health consequences. In this review, we discuss the contribution to the sustainability of food systems by partially replacing wheat flour with various types of plant ingredients in bread making, also known as composite bread. The sustainable sources of non-wheat flours, their example use in bread making and potential health and nutritional benefits are summarized. Non-wheat flours pose techno-functional challenges due to significantly different properties of their proteins compared to wheat gluten, and they often contain off-favor compounds that altogether limit the consumer acceptability of final bread products. Therefore, we detail recent advances in processing strategies to improve the sensory and nutritional profiles of composite bread. A special focus is laid on fermentation, for its accessibility and versatility to apply to different ingredients and scenarios. Finally, we outline research needs that require the synergism between sustainability science, human nutrition, microbiomics and food science.
Collapse
Affiliation(s)
- Yaqin Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Ching Jian
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Punia Bangar S, Suri S, Malakar S, Sharma N, Whiteside WS. Influence of processing techniques on the protein quality of major and minor millet crops: A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences Clemson University 29634 Clemson USA
| | - Shweta Suri
- Amity Institute of Food Technology (AIFT) Amity University Uttar Pradesh 201301 Noida India
| | - Santanu Malakar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management 131028 Sonipat Haryana India
| | - Nitya Sharma
- Centre for Rural Development and Technology Indian Institute of Technology Delhi 110016 New Delhi India
| | | |
Collapse
|
8
|
Bernhardt DC, Castelli MV, Arqueros V, Gerschenson LN, Fissore EN, Rojas AM. Effect of fibers from bracts of maize (Zea mays) as natural additives in wheat bread-making: a technological approach. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01490-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Liu W, Li K, Liu Q, Zhang L, Zhao R, Xu F, Hu H. Effect of moderate hydrothermal‐acidic modified potato pulp on the rheological properties of wheat dough. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Kang Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Qiannan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Liang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Ruixuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Fen Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Honghai Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| |
Collapse
|
10
|
Ahmadi Kabir J, Azizi M, Abbastabar Ahangar H, Aarabi A. Physicochemical, rheological, and baking properties of composite Brotchen bread made from foxtail millet flour. ACTA ALIMENTARIA 2022. [DOI: 10.1556/066.2021.00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Effect of adding foxtail millet flour (FMF) (10, 20, and 30% w/w) to refined wheat flour (RWF) on physicochemical and rheological properties of dough was studied. Qualitative properties of Brotchen bread including moisture, ash, crude fibre, specific volume, and colour of the breads were evaluated. Adding FMF to the flour increased crude fibre, fat, ash, and protein contents and reduced falling number, damaged starch and wet gluten contents, and sample lightness. Consistograph test indicated that addition of the FMF decreased water absorption capacity, maximum pressure, and tolerance, however, drops in pressure at 250 and 450 s became greater. Alveograph test revealed that with adding FMF, dough resistance to extension and dough strength decreased but an increase in dough extensibility was obtained at FMF30%. Increasing the amount of FMF resulted in a decrease in the volume of the bread, and the FMB (foxtail millet bread) 30% had the highest browning index and b*. The FMB20% had the highest resilience and springiness, while higher level of foxtail (30%) increased chewiness.
Collapse
Affiliation(s)
- J. Ahmadi Kabir
- Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - M.H. Azizi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modarres University, Tehran, Iran
| | | | - A. Aarabi
- Department of Food Science and Technology, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| |
Collapse
|
11
|
Utilisation of Amaranth and Finger Millet as Ingredients in Wheat Dough and Bread for Increased Agro-Food Biodiversity. Foods 2022; 11:foods11070911. [PMID: 35406998 PMCID: PMC8997418 DOI: 10.3390/foods11070911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
Amaranth and finger millet are important food security crops in Africa but show poor bread making ability, even in composite wheat breads. Malting and steaming are promising approaches to improve composite bread quality, which have not been fully explored yet. Therefore, in this study, wheat was blended with native, steamed or malted finger millet or amaranth in the ratio of 70:30. Wheat/native amaranth (WHE-NAM) and wheat/malted amaranth (WHE-MAM) had longer dough development times and higher dough stabilities, water absorption capacities and farinograph quality numbers than wheat/steamed amaranth (WHE-SAM), wheat/native finger millet (WHE-NFM), wheat/steamed finger millet (WHE-SFM) or wheat/malted finger millet (WHE-MFM). The WHE-NAM and WHE-MAM breads had lower crumb firmness and chewiness, higher resilience and cohesiveness and lighter colours than WHE-NFM, WHE-SFM and WHE-MFM. Starch and protein digestibility of composite breads were not different (p > 0.05) from each other and ranged between 95−98% and 83−91%, respectively. Composite breads had higher ash (1.9−2.5 g/100 g), dietary fibre (5.7−7.1 g/100 g), phenolic acid (60−122 mg/100 g) and phytate contents (551−669 mg/100 g) than wheat bread (ash 1.6 g/100 g; dietary fibre 4.5 g/100 g; phenolic acids 59 mg/100 g; phytate 170 mg/100 g). The WHE-NAM and WHE-MAM breads possessed the best crumb texture and nutritional profile among the composite breads.
Collapse
|
12
|
Mitharwal S, Kumar S, Chauhan K. Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Informative title: Incorporation of finger millet affects in vitro starch digestion, nutritional, antioxidative and sensory properties of rice noodles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Influences of hydrothermal and pressure treatments of wheat bran on the quality and sensory attributes of whole wheat Chinese steamed bread and pancakes. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Kaimal AM, Mujumdar AS, Thorat BN. Resistant starch from millets: Recent developments and applications in food industries. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Sharma R, Sharma S, Dar B, Singh B. Millets as potential nutri‐cereals: a review of nutrient composition, phytochemical profile and techno‐functionality. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rajan Sharma
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| | - Savita Sharma
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| | - B.N. Dar
- Department of Food Technology Islamic University of Science & Technology 1‐University Avenue Awantipora Srinagar Kashmir192122India
| | - Baljit Singh
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| |
Collapse
|
17
|
Wang Q, Li L, Zheng X. Recent advances in heat-moisture modified cereal starch: Structure, functionality and its applications in starchy food systems. Food Chem 2020; 344:128700. [PMID: 33248839 DOI: 10.1016/j.foodchem.2020.128700] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/04/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Cereals, one of the starch sources, have a tremendous and steady production worldwide. Starchy foods constitute the major part of daily calorie intake for humans. As a simple and green modification approach, heat-moisture treatment (HMT) could change the granular surface characteristics and size, crystalline and helical structure, as well as molecular organization of cereal starch. The changing degree is contingent on HMT parameters and botanical origin. Based on the hierarchical structure, this paper reviews functionalities of heat-moisture modified cereal starch (HMCS) reported in latest years. The functionality of HMCS could be affected by co-existing non-starch ingredients through non-covalent/covalent interactions, depolymerization or simply attachment/encapsulation. Besides, it summarizes the modulation of HMCS in dough rheology and final food products' quality. Selecting proper HMT conditions is crucial for achieving nutritious products with desirable sensory and storage quality. This review gives a systematic understanding about HMCS for the better utilization in food industry.
Collapse
Affiliation(s)
- Qingfa Wang
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Limin Li
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Xueling Zheng
- College of Grain, Oil and Food Science, Henan University of Technology, No.100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| |
Collapse
|