1
|
Gao L, Haesaert G, Van Bockstaele F, Vermeir P, Eeckhout M. Effects of Genotype, Nitrogen, and Sulfur Complex Fertilization on the Nutritional and Technological Characteristics of Buckwheat Flour. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20603-20614. [PMID: 38828918 DOI: 10.1021/acs.jafc.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The present study investigated the effect of nitrogen fertilization (NF) at the levels of 0, 45, and 90 kg·ha-1 combined with selected sulfur complex fertilization (SCF) levels of 0 and 45 kg·ha-1 on the nutritional and technological characteristics of buckwheat flour from five varieties. The results showed that the genotype was a critical factor affecting the chemical composition and physicochemical properties of buckwheat flour. NF significantly increased protein, total starch, and amylose content as well as mineral composition but decreased particle size, color value, and water hydration properties. However, SCF enhanced the ash content and decreased the protein content but had no significant effect on the pasting temperature. In addition, the combination of NF and SCF significantly reduced granule size, water solubility, viscosity, and rheological properties with increasing fertilization levels. This study can guide the cultivation of buckwheat with the desired physicochemical properties and provide information for buckwheat-based products in the food industry.
Collapse
Affiliation(s)
- Licheng Gao
- Cereal and Bakery Technology Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Filip Van Bockstaele
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Pieter Vermeir
- Laboratory for Chemical Analysis, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Mia Eeckhout
- Cereal and Bakery Technology Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Liu Z, Cheng G, Gu Z, Zhou Q, Yang Y, Zhang Z, Zhao R, Li C, Tian J, Feng J, Jiang H. Dynamic rheological behavior of high-amylose wheat dough during various heating stages: Insight from its starch characteristics. Int J Biol Macromol 2024; 271:132111. [PMID: 38821788 DOI: 10.1016/j.ijbiomac.2024.132111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
The objective of this study was to understand how the dynamic rheological behaviors of high-amylose wheat (HAW) dough during various heating stages measured using a mixolab were affected by the starch properties. At the heating stage of 30 °C - 90 °C, low minimum (C2) and peak (C3) torques were observed for HAW doughs, which resulted from their reduced starch granule swelling. During holding at 90 °C, HAW doughs had low minimum (C4) and C3 - C4 torques, indicating a good resistance to mechanical shear and endogenous enzyme degradation. HAW doughs also had low final (C5) and setback (C5 - C4) torques, consistent with their low starch swelling power and solubility. The increased amylose in HAW starch formed long-chain double-helical B-type polymorph and amylose-lipid complex, which resulted in high starch gelatinization-temperatures and enthalpy change, low swelling power and solubility, low pasting viscosity, and high resistance of swollen granules to mechanical shear and enzyme degradation. The overall patterns of dough-rheological behavior of HAW doughs during heating were similar to their respective starch pasting profiles, indicating that starch was the dominant contributor to the dough rheology during heating. This study provides useful information for food applications and manufacturing of HAW-based products, especially none-fermented products requiring firm texture and low viscosity.
Collapse
Affiliation(s)
- Zehua Liu
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration, Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Gaomin Cheng
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration, Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Zhonghua Gu
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration, Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Qiong Zhou
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration, Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yunfei Yang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration, Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Zhaowan Zhang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration, Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Renyong Zhao
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration, Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Chengwei Li
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration, Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jichun Tian
- Shandong Huatian Agricultural Technology Co. Ltd., Taian, Shandong 271604, China
| | - Junwei Feng
- Henan Feitian Biotechnology Co., Ltd., Qixian, Henan 456750, China
| | - Hongxin Jiang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration, Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
3
|
Debonne E, Van de Velde LM, van den Navoij C, Fratte ED, Eeckhout M. Unlocking the potential of pasting properties to predict extrudate characteristics of corn grits blends with high amylose corn starch, potato starch, or rice flour. J Food Sci 2024; 89:217-227. [PMID: 38126107 DOI: 10.1111/1750-3841.16880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The development of new production lines of extruded ready-to-eat (RTE) snacks often results in high losses of edible food due to the trial-and-error approach in industry. Being able to predict extrudate characteristics of new formulations before having to run trials on industrial scale would be beneficial for reducing waste and having a more efficient development process. With this study, the correlation between pasting properties of seven blends of flours/starches and extrudate characteristics was investigated (100% corn grits, 25% and 50% replacement of corn grits with high amylose starch, potato starch, and rice flour). The predictive power of pasting characteristics on extrudate's moisture content, water absorption and solubility index, sectional expansion index (SEI) and hardness was studied. Results indicated the potential of predicting SEI, water solubility index (WSI), and water absorption index (WAI) of RTE-snacks. WSI and WAI were, respectively, negatively correlated with peak temperature (R2 = 0.897), and positively with peak temperature and positively with trough viscosity (R2 = 0.855). One can conclude that the rheometer can be a useful tool to gain insight into the characteristics of the extrudate, although further research with enlargement of the dataset is necessary to make the rheometer effectively deployable for potentially other extrudate characteristics.
Collapse
Affiliation(s)
- Els Debonne
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Louise-Marie Van de Velde
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Camilla van den Navoij
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Elia Dalle Fratte
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Mia Eeckhout
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Lim QY, Cheng LH. A review on stringiness property of cheese and the measuring technique. J Texture Stud 2023. [PMID: 37985234 DOI: 10.1111/jtxs.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
This review paper provides a deep understanding of stringiness property in a cheese product. Stringiness is used to describe the extended continuous strand of a molten cheese, especially mozzarella cheese. Stringiness is often described quantitatively by stretch length, as well as qualitative definition which focuses on the dimension of strand and ease of extensibility. Very often, the scope of defining stringiness attributes is limited by the measuring techniques because a complete experimental setup is required to obtain information on both stretch quantity and stretch quality. Among the measuring methods, cheese extensibility rig stands out to be the best method to assess stringiness attribute of a cheese as it is an objective method. In addition, a detailed study on the molecular behavior and interactions among natural and imitation cheese components in delivering stringiness, and the challenges faced therein have been reviewed. Thus, the review provides a foundation for the development of vegan cheese or plant-based cheese with stringiness properties.
Collapse
Affiliation(s)
- Qai-Yeing Lim
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Lai-Hoong Cheng
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
5
|
Mauro RR, Vela AJ, Ronda F. Impact of Starch Concentration on the Pasting and Rheological Properties of Gluten-Free Gels. Effects of Amylose Content and Thermal and Hydration Properties. Foods 2023; 12:2281. [PMID: 37372492 DOI: 10.3390/foods12122281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The pasting and rheological properties of starch gels from different botanical origins have been widely used to evaluate the application of these starches in pharmaceutical and food products. However, the ways in which these properties are modified by starch concentration and their dependence on amylose content and thermal and hydration properties have not been adequately established so far. An exhaustive study of the pasting and rheological properties of starch gels (maize and rice (normal and waxy in both cases), wheat, potato, and tapioca) at concentrations of 6.4, 7.8, 9.2, 10.6, and 11.9 g/100 g was performed. The results were evaluated in terms of a potential equation fit between each parameter and each gel concentration. The parameters determined for the gels at the studied concentrations were correlated with the hydration properties and thermal properties by applying principal component analysis (PCA). Wheat starch, followed by normal maize and normal rice starches, presented a greater capacity to modulate their gels' pasting and viscoelastic properties via their concentration in water. On the contrary, the characteristics of waxy rice and maize, potato, and tapioca starches were barely modified by concentration in pasting assays, but the gels of potato and tapioca showed noticeable changes in their viscoelastic properties as functions of concentration. In the PCA plot, the non-waxy cereal samples (wheat, normal maize, and normal rice) were located close to each other. Wheat starch gels were the most dispersed on the graph, which is consistent with the high dependence on the concentration of the gel shown in most of the studied parameters. The waxy starches had close positions not too distant from those of the tapioca and potato samples and with little influence from amylose concentration. The potato and tapioca samples were close to the vectors of the crossover point in rheology and peak viscosity in their pasting properties. The knowledge gained from this work allows a better understanding of the effects of starch concentration on food formulations.
Collapse
Affiliation(s)
- Raúl Ricardo Mauro
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain
| | - Antonio José Vela
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain
| | - Felicidad Ronda
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain
| |
Collapse
|
6
|
Filip E, Woronko K, Stępień E, Czarniecka N. An Overview of Factors Affecting the Functional Quality of Common Wheat ( Triticum aestivum L.). Int J Mol Sci 2023; 24:7524. [PMID: 37108683 PMCID: PMC10142556 DOI: 10.3390/ijms24087524] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide, and, as a resilient cereal, it grows in various climatic zones. Due to changing climatic conditions and naturally occurring environmental fluctuations, the priority problem in the cultivation of wheat is to improve the quality of the crop. Biotic and abiotic stressors are known factors leading to the deterioration of wheat grain quality and to crop yield reduction. The current state of knowledge on wheat genetics shows significant progress in the analysis of gluten, starch, and lipid genes responsible for the synthesis of the main nutrients in the endosperm of common wheat grain. By identifying these genes through transcriptomics, proteomics, and metabolomics studies, we influence the creation of high-quality wheat. In this review, previous works were assessed to investigate the significance of genes, puroindolines, starches, lipids, and the impact of environmental factors, as well as their effects on the wheat grain quality.
Collapse
Affiliation(s)
- Ewa Filip
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Karolina Woronko
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Edyta Stępień
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16, 70-383 Szczecin, Poland
| | - Natalia Czarniecka
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| |
Collapse
|
7
|
Cheeyattil S, Rajan A, Radhakrishnan M. Curcumin-infused xerogel-based nutraceutical development and its 4D shape-shifting behavior. J Food Sci 2023; 88:810-824. [PMID: 36579836 DOI: 10.1111/1750-3841.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
Cereal-based functional foods with shape-changing (four-dimensional [4D]) properties is a novel approach in the current scenario. The main objective of the research is to develop a bioactive compound incorporated in flat two-dimensional xerogel and its hydromorphic three-dimensional shape transformation. The spray-dried curcumin at three different concentrations was incorporated with hydrogel (wheat-barley flour 8%), and flat xerogel was formed by sessile drop drying at 30°C and 78% relative humidity. The top smooth and rough bottom surface of xerogel provided anisotropic swelling properties during the shape transformation. The antimicrobial and antioxidant properties of xerogel were examined, and the retention of curcumin during the shape transformation was also examined during the research. The porous structure of barley-wheat xerogel has enhanced the incorporation of water-insoluble bioactive components like curcumin. The diffusion properties of curcumin xerogel provided an antimicrobial effect against gram-negative pathogenic bacteria. The optimum temperature (70°C) during the shape-shifting provides the retention of bioavailability and functional properties of curcumin. The work describes the opportunities for developing xerogel incorporated with more bioactive and functional components and study its stability and hydromorphic 4D shape-changing behavior. PRACTICAL APPLICATION: Xerogel is a good carrier for different bioactive components. The development of curcumin-infused biodegrade, non-toxic, and cereal-based xerogel provide an excellent opportunity for the delivery of curcumin in a cost-effective way. The shape-changing easily consumable forms of xerogel will attract more consumers, and it retains the bioavailability of infused compounds during processing.
Collapse
Affiliation(s)
| | - Anbarasan Rajan
- Centre of Excellence in Nonthermal Processing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM-T), Thanjavur, India
| | - Mahendran Radhakrishnan
- Centre of Excellence in Nonthermal Processing, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM-T), Thanjavur, India
| |
Collapse
|
8
|
Riazi F, Tehrani MM, Lammers V, Heinz V, Savadkoohi S. Unexpected morphological modifications in high moisture extruded pea-flaxseed proteins: Part I, topological and conformational characteristics, textural attributes, and viscoelastic phenomena. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Zhang Z, Zhang L, He S, Li X, Jin R, Liu Q, Chen S, Sun H. High-moisture Extrusion Technology Application in the Processing of Textured Plant Protein Meat Analogues: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zuoyong Zhang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Luji Zhang
- College of Food Science, Northeast Agricultural University, Heilongjiang, Harbin, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Xingjiang Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Risheng Jin
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Heilongjiang, Harbin, PR China
| | | | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| |
Collapse
|
10
|
Beech D, Beech J, Gould J, Hill S. Effect of amylose/amylopectin ratio and extent of processing on the physical properties of expanded maize starches. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Beech
- University of Nottingham Division of Food, Nutrition and Dietetics Sutton Bonington Leicestershire UK
| | - John Beech
- Real World Business Solutions Ltd Melton Mowbray Leicestershire UK
| | - Joanne Gould
- University of Nottingham Division of Food, Nutrition and Dietetics Sutton Bonington Leicestershire UK
| | - Sandra Hill
- Biopolymer Solutions Ltd Sutton Bonington Leicestershire UK
| |
Collapse
|
11
|
Rheological properties of pea protein isolate-amylose/amylopectin mixtures and the application in the high-moisture extruded meat substitutes. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106732] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|