1
|
Li J, Li L. Physical modification of vegetable protein by extrusion and regulation mechanism of polysaccharide on the unique functional properties of extruded vegetable protein: a review. Crit Rev Food Sci Nutr 2024; 64:11454-11467. [PMID: 37548410 DOI: 10.1080/10408398.2023.2239337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Development and utilization of high quality vegetable protein resources has become a hotspot. Food extrusion as a key technology can efficiently utilize vegetable protein. By changing the extrusion conditions, vegetable protein can obtain unique functional properties, which can meet the different needs of food processing. However, extrusion of single vegetable protein also exposes many disadvantages, such as low degree functional properties, poor quality stability and lower tissue fibrosis. Therefore, addition of polysaccharide has become a new development trend to compensate for the shortcomings of extruded vegetable protein. The unique functional properties of vegetable protein-polysaccharide conjugates (Maillard reaction products) can be achieved after extrusion due to regulation of polysaccharides and adjustment of extrusion parameters. However, the physicochemical changes caused by the intermolecular interactions between protein and polysaccharide during extrusion are complex, so control of these changes is still challenging, and further studies are needed. This review summarizes extrusion modification of vegetable proteins or polysaccharides. Next, the effect of different types of polysaccharides on vegetable proteins and its regulation mechanism during extrusion is mainly introduced, including the extrusion of starch polysaccharide-vegetable protein, and non-starch polysaccharide-vegetable protein. Finally, it also outlines the development perspectives of extruded vegetable protein-polysaccharide.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
2
|
Zhang J, Song J, Wang S, Su Y, Wang L, Ge W. The casein in sheep milk processed by cold plasma technology: Phosphorylation degree, functional properties, oxidation characteristics, and structure. Food Chem 2024; 457:140140. [PMID: 38901350 DOI: 10.1016/j.foodchem.2024.140140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Cold plasma is a nonthermal process used for modification of proteins. The objective of this study was to investigate the effect of cold plasma technology on the phosphorylation degree, functional and oxidation properties, and structure of casein in sheep milk. Cold plasma treatment for 3-4 min significantly increased the phosphorylation degree and enhanced functional properties, including water-holding capacity, solubility, foaming capacity and stability. Besides, plasma treatment time profoundly influenced protein oxidation, and treatment for 2 and 3 min could be the preferred conditions to minimize protein change. The protein conformation became unstable with the extension of treatment time. Particle size, polymer dispersity index, and microscopy images confirmed alterations in the protein structure following 3 min of processing. Consequently, using cold plasma treatment at 10 kHz 20 kV for 3 min could be suggested for milk protein modification, providing a basis for the application of high-quality caseins in food processing.
Collapse
Affiliation(s)
- Jiaying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Jiaqing Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shuangshuang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yangyu Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Linlin Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Guo ZW, Li HJ, Peng N, Li YQ, Liang Y, Zhao YR, Wang CY, Wang ZY, Wang C, Ren X. Characterization of astaxanthin-loaded Pickering emulsions stabilized by conjugates of pea protein isolate and dextran with different molecular weights. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39483104 DOI: 10.1002/jsfa.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Pea protein isolate (PPI) is gaining increasing popularity in the food industry. It provides a diverse range of health benefits, such as hypoallergenic and gluten-free characteristics. However, the functional performance of PPI is hindered by its low solubility and poor stability. Therefore, in this article, PPI and dextran (DX) of different molecular weights were grafted to investigate the effects of grafting DX with different molecular weights on the interface properties and antioxidant properties of PPI. Additionally, the stability and digestive properties of the glycated PPI nanoemulsion system were explored. RESULTS The result showed that the grafting degree of PPI-DX conjugates (PPI-DC) decreased with an increase in the molecular weight of DX. Surface hydrophobicity, antioxidant activity and solubility of PPI-DC were significantly improved after grafting compared with PPI and PPI-DX mixtures (PPI-DM). Astaxanthin-loaded emulsions stabilized by grafted conjugates had smaller droplets and higher astaxanthin encapsulation rate compared to PPI emulsions. In vitro digestion demonstrated that the bioavailability of PPI-DC emulsions was higher than of PPI emulsion. Furthermore, after 24 days of storage, retention rate of astaxanthin-loaded emulsions prepared by conjugates remained above 70%, surpassing that of PPI emulsion. CONCLUSION These results indicated that DX grafting can improve the emulsion properties of PPI. In addition, the DX with a molecular weight of 5 kDa showed the most significant improvement. This study contributes to the advancement of natural emulsifiers by modifying PPI through glycation, and furnishes a valuable reference for its utilization in functional foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Wei Guo
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Heng-Juan Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ning Peng
- School of Agriculture and Forestry Science, Weifang Engineering Vocational College, Weifang, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yan Liang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yu-Ru Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Cai-Yue Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zi-Yue Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chenying Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xidong Ren
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
4
|
Du L, Ru Y, Weng H, Zhang Y, Chen J, Xiao A, Xiao Q. Agar-gelatin Maillard conjugates used for Pickering emulsion stabilization. Carbohydr Polym 2024; 340:122293. [PMID: 38858005 DOI: 10.1016/j.carbpol.2024.122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
A few protein- and polysaccharide-based particles have shown promising potential as stabilizers in multi-phase food systems. By incorporating polymer-based particles and modifying the wettability of colloidal systems, it is possible to create particle-stabilized emulsions with excellent stability. A Pickering emulsifier (AGMs) with better emulsifying properties was obtained by the Maillard reaction between acid-hydrolysed agar and gelatin. Laser confocal microscopy imaging revealed that AGMs particles can be used as solid emulsifiers to produce a typical O/W Pickering emulsion, with AGMs adsorbing onto the droplet surface to form a dense interfacial layer. Cryo-scanning electron microscopy analysis showed that AGMs self-assembled into a three-dimensional network structure, which prevented droplets aggregation through strong spatial site resistance, contributing to emulsion stabilization. These emulsions exhibited stability within a pH range of 1 to 11, NaCl concentrations not exceeding 300 mM, and at temperatures below 80 °C. The most stable emulsion oil-water ratio was 6:4 at a particle concentration of 0.75 % (w/v). AGMs-stabilized Pickering emulsion was utilized to create a semi-solid mayonnaise as a replacement for hydrogenated oil. Rheological analysis demonstrated that low-fat mayonnaise stabilized with AGMs exhibited similar rheological behavior to traditional mayonnaise, offering new avenues for the application of Pickering emulsions in the food industry.
Collapse
Affiliation(s)
- Lipeng Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China
| | - Yi Ru
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Huifen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Yonghui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, PR China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, PR China.
| |
Collapse
|
5
|
Wen K, Zhang Q, Xie J, Xue B, Li X, Bian X, Sun T. Effect of Mono- and Polysaccharide on the Structure and Property of Soy Protein Isolate during Maillard Reaction. Foods 2024; 13:2832. [PMID: 39272597 PMCID: PMC11394747 DOI: 10.3390/foods13172832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
As a protein extracted from soybeans, soy protein isolate (SPI) may undergo the Maillard reaction (MR) with co-existing saccharides during the processing of soy-containing foods, potentially altering its structural and functional properties. This work aimed to investigate the effect of mono- and polysaccharides on the structure and functional properties of SPI during MR. The study found that compared to oat β-glucan, the reaction rate between SPI and D-galactose was faster, leading to a higher degree of glycosylation in the SPI-galactose conjugate. D-galactose and oat β-glucan showed different influences on the secondary structure of SPI and the microenvironment of its hydrophobic amino acids. These structural variations subsequently impact a variety of the properties of the SPI conjugates. The SPI-galactose conjugate exhibited superior solubility, surface hydrophobicity, and viscosity. Meanwhile, the SPI-galactose conjugate possessed better emulsifying stability, capability to produce foam, and stability of foam than the SPI-β-glucan conjugate. Interestingly, the SPI-β-glucan conjugate, despite its lower viscosity, showed stronger hypoglycemic activity, potentially due to the inherent activity of oat β-glucan. The SPI-galactose conjugate exhibited superior antioxidant properties due to its higher content of hydroxyl groups on its molecules. These results showed that the type of saccharides had significant influences on the SPI during MR.
Collapse
Affiliation(s)
- Kun Wen
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiyun Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Xue
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaohui Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaojun Bian
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Tao Sun
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
6
|
Li Z, Jiang H, Guo M, Zhang Z, You X, Wang X, Ma M, Zhang X, Wang C. Modification of casein with oligosaccharides via the Maillard reaction: As natural emulsifiers. Food Res Int 2024; 191:114648. [PMID: 39059902 DOI: 10.1016/j.foodres.2024.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
In the present study, different oligosaccharides (fructooligosaccharide (FOS), galactooligosaccharide (GOS), isomaltooligosaccharide (IMO), and xylooligosaccharide (XOS)) were modified on casein (CN) via Maillard reaction. The CN-oligosaccharide conjugates were evaluated for modifications to functional groups, fluorescence intensity, water- and oil-holding properties, emulsion foaming properties, as well as general emulsion properties and stability. The results demonstrated that the covalent combination of CN and oligosaccharides augmented the spatial repulsion and altered the hydrophobic milieu of proteins, which resulted in a diminution in water-holding capacity, an augmentation in oil-holding capacity, and an enhancement in the emulsification properties of proteins. Among them, CN-XOS exhibited the most pronounced changes, with the emulsification activity index and emulsion stability index increasing by approximately 72% and 84.3%, respectively. Furthermore, CN-XOS emulsions have smaller droplet sizes and higher absolute potential values than CN emulsions. Additionally, CN-XOS emulsions demonstrate remarkable stability when ion concentration and pH are varied. These findings indicate that oligosaccharides modified via Maillard reaction can be used as good natural emulsifiers. This provides a theoretical basis for using oligosaccharides to modify proteins and act as natural emulsifiers.
Collapse
Affiliation(s)
- Zhenghao Li
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Hua Jiang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Min Guo
- Network Information Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zheng Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Xinyu You
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xipeng Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mengjia Ma
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaoning Zhang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Cunfang Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
7
|
Shi W, Xie H, Ouyang K, Wang S, Xiong H, Woo MW, Zhao Q. The effect of rice protein-polyphenols covalent and non-covalent interactions on the structure, functionality and in vitro digestion properties of rice protein. Food Chem 2024; 450:139241. [PMID: 38636382 DOI: 10.1016/j.foodchem.2024.139241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
The characteristics of the crosslinking between rice protein (RP) and ferulic acid (FA), gallic acid (GA), or tannin acid (TA) by covalent binding of Laccase and non-covalent binding were evaluated. The RP-polyphenol complexes greatly improved the functionality of RP. The covalent effect with higher polyphenol binding equivalence showed higher emulsion activity than the non-covalent effect. The solubility, and antioxidant activity of covalent binding were higher than that of non-covalent binding in the RP-FA group, but there was a contrasting behavior in the RP-GA group. The RP-FA was most soluble in conjugates, while the RP-GA had the highest solubility in mixtures. It was found that the covalent complexes were more stable in the intestinal tract. The content of polyphenols in the RP-TA group was rapidly increased at the later intestinal digestion, which indicated the high polyphenol-protective effect in this group. Meanwhile, the RP-TA group showed high reducing power but low digestibility.
Collapse
Affiliation(s)
- Wenyi Shi
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Songyu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Meng Wai Woo
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland 1142, New Zealand
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
8
|
Chen J, Zhang W, Chen Y, Li M, Liu C, Wu X. Effect of glycosylation modification on structure and properties of soy protein isolate: A review. J Food Sci 2024; 89:4620-4637. [PMID: 38955774 DOI: 10.1111/1750-3841.17181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Soybean protein isolate (SPI) is a highly functional protein source used in various food applications, such as emulsion, gelatin, and food packaging. However, its commercial application may be limited due to its poor mechanical properties, barrier properties, and high water sensitivity. Studies have shown that modifying SPI through glycosylation can enhance its functional properties and biological activities, resulting in better application performance. This paper reviews the recent studies on glycosylation modification of SPI, including its quantification method, structural improvements, and enhancement of its functional properties, such as solubility, gelation, emulsifying, and foaming. The review also discusses how glycosylation affects the bioactivity of SPI, such as its antioxidant and antibacterial activity. This review aims to provide a reference for further research on glycosylation modification and lay a foundation for applying SPI in various fields.
Collapse
Affiliation(s)
- Jinjing Chen
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Wanting Zhang
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Yiming Chen
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Meng Li
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Chang Liu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Xiuli Wu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| |
Collapse
|
9
|
Zhang F, Liu J, Uyanga VA, Tang C, Qu Y, Qin X, Chen Y, Liu Y. Preparation and functional properties of rice bran globulin-chitooligosaccharide-quercetin-resveratrol covalent complex. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4977-4988. [PMID: 38567804 DOI: 10.1002/jsfa.13506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/25/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND As the major protein (approximately 36%) in rice bran, globulin exhibits excellent foaming and emulsifying properties, endowing its useful application as a foaming and emulsifying agent in the food industry. However, the low water solubility restricts its commercial potential in industrial applications. The present study aimed to improve this protein's processing and functional properties. RESULTS A novel covalent complex was fabricated by a combination of the Maillard reaction and alkaline oxidation using rice bran globulin (RBG), chitooligosaccharide (C), quercetin (Que) and resveratrol (Res). The Maillard reaction improved the solubility, emulsifying and foaming properties of RBG. The resultant glycosylated protein was covalently bonded with quercetin and resveratrol to form a (RBG-C)-Que-Res complex. (RBG-C)-Que-Res exhibited higher thermal stability and antioxidant ability than the native protein, binary globulin-chitooligosaccharide or ternary globulin-chitooligosaccharide-polyphenol (only containing quercetin or resveratrol) conjugates. (RBG-C)-Que-Res exerted better cytoprotection against the generation of malondialdehyde and reactive oxygen species in HepG2 cells, which was associated with increased activities of antioxidative enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) through upregulated genes SOD1, CAT, GPX1 (i.e. gene for glutathione peroxidase-1), GCLM (i.e. gene for glutamate cysteine ligase modifier subunit), SLC1A11 (i.e. gene for solute carrier family 7, member 11) and SRXN1 (i.e. gene for sulfiredoxin-1). The anti-apoptotic effect of (RBG-C)-Que-Res was confirmed by the downregulation of caspase-3 and p53 and the upregulation of B-cell lymphoma-2 gene expression. CONCLUSION The present study highlights the potential of (RBG-C)-Que-Res conjugates as functional ingredients in healthy foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengjiao Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jinguang Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | | | - Caiyun Tang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yanan Qu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xu Qin
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yilun Chen
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuqian Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
10
|
Zhu PY, Ma CM, Yang Y, Bian X, Ren LK, Wang B, Liu XF, Chen FL, Zhang G, Zhang N. Elucidating the interaction mechanism of rice glutelin and soybean 11S globulin using multi-spectroscopy and molecular dynamics simulation methods. Food Chem 2024; 442:138615. [PMID: 38309242 DOI: 10.1016/j.foodchem.2024.138615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Rice gluten, as the hydrophobic protein, exhibits restricted application value in hydrophilic food, which may be enhanced through interaction with soybean 11S globulin, characterized by favorable functional properties. This study aims at revealing their interaction mechanism via multi-spectroscopy and molecular dynamics simulation. The formation and structural change of rice glutelin-soybean 11S globulin complexes were detected using fluorescence, ultra-violet and circular dichroism spectra. The addition of 11S globulin increased the contents of α-helix, β-turn and random coil, but decreased β-sheet content, and the change in secondary structure was correlated with particle size. Moreover, exposure of hydrophobic groups and formation of disulfide bonds occurred in the complexes. Molecular dynamics simulation verified these experimental results through analyses of root mean square deviation and fluctuation, hydrogen bond, secondary structure, and binding free energy analysis. This study contributes to expounding the interaction mechanism of protein and protein from the molecular level.
Collapse
Affiliation(s)
- Peng-Yu Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Li-Kun Ren
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Fei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Feng-Lian Chen
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
11
|
Kim YJ, Yong HI, Chun YG, Kim BK, Lee MH. Physicochemical characterization and environmental stability of a curcumin-loaded Pickering nanoemulsion using a pea protein isolate-dextran conjugate via the Maillard reaction. Food Chem 2024; 436:137639. [PMID: 37890346 DOI: 10.1016/j.foodchem.2023.137639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
This study investigated pea protein isolate (PPI) and dextran (DX) conjugates produced via the Maillard reaction as Pickering stabilizers for various food applications. The results found that as heating time increased (0-5 h), the grafting degree heightened. The PPI-DX conjugate exhibited a rough porous surface in contrast to native PPI, accompanied by changes in molecular weight and secondary structure. Additionally, the aggregation of low-solubility PPI was partially inhibited due to the contribution of increased solubility and reduced surface hydrophobicity by glycation. Curcumin-loaded Pickering nanoemulsions stabilized with PPI-DX had smaller droplets and higher curcumin encapsulation (greater than80 %) than PPI-stabilized nanoemulsions. PPI-DX adsorbed on the interface showed improved physical stability compared to PPI alone, even after various pH conditions and three heat treatments. The nanoemulsion stabilized with PPI-DX demonstrated improved apparent viscosity and dispersion stability. These findings highlight the effectiveness of PPI-DX conjugates as stabilizers for developing stable and functional Pickering nanoemulsions.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hae In Yong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong Gi Chun
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Min Hyeock Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
12
|
Gao K, Xu Y, Rao J, Chen B. Maillard reaction between high-intensity ultrasound pre-treated pea protein isolate and glucose: Impact of reaction time and pH on the conjugation process and the properties of conjugates. Food Chem 2024; 434:137486. [PMID: 37725841 DOI: 10.1016/j.foodchem.2023.137486] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
In this study, pea protein isolate was pretreated with high intensity ultrasound (HIUS) at 300 W for 5 min. The Maillard reaction (MR) between the pretreated sample (UPPI) and glucose were performed by heating (80 °C) of their aqueous dispersion at various time (0, 6, 12, 18, and 24 h) and pH (6.0, 8.0, 10.0, and 12.0). According to browning index and glucose depletion, the conjugation between UPPI and glucose through MR was not markedly accelerated compared to PPI. FTIR and intrinsic/extrinsic fluorescence spectroscopy showed that HIUS pretreatment could alter secondary and tertiary structures of PPI. HIUS pretreatment coupled with MR increased hydrophobicity and particle size of UPPI-glucose conjugates. Solubility of UPPI and PPI was improved after MR; but the increment of former was lower than the latter. This study suggests that HIUS pretreatment is an effective method to improve the solubility of PPI regardless of the subsequent MR.
Collapse
Affiliation(s)
- Kun Gao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yixiang Xu
- Healthy Processed Foods Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA 94710, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
13
|
Li Z, Jiang H, Guo M, Zhang Z, You X, Wang X, Ma M, Zhang X, Wang C. Effect of various oligosaccharides on casein solubility and other functional properties: Via Maillard reaction. Int J Biol Macromol 2024; 259:129148. [PMID: 38176483 DOI: 10.1016/j.ijbiomac.2023.129148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
This study explored the improvement of casein (CN)'s properties by conjugating it with oligosaccharides, namely, fructooligosaccharide (FOS), galactooligosaccharide (GOS), isomaltooligosaccharide (IMO), and xylo-oligosaccharide (XOS) via Maillard reaction to identify the most optimal oligosaccharides and modification conditions. The degree of grafting was 30.5 ± 0.41 % for CN-FOS, 33.7 ± 0.62 % for CN-GOS, 38.9 ± 0.51 % for CN-IMO, and 43.7 ± 0.54 % for CN-XOS. With the degree of grafting rising, more oligosaccharides were conjugated, causing greater changes in CN properties. The CN-XOS underwent significant alterations, as the introduction of oligosaccharides led to a decrease in particle size by around 51 nm. Furthermore, the hydroxyl groups caused a reduction in surface hydrophobicity, which in turn decreased the proportion of hydrophobic groups. The solubility of CN-XOS increased significantly at pH 3, by approximately 30.99 %. Additionally, the conjugation of oligosaccharides substantially boosted the rates of DPPH, ABTS, and -OH radical scavenging by 4.61 times, 2.20 times, and 2.58 times, respectively, and also improved the thermal stability of the modified CN. Moreover, the process lowered the protein digestibility, possibly enhancing its applicability as an active substance transporter. This research offers additional theoretical backing for altering CN with oligosaccharides and implementing it in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Zhenghao Li
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Hua Jiang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Min Guo
- Network Information Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zheng Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Xinyu You
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xipeng Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mengjia Ma
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaoning Zhang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Cunfang Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
14
|
Gao K, Zha F, Rao J, Chen B. Nonenzymatic glycation as a tunable technique to modify plant proteins: A comprehensive review on reaction process, mechanism, conjugate structure, and functionality. Compr Rev Food Sci Food Saf 2024; 23:e13269. [PMID: 38284590 DOI: 10.1111/1541-4337.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 01/30/2024]
Abstract
Plant proteins are expected to become a major protein source to replace currently used animal-derived proteins in the coming years. However, there are always challenges when using these proteins due to their low water solubility induced by the high molecular weight storage proteins. One approach to address this challenge is to modify proteins through Maillard glycation, which involves the reaction between proteins and carbohydrates. In this review, we discuss various chemical methods currently available for determining the indicators of the Maillard reaction in the early stage, including the graft degree of glycation and the available lysine or sugar, which are involved in the very beginning of the reaction. We also provide a detailed description of the most popular methods for determining graft sites and assessing different plant protein structures and functionalities upon non-enzymatic glycation. This review offers valuable insights for researchers and food scientists in order to develop plant-based protein ingredients with improved functionality.
Collapse
Affiliation(s)
- Kun Gao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Fengchao Zha
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
15
|
Shi W, Xie H, Ouyang K, Shi Q, Xiong H, Zhao Q. Enhancing the solubility and emulsion properties of rice protein by deamidation of citric acid-based natural deep eutectic solvents. Food Res Int 2024; 175:113762. [PMID: 38128999 DOI: 10.1016/j.foodres.2023.113762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The characteristics of rice protein deamidated (DRP) by choline chloride-citric acid and glucose-citric acid natural deep eutectic solvents (C-C NADES, G-C NADES) at different dilutions were investigated. Compared with the effect of citric acid deamidation on the structural and functional properties of the protein, the DRP from the NADESs led to remarkable differences in the degree of hydrolysis (DH), SDS-PAGE, morphology, surface hydrophobicity, average particle size, intrinsic fluorescence, amino acid compositions, and emulsion activity. The results of SDS-PAGE, DH, and SEM showed the NADESs reduced the occurrence of uncontrolled hydrolysis of protein during acid deamidation. DRP from C-C and G-C NADESs was found to significantly improve solubility. DRP prepared by C-C NADES showed a more than 40 % solubility over a wide pH range associated with its higher emulsifying activity (37.62-44.19 m2/g) and emulsifying stability (73.76-86.9 min), as well as a better deamidation effect while lower DH. Thus, these findings showed that acid-based NADESs had great potential as a deamidation solvent to expand the application of protein.
Collapse
Affiliation(s)
- Wenyi Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Qianqian Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
16
|
Li L, Liu S, Sun N, Cui W, Cheng L, Ren K, Wang M, Tong X, Jiang L, Wang H. Effects of sucrase enzymatic hydrolysis combined with Maillard reaction on soy protein hydrolysates: Bitterness and functional properties. Int J Biol Macromol 2024; 256:128344. [PMID: 38007016 DOI: 10.1016/j.ijbiomac.2023.128344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/22/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
In this study, sucrase was added to convert non-reducing sugars into reducing sugars in skim obtained by enzyme-assisted aqueous extraction processing (EAEP), then the variation of soy protein hydrolysates (SPH) from the skim under different Maillard reaction times were studied. We conducted one-factor experiment and selected 2 mg/mL sucrase for enzymatic hydrolysis for 2 h. The structure of SPH was investigated by Fourier transform infrared spectroscopy, intrinsic fluorescence spectroscopy, and amino acid composition. Results showed that the Maillard reaction loosened the SPH structure and produced new functional groups. Sensory evaluation, electronic tongue, electronic nose and GC-MS were used to study the sensory characteristics of SPH, we found that the bitterness value was significantly reduced to 1.71 from 4.63 after 2 h of the Maillard reaction. The change of bitterness was related to amino acid composition and the production of pyrazine. Additionally, the iron reduction ability, DPPH free radical scavenging ability, and emulsifying activity reached the highest at 2 h of reaction with 0.80, 73.94 %, and 56.09 %. The solubility, emulsifying stability, and foaming capacity increased and gradually stabilized with the increasing reaction time. Therefore, this paper presents an effective method for generating SPH with low bitterness and high functional properties.
Collapse
Affiliation(s)
- Lanxin Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shi Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Na Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenyu Cui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lin Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Kunyu Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mengmeng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohong Tong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Jiao Y, Shi X, Yu S. Photoredox-catalyzed C-heteroaryl glycosylation of biphenyl isocyanides with glycosyl bromides. Chem Commun (Camb) 2023; 59:13336-13339. [PMID: 37869887 DOI: 10.1039/d3cc03812b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
8,9-Dimethoxyphenanthridine derivatives, as potential antitumor drugs, need modification to improve their biocompatibility and water solubility. Reported here is a strategy to access C-heteroaryl glycosides by photoredox catalysis. C6-glycosylated phenanthridine derivatives are synthesized from biphenyl isocyanides and glycosyl bromides. The reaction conditions are mild and widely applicable, with anomeric α selectivity and good functional group tolerance.
Collapse
Affiliation(s)
- Yi Jiao
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiaoran Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Centre (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
18
|
Yang J, Xiong W, Yao Y, Zhang N, Wang L. Effect of Lactobacillus plantarum fermentation on the physicochemical properties and flavor of rice protein-carboxymethylcellulose complexes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6826-6836. [PMID: 37278398 DOI: 10.1002/jsfa.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/19/2023] [Accepted: 06/03/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Fermentation is known to enhance the nutritional profile and confer unique flavors to products. However, the resultant effects on stability and physicochemical properties remain unexplored. RESULTS This study aims to elucidate the influence of fermentation on the stability and organoleptic characteristics of a rice protein beverage stabilized by carboxymethyl cellulose (CMC). The findings revealed that the average aggregate size escalated from 507 to 870 nm, concurrently exhibiting a significant increase in surface potential. The aggregation enhancement was substantiated by evident morphological changes and confocal laser scanning microscopical (CLSM) observations. A negative correlation was discerned between the physical stability of the beverage and fermentation duration. Moreover, flavor analysis of the beverage post a 3 h fermentation period highlighted an increase in aromatic ester compounds, thereby intensifying the aroma. CONCLUSION The study corroborates that fermentation can detrimentally influence product stability while concurrently improving its flavor profile. By establishing a mix ratio of 10:1 for rice protein and CMC and forming a relatively stable system through electrostatic interaction at a pH of 5.4, a flavorful rice protein beverage can be derived post 3 h-fermentation process. These findings offer insights into the impact of varying fermentation durations on the stability and flavor of polysaccharide-based rice protein beverages. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, People's Republic of China
| | - Wenfei Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Yijun Yao
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, People's Republic of China
| | - Lifeng Wang
- College of Food Engineering, Harbin University of Commerce, Harbin, People's Republic of China
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Chu Z, Zhang Q, Li X, Xue B, Sun T, Xie J. Effect of Oat β-Glucan on the Structure and Properties of Soybean Protein Isolate During Maillard Reaction. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:552-556. [PMID: 37594557 DOI: 10.1007/s11130-023-01092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Maillard reaction (MR) with oat β-glucan changed the structure of soybean protein isolate (SPI), further leading to the enhancement of its functional properties. SPI was unfolded by MR, and the SPI conjugates with high molecular weight were identified. The water solubility of SPI was improved by cross-linking with hydrophilic β-glucan, while the hydrophobicity also increased along with the unfolding of the SPI. Cross-linking with β-glucan elevated the viscosity of SPI, thus enhancing viscosity-related physiological activities, including bile acid binding ability, fat binding capacity, and hypoglycemic activity, and the functional properties increased as the βG content involved in MR increased.
Collapse
Affiliation(s)
- Zhaonan Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Qiyun Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaohui Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Bin Xue
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Tao Sun
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
20
|
Gao C, Jia J, Yang Y, Ge S, Song X, Yu J, Wu Q. Structural change and functional improvement of wheat germ protein promoted by extrusion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Ke C, Li L. Influence mechanism of polysaccharides induced Maillard reaction on plant proteins structure and functional properties: A review. Carbohydr Polym 2023; 302:120430. [PMID: 36604091 DOI: 10.1016/j.carbpol.2022.120430] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Plant proteins have high nutritional value, a wide range of sources and low cost. However, it is easily affected by the environmental factors of processing and lead the problem of poor functionality. These problems of plant proteins can be improved by the polysaccharides induced Maillard reaction. The interaction between proteins and polysaccharides through Maillard reaction can change the structure of proteins as well as improve the functional properties and biological activity. The products of Maillard reaction, such as reductone intermediates, heterocyclic compounds and melanoidins have certain antioxidant, antibacterial and other biological activities. However, heterocyclic amines, acrylamide, and products generated in the advanced stage of the Maillard reaction also have a negative impact, which may increase cytotoxicity and be associated with chronic diseases. Therefore, it is necessary to effectively control the process of Maillard reaction. This review focuses on the modification of plant proteins by polysaccharide-induced Maillard reaction and the effects of Maillard reaction on protein structure, functional properties and biological activity. It also points out how to accurately reflect the changes of protein structure in Maillard reaction. In addition, it also points out the application ways of plant protein-polysaccharide complexes in the food industry, for example, emulsifiers, delivery carriers of functional substances, and natural antioxidants due to their improved solubility, emulsifying, gelling and antioxidant properties. This review provides theoretical support for controlling Maillard reaction based on protein structure.
Collapse
Affiliation(s)
- Chuxin Ke
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
22
|
Yu Y, Guan S, Li X, Sun B, Lin S, Gao F. Physicochemical and functional properties of egg white peptide powders under different storage conditions. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:732-741. [PMID: 36712210 PMCID: PMC9873857 DOI: 10.1007/s13197-022-05659-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023]
Abstract
This study aims to evaluate the effects of different storage conditions (temperature and relative humidity) on the physicochemical and functional properties of egg white peptide powders (EWPPs). The samples (EWPPs) were stored for 28 d under four conditions (4 °C, 50% RH; 4 °C, 75% RH; 25 °C, 50% RH; 25 °C, 75% RH). Results showed that storage temperature and relative humidity had a significant effect on the physicochemical and functional properties of EWPPs. The contents of antioxidant amino acids such as histidine, tyrosine, tryptophan, and lysine were reduced significantly under different storage conditions, which resulted in the decrease of the antioxidant activity of EWPPs. Circular dichroism spectroscopy analysis indicated that the secondary structure of EWPPs changed from the regular structure to the irregular coiled structure during the storage. Additionally, the hydrophobic groups of the EWPPs originally embedded inside the molecules were exposed to the surface of the molecules during the storage, which led to an aggregation of EWPPs molecule and a decrease in solubility of EWPPs. The aggregation of EWPPs molecules resulted in a decrease in emulsification, emulsification stability, foaming ability and foaming stability of the EWPPs. Therefore, different storage conditions do have an impact on the physicochemical and functional properties of EWPPs. Lower temperature and humidity storing conditions were beneficial to retain the functional property of the EWPPs.
Collapse
Affiliation(s)
- Yali Yu
- College of Food Science and Engineering, Jilin University, NO. 5333 Xi’an Road, Changchun, 130062 People’s Republic of China
| | - Shiyao Guan
- College of Food Science and Engineering, Jilin University, NO. 5333 Xi’an Road, Changchun, 130062 People’s Republic of China
| | - Xingfang Li
- College of Food Science and Engineering, Jilin University, NO. 5333 Xi’an Road, Changchun, 130062 People’s Republic of China
| | - Bingyu Sun
- College of Food Science and Engineering, Harbin Commercial University, Harbin, 130062 People’s Republic of China
| | - Songyi Lin
- College of Food Science and Engineering, Jilin University, NO. 5333 Xi’an Road, Changchun, 130062 People’s Republic of China
- School of Food Science and Technology, Engineering Research Center of Seafood of Ministry of Education, Dalian Polytechnic University, Dalian, 116034 People’s Republic of China
| | - Feng Gao
- College of Food Science and Engineering, Jilin University, NO. 5333 Xi’an Road, Changchun, 130062 People’s Republic of China
| |
Collapse
|
23
|
Zhan F, Luo J, Sun Y, Hu Y, Fan X, Pan D. Antioxidant Activity and Cell Protection of Glycosylated Products in Different Reducing Sugar Duck Liver Protein Systems. Foods 2023; 12:foods12030540. [PMID: 36766069 PMCID: PMC9914316 DOI: 10.3390/foods12030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Duck liver is an important by-product of duck food. In this study, we investigated the effects of glucose, fructose, and xylose on the antioxidant properties of glycosylated products of duck liver protein and their protective effects on HepG2 cells. The results show that the glycosylation products of the three duck liver proteins (DLP-G, DLP-F, and DLP-X) all exhibit strong antioxidant activity; among three groups, DLP-X shows the strongest ability to scavenge DPPH, ·OH free radicals, and ABTS+ free radicals. The glycosylated products of duck liver protein are not toxic to HepG2 cells and significantly increase the activity of antioxidant enzymes such as SOD, CAT, and GSH-Px in HepG2 cells at the concentration of 2.0 g/L, reducing oxidative stress damage of cells (p < 0.05). DLP-X has a better effect in reducing oxidative damage and increasing cellular activity in HepG2 cells than DLP-G and DLP-F (p < 0.05). In this study, the duck liver protein glycosylated products by glucose, fructose, and xylose were named as DLP-G, DLP-F, and DLP-X, respectively.
Collapse
Affiliation(s)
- Feili Zhan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Jiafeng Luo
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Yangyang Hu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Xiankang Fan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Correspondence: ; Tel.: +86-135-6789-6492
| |
Collapse
|
24
|
Na Z, Bi H, Wang Y, Guo Y, Ma Y. Effect of Steam Flash-Explosion on Physicochemical Properties and Structure of High-Temperature Denatured Defatted Rice Bran Protein Isolate. Molecules 2023; 28:643. [PMID: 36677701 PMCID: PMC9867354 DOI: 10.3390/molecules28020643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The effects of Steam Flash-Explosion (SFE) on the physicochemical properties and molecular structure of high-temperature denatured defatted rice bran protein isolate (RBPI) were investigated. The mechanism of SFE treatment on high-temperature denatured defatted RBPI was revealed. The analysis of the physical and chemical properties of RBPI showed that the surface hydrophobicity, characteristic viscosity, and thermal stability of rice bran protein isolate were significantly affected by the pressure of saturated steam and pressure holding time. Under the conditions of 2.1 MPa and 210 s, the surface hydrophobicity index decreased significantly from 137.5 to 17.5, and the characteristic viscosity increased significantly. The peak temperature of denaturation decreases from 114.2 to 106.7 °C, and the enthalpy of denaturation decreases from 356.3 to 231.4 J/g. The higher structure (circular dichroic spectrum and endogenous fluorescence spectrum) of rice bran protein isolate was analyzed by volume rejection chromatography (SEC). The results showed that steam flash treatment could depolymerize and aggregate RBPI, and the relative molecular weight distribution changed greatly. The decrease in small molecules with poor solubility was accompanied by the increase in macromolecules (>550 kDa) soluble aggregates, which were the products of a Maillard reaction. The contents of free sulfhydryl and disulfide bonds in high-temperature rice bran meal protein isolate were significantly increased, which resulted in the increase in soluble aggregates containing disulfide bonds. Circular dichroism (CD) analysis showed that the α-helix content of the isolated protein was significantly decreased, the random curl content was increased, and the secondary structure of the isolated protein changed from order to disorder. The results of endogenous fluorescence spectroscopy showed that the high-temperature rice bran meal protein isolate was more extended, tryptophan was in a more hydrophilic microenvironment, the fluorescence intensity was reduced, and the tertiary structure was changed. In addition, the mean particle size and net surface charge of protein isolate increased in the aqueous solution, which was conducive to the development of the functional properties of the protein.
Collapse
Affiliation(s)
- Zhiguo Na
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Haixin Bi
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- College of Food Engineering, East University of Heilongjiang, Harbin 150060, China
| | - Yingbin Wang
- College of Food Engineering, East University of Heilongjiang, Harbin 150060, China
| | - Yujuan Guo
- College of Food Engineering, East University of Heilongjiang, Harbin 150060, China
| | - Yongqiang Ma
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
25
|
Xie H, Zhang L, Chen Q, Hu J, Zhang P, Xiong H, Zhao Q. Combined effects of drying methods and limited enzymatic hydrolysis on the physicochemical and antioxidant properties of rice protein hydrolysates. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
26
|
Zhang Z, Wang B, Adhikari B. Maillard reaction between pea protein isolate and maltodextrin via wet-heating route for emulsion stabilisation. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
27
|
Zhang Q, Long X, Xie J, Xue B, Li X, Gan J, Bian X, Sun T. Effect of d-galactose on physicochemical and functional properties of soy protein isolate during Maillard reaction. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Zhao C, Wang F, Yang X, Mao Y, Qi Q, Zheng M, Xu X, Cao Y, Wu Y, Liu J. Synergistic influence of ultrasound and dietary fiber addition on transglutaminase-induced peanut protein gel and its application for encapsulation of lutein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
29
|
Jiang Y, Zang Data analysis K, Xu L, Zeng XA, Li H, Brennan C, Zhao D, Sun J. Co-delivery of riboflavin and rhein based on properties improved Jiuzao glutelin: binding mechanism, stability, and antioxidant activities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
30
|
Effects of Different Amounts of Corn Silk Polysaccharide on the Structure and Function of Peanut Protein Isolate Glycosylation Products. Foods 2022; 11:foods11152214. [PMID: 35892799 PMCID: PMC9330836 DOI: 10.3390/foods11152214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Covalent complexes of peanut protein isolate (PPI) and corn silk polysaccharide (CSP) (PPI-CSP) were prepared using an ultrasonic-assisted moist heat method to improve the functional properties of peanut protein isolate. The properties of the complexes were affected by the level of corn silk polysaccharide. By increasing the polysaccharide addition, the grafting degree first increased, and then tended to be flat (the highest was 38.85%); the foaming, foam stability, and solubility were also significantly improved. In a neutral buffer, the solubility of the sample with a protein/polysaccharide ratio of 2:1 was 73.69%, which was 1.61 times higher than that of PPI. As compared with PPI, the complexes had higher thermal stability and lower surface hydrophobicity. High addition of CSP could made the secondary structure of PPI change from ordered α-helix to disordered β-sheet, β-turn, and random coil structure, and the complex conformation become more flexible and loose. The results of multiple light scattering showed that the composite solution exhibited high stability, which could be beneficial to industrial processing, storage, and transportation. Therefore, the functional properties of peanut protein isolate glycosylation products could be regulated by controlling the amount of polysaccharide added.
Collapse
|
31
|
Jia X, Li L, Teng J, Li M, Long H, Xia N. Glycation of rice protein and d-xylose pretreated through hydrothermal cooking-assisted high hydrostatic pressure: Focus on the structural and functional properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|