1
|
Full genomic characterisation of an emerging infectious laryngotracheitis virus class 7b from Australia linked to a vaccine strain revealed its identity. INFECTION GENETICS AND EVOLUTION 2020; 78:104067. [DOI: 10.1016/j.meegid.2019.104067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 12/28/2022]
|
2
|
Natural recombination in alphaherpesviruses: Insights into viral evolution through full genome sequencing and sequence analysis. INFECTION GENETICS AND EVOLUTION 2017; 49:174-185. [DOI: 10.1016/j.meegid.2016.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/05/2023]
|
3
|
Pfaff F, Groth M, Sauerbrei A, Zell R. Genotyping of herpes simplex virus type 1 by whole-genome sequencing. J Gen Virol 2016; 97:2732-2741. [PMID: 27558891 DOI: 10.1099/jgv.0.000589] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A previous phylogenetic analysis based on 32 full-length sequences of herpes simplex virus type 1 (HSV-1) suggested three major phylogenetic groups (phylogroups) with distinct geographic distribution: (1) western strains from Europe and North America, (2) isolates from Asia and one American strain and (3) isolates from Africa only. Here, we sequenced the genomes of additional 10 clinical HSV-1 isolates from Germany, and subsequently compared these sequences to 40 published HSV-1 genomes. The present data demonstrate that HSV-1 is the most diverse human alphaherpesvirus (mean pairwise p-distance of 0.756 %) and confirm the tripartite tree. However, as the German isolates cluster with strains of both phylogroups I and II, it is demonstrated that the latter is also present in Europe and thus is a Eurasian phylogroup. Tree-order scans indicate that HSV-1 evolution is massively influenced by recombination including all investigated strains regardless of the areal distribution of the phylogroups. Numerous recombination events in the evolution of HSV-1 may also influence genotyping as the present HSV-1 genotyping schemes do not yield results consistent with phylogroup classification. Genotyping of HSV-1 is currently based on analyses of intragenic sequence polymorphisms of US2, glycoprotein G (gG, US4) and gI (US7). Each of the 10 German HSV-1 isolates displayed a different US2/gG/gI-genotype combination, but clustered either in phylogroup I or II. In conclusion, the phylogroup concept provides a HSV-1 typing scheme that largely reflects human migration history, whereas the analysis of single-nucleotide polymorphisms fails to render significant biological properties, but allows description of individual genetic traits.
Collapse
Affiliation(s)
- Florian Pfaff
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Marco Groth
- Genome Analysis, Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Andreas Sauerbrei
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Roland Zell
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
4
|
Perse da Silva A, Lopes ADO, Vieira YR, de Almeida AJ, Sion FS, Grinsztejn B, Wagner S, de Paula VS. Genotypic Characterization of Herpes Simplex Virus Type 1 Isolates in Immunocompromised Patients in Rio de Janeiro, Brazil. PLoS One 2015; 10:e0136825. [PMID: 26407292 PMCID: PMC4583264 DOI: 10.1371/journal.pone.0136825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 08/09/2015] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen that causes a variety of diseases, including an increased risk of developing more severe disease in HIV-infected individuals. In Brazil, there is no information about the molecular epidemiology of HSV-1 infection, especially in HIV-infected individuals. The aim of this study was to perform the genotypic characterization of HSV-1 among HIV-infected patients. A total of 214 serum samples from HIV-positive patients without HSV infection symptoms were enrolled in one of two reference hospitals for HIV infection managing in Rio de Janeiro. The gG and gI genes were analyzed by restriction fragment length polymorphism (RFLP) and full nucleotide sequencing of the US8 (1601 bp), UL44 (1996 bp), and UL23 (1244 bp) regions was performed. A total of 38.3% (82/214) and 32.7% (70/214) of the serum samples tested positive for gG and gI genes, respectively. RFLP analysis classified the HSV-1 as belonging to genotype A. Phylogenetic analysis of the Brazilian samples for the US8, UL44, and UL23 regions demonstrated that the nucleotide identity between Brazilian samples was higher than 97% for all genes. No acyclovir mutation was detected in the patients. The shedding of HSV in the serum samples from HIV-positive patients who were asymptomatic for HSV infection was detected in this work. This is the first report of molecular characterization of HSV-1 in Brazilian samples since there is no previous data available in the literature concerning the genotypic classification and stable distribution of Brazilian strains of HSV-1 in Rio de Janeiro, Brazil.
Collapse
Affiliation(s)
| | | | | | - Adilson José de Almeida
- Gaffrée & Guinle University Hospital, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Fernando Samuel Sion
- Gaffrée & Guinle University Hospital, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Evandro Chagas National Institute of Infectology (INI), Rio de Janeiro, Brazil
| | - Sandra Wagner
- Evandro Chagas National Institute of Infectology (INI), Rio de Janeiro, Brazil
| | | |
Collapse
|
5
|
Glück B, Möbius S, Pfaff F, Zell R, Sauerbrei A. Novel method for genotyping clinical herpes simplex virus type 1 isolates. Arch Virol 2015; 160:2807-11. [PMID: 26280525 DOI: 10.1007/s00705-015-2568-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/06/2015] [Indexed: 02/02/2023]
Abstract
Up to now, three distinct genotypes, A, B and C, of herpes simplex virus type 1 (HSV-1), based on polymorphisms in the US4 and US7 genes, have been reported. Here, we propose to include an additional polymorphism of the US2 gene. The refined genotyping method was validated using 423 clinical isolates from patients with different HSV-1 diseases. The proportions of three US2 genotypes were A, 46.6%; B, 23.2%; and C, 30.2 %. Genotype A of US2 and US4/US7 showed a highly significant correlation. In addition, the frequency of genotype A was significantly higher in women than in men with herpes labialis.
Collapse
Affiliation(s)
- Brigitte Glück
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Susanne Möbius
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Florian Pfaff
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Roland Zell
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Andreas Sauerbrei
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745, Jena, Germany.
| |
Collapse
|
6
|
Umene K, Yoshida M, Fukumaki Y. Genetic variability in the region encompassing reiteration VII of herpes simplex virus type 1, including deletions and multiplications related to recombination between direct repeats. SPRINGERPLUS 2015; 4:200. [PMID: 26020018 PMCID: PMC4439413 DOI: 10.1186/s40064-015-0990-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/20/2015] [Indexed: 11/13/2022]
Abstract
A number of tandemly reiterated sequences are present on the herpes simplex virus type 1 (HSV-1) DNA molecule of 152 kbp. While regions containing tandem reiterations were usually unstable, reiteration VII, which is present within the protein coding regions of gene US10 and US11, was stable; hence, reiteration VII could be used as a genetic marker. In the present study, the nucleotide sequences (159–213 bp) of a region encompassing reiteration VII of 62 HSV-1 isolates were compared with that of strain 17 as the standard strain, and the genetic variability of base substitutions, deletions, and multiplications was revealed. Base substitution was observed in nine residues on the region flanking reiteration VII and sixty-two HSV-1 isolates were classified into twelve groups based on these base substitutions. Deletions, which were present in all sixty-two isolates, were classified into six groups. Multiplications, which were present in 19 isolates having the same deletion (named del-2), were classified into four groups. The sixty-two isolates were classified into twenty patterns based on variations in the region encompassing reiteration VII, and the region encompassing reiteration VII was considered to be useful for studies on the molecular epidemiology and evolution of HSV-1. The lengths of these deletions and multiplications were multiples of 3; thus, a frame-shift mutation was not induced, and a mechanism to maintain the functions of US10 and US11 was suggested. A series of multiplications, which consisted of the duplication, triplication, and tetraplication of the same sequence, were found. Since all isolates with a multiplication had del-2, multiplications were assumed to be generated after the generation of del-2, and an isolate with del-2 was considered to have the ability to generate a multiplication. Recombination between a pair of direct repeats in and around reiteration VII was accountable for the generation of deletions and multiplications, indicating the recombinogenic property of the region encompassing reiteration VII. A correlation was revealed between a set of 20 DNA polymorphisms widely present on the HSV-1 genome and the base substitutions and deletions of the region encompassing reiteration VII, using discriminant analyses.
Collapse
Affiliation(s)
- Kenichi Umene
- Department of Nutrition & Health Science, Faculty of Human Environmental Science, Fukuoka Woman's University, Fukuoka, 813-8529 Japan
| | - Masami Yoshida
- Department of Dermatology, Sakura Medical Center, School of Medicine, Toho University, Sakura, Chiba 285-8741 Japan
| | - Yasuyuki Fukumaki
- Division of Human Molecular Genetics, Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| |
Collapse
|
7
|
Harishankar A, Jambulingam M, Gowrishankar R, Venkatachalam A, Vetrivel U, Ravichandran S, Yesupadam SM, Madhavan HNR. Phylogenetic comparison of exonic US4, US7 and UL44 regions of clinical herpes simplex virus type 1 isolates showed lack of association between their anatomic sites of infection and genotypic/sub genotypic classification. Virol J 2012; 9:65. [PMID: 22416856 PMCID: PMC3359161 DOI: 10.1186/1743-422x-9-65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 03/14/2012] [Indexed: 11/21/2022] Open
Abstract
Background HSV-1 genome is a mosaic of recombinants. Clinical Herpes simplex virus -1 (HSV1) isolates were already genotyped as A, B and C types based on nucleotide variations at Unique Short (US) 4 (gG) and US 7 (gI) regions through phylogeny. Analysis of Glycoprotein C (gC) exon present on the Unique Long (UL) region had also revealed the existence of different genotypes. Glycoprotein C is mainly involved in initial viral attachment to heparan sulphate on host cell surface facilitating the virus's binding and penetration into cell. As the amount of heparan sulphate on the host cell surface varies according to the cell type, it is plausible that different genotypes bind differentially to cell types. Hence, this study was framed to determine the existence of novel genotypes/sub genotypes in the US or UL regions which could associate with clinical entities. Results All the twenty five isolates analyzed in this study were of genotype A as per their gG gene sequences. In case of gI gene, 16 out of 25 were found to be type A and the remaining nine were type B putative intergenic recombinants. Intragenic recombinations were also encountered in both the US genes, with gG possessing novel subgenotypes, arbitrarily designated A1 and A2. The 9 type B isolates of gI genes also branched out into 2 clades due to genetic variations. Glycoprotein C of UL region had two distinct genotypic clades α and β, whose topological distribution was significantly different from that of the US region. Neither the US nor UL regions, however, showed any preference among the genotypes to a specific anatomic site of infection. Even the non synonymous variations identified in the functional domain of gC, were not confined to a particular genotype/clinical entity. Conclusion The analyses of the US and UL regions of the HSV-1 genome showed the existence of variegated genotypes in these two regions. In contrary to the documented literature, in which Asian strains were concluded as more conserved than European ones, our study showed the existence of a higher degree of variability among Indian strains. However, the identified novel genotypes and subgenotypes were not found associated with clinical entities.
Collapse
Affiliation(s)
- Anusha Harishankar
- Larsen & Toubro Microbiology Research Centre, Sankara Nethralaya, No,18, College Road, Chennai 600006, India
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sauerbrei A, Pfaff F, Zell R, Wutzler P. Prevalence of herpes simplex virus type 1 glycoprotein G (gG) and gI genotypes in patients with different herpetic diseases during the last four decades. J Med Virol 2012; 84:651-6. [DOI: 10.1002/jmv.23223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
A genome-wide comparative evolutionary analysis of herpes simplex virus type 1 and varicella zoster virus. PLoS One 2011; 6:e22527. [PMID: 21799886 PMCID: PMC3143153 DOI: 10.1371/journal.pone.0022527] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/23/2011] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and varicella zoster virus (VZV) are closely related viruses causing lifelong infections. They are typically associated with mucocutaneous or skin lesions, but may also cause severe neurological or ophthalmic diseases, possibly due to viral- and/or host-genetic factors. Although these viruses are well characterized, genome-wide evolutionary studies have hitherto only been presented for VZV. Here, we present a genome-wide study on HSV-1. We also compared the evolutionary characteristics of HSV-1 with those for VZV. We demonstrate that, in contrast to VZV for which only a few ancient recombination events have been suggested, all HSV-1 genomes contain mosaic patterns of segments with different evolutionary origins. Thus, recombination seems to occur extremely frequent for HSV-1. We conclude by proposing a timescale for HSV-1 evolution, and by discussing putative underlying mechanisms for why these otherwise biologically similar viruses have such striking evolutionary differences.
Collapse
|
10
|
Sekulin K, Janková J, Kolodziejek J, Huemer HP, Gruber A, Meyer J, Nowotny N. Natural zoonotic infections of two marmosets and one domestic rabbit with herpes simplex virus type 1 did not reveal a correlation with a certain gG-, gI- or gE genotype. Clin Microbiol Infect 2011; 16:1669-72. [PMID: 20121821 DOI: 10.1111/j.1469-0691.2010.03163.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Infections with herpes simplex virus type 1 (HSV-1) are not restricted to humans but infrequently may be transmitted to certain animal species, in some cases resulting in severe disease, including encephalitis and death. Recent studies demonstrate that humanderived HSV-1 field isolates can be typed according to their gG- gIand gE gene sequences. We investigated whether HSV-1 infections of animals were predominantly caused by a certain genotype. Isolates derived from two marmosets and one domestic rabbit, however, revealed different genotypes. Despite the very limited number of investigated animal-derived HSV-1 strains, this result does not point towards the existence of certain HSV-1 genotypes with a higher potential of being transmitted to animals.
Collapse
Affiliation(s)
- K Sekulin
- University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
11
|
Scheithauer S, Manemann AK, Krüger S, Häusler M, Krüttgen A, Lemmen SW, Ritter K, Kleines M. Impact of herpes simplex virus detection in respiratory specimens of patients with suspected viral pneumonia. Infection 2010; 38:401-5. [PMID: 20589523 PMCID: PMC7101829 DOI: 10.1007/s15010-010-0036-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 06/09/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Respiratory infection and failure is a commonly encountered problem in intensive care unit (ICU) patients. However, despite the accumulating body of evidence to suggest that herpes simplex virus type 1 (HSV-1) is associated with pneumonia, the exact role played by this virus in this process is still not fully understood. Therefore, to identify patients at risk, we have conducted a case-control study to characterize patients with HSV-1-positive pneumonia. PATIENTS AND METHODS Between 2007 and 2009, all patients with suspected viral pneumonia were tested for the presence of herpes viruses using a PCR assay approach with respiratory specimens. To identify possible associations, risk factors, and impact of HSV, HSV-1-positive ICU patients (n = 51) were compared to age-, gender-, and department- and season-matched HSV-negative patients (n = 52). RESULTS HSV-positive patients differed significantly from the HSV-negative ones only in terms of time of mechanical ventilation (13 vs. 6 days, respectively; p = 0.002). Subgroup analysis in the patients aged >60 years and in those without bacterial detection revealed a similar trend (p = 0.01 and p = 0.004, respectively). Mortality did not differ between the groups or between the HSV-1-positive patients treated with aciclovir and those who were not. A viral load >10E+05 geq/ml was associated with mechanical ventilation (20/21 vs. 17/29; p = 0.004), acute respiratory distress syndrome (ARDS; 19/21 vs. 18/29; p = 0.005), sepsis (18/21 vs. 14/29; p = 0.008), detection of a bacterial pathogen in the same specimen (10/21 vs. 4/29; p = 0.01) and longer ICU stay (25 vs. 30 days; p = 0.04). CONCLUSION Despite several associations with high viral load, the clinical outcome of HSV-1-positive ICU patients did not differ significantly from the clinical outcome of HSV-negative patients. This finding indicates that HSV-1 viral loads in respiratory specimens are a symptom of a clinically poor condition rather than a cause of it. Longitudinal and therapy studies are therefore needed to distinguish between HSV-1 as a causative pathogen and HSV-1 as a bystander of pneumonia/ARDS.
Collapse
Affiliation(s)
- S Scheithauer
- Department of Infection Control and Infectious Diseases, University Hospital Aachen, RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Schmidt-Chanasit J, Bialonski A, Heinemann P, Ulrich RG, Günther S, Rabenau HF, Doerr HW. A 12-year molecular survey of clinical herpes simplex virus type 2 isolates demonstrates the circulation of clade A and B strains in Germany. J Clin Virol 2010; 48:208-11. [PMID: 20488747 DOI: 10.1016/j.jcv.2010.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/05/2010] [Accepted: 04/24/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Recently two different herpes simplex virus type 2 (HSV-2) clades (A and B) were described on DNA sequence data of the glycoprotein E (gE), G (gG) and I (gI) genes. OBJECTIVE To type the circulating HSV-2 wild-type strains in Germany by a novel approach and to monitor potential changes in the molecular epidemiology between 1997 and 2008. STUDY DESIGN A total of 64 clinical HSV-2 isolates were analyzed by a novel approach using the DNA sequences of the complete open reading frames of glycoprotein B (gB) and gG. Recombination analysis of the gB and gG gene sequences was performed to reveal intragenic recombinants. RESULTS Based on the phylogenetic analysis of the gB coding DNA sequence 8 of 64 (12%) isolates were classified as clade A strains and 56 of 64 (88%) isolates were classified as clade B strains. Analysis of the gG coding DNA sequence classified 4 (6%) isolates as clade A strains and 60 (94%) isolates as clade B strains. In comparison, the 8 isolates classified as clade A strains using the gB sequence data were classified as clade B strains when using the gG coding DNA sequence, suggesting intergenic recombination events. Intragenic recombination events were not detected. CONCLUSION The first molecular survey of clinical HSV-2 isolates from Germany demonstrated the circulation of clade A and B strains and of intergenic recombinants over a period of 12 years.
Collapse
Affiliation(s)
- Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, D-20359 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Deback C, Luyt CE, Lespinats S, Depienne C, Boutolleau D, Chastre J, Agut H. Microsatellite analysis of HSV-1 isolates: from oropharynx reactivation toward lung infection in patients undergoing mechanical ventilation. J Clin Virol 2010; 47:313-20. [PMID: 20172760 DOI: 10.1016/j.jcv.2010.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 12/06/2009] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND According to recent reports, herpes simplex virus type 1 (HSV-1) induces bronchopneumonitis (BPn) in immunocompetent patients undergoing prolonged mechanical ventilation (MV), whose respiratory functions deteriorate with a poor outcome. HSV-1 BPn is associated with HSV symptomatic or symptomless reactivation in the oropharynx. OBJECTIVES We sought to systematically and genetically characterize HSV-1 strains isolated from immunocompetent patients receiving prolonged MV and to characterize the genetic relationship of strains sequentially isolated from oropharyngeal samples (OPS) and broncho-alveolar liquids (BAL) to determine the natural course of HSV BPn. STUDY DESIGN In this molecular epidemiological study, microsatellite technology was used to determine genetic relationships between 211 HSV-1 strains isolated from OPS and/or BAL from 106 patients receiving MV. RESULTS Microsatellite haplotypes of HSV-1 strains sequentially isolated from the same individual were identical, and HSV-1 isolates from the lung were genetically indistinguishable from strains isolated from the oral cavity. Each patient was characterized by their own HSV-1 microsatellite haplotype, and no nosocomial transmission of strains between patients was observed. CONCLUSION Our results demonstrate that, in patients who receive MV, the HSV-1 pulmonary infection results from the reactivation of genetically related HSV-1 in the oropharynx, which progressively infects the lower respiratory tract.
Collapse
Affiliation(s)
- C Deback
- UPMC Univ. Paris 06, ER1 DETIV, F-75013 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
Norberg P. Divergence and genotyping of human alpha-herpesviruses: an overview. INFECTION GENETICS AND EVOLUTION 2009; 10:14-25. [PMID: 19772930 DOI: 10.1016/j.meegid.2009.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/08/2009] [Accepted: 09/14/2009] [Indexed: 11/30/2022]
Abstract
Herpesviruses are large DNA viruses that are highly disseminated among animals. Of the eight herpesviruses identified in humans, three are classified into the alpha-herpesvirus subfamily: herpes simplex virus types 1 (HSV-1) and 2 (HSV-2), which are typically associated with mucocutaneous lesions, and varicella-zoster virus (VZV), which is the cause of chicken pox and herpes zoster. All three viruses establish lifelong infections and may also induce more severe symptoms, such as neurological manifestations and fatal neonatal infections. Despite thorough investigation of the genetic variability among circulating strains of each virus in recent decades, little is known about possible associations between the genetic setups of the viruses and clinical manifestations in human hosts. This review focuses mainly on evolutionary studies of and genotyping strategies for these three human alpha-herpesviruses, emphasizing the ambiguities induced by a high frequency of circulating recombinant strains. It also aims to shed light on the challenges of establishing a uniform genotyping strategy for all three viruses.
Collapse
Affiliation(s)
- Peter Norberg
- Dept. of Cell and Molecular Biology, Microbiology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden.
| |
Collapse
|