1
|
Enteroviral infections in the pathogenesis of type 1 diabetes: new insights for therapeutic intervention. Curr Opin Pharmacol 2018; 43:11-19. [PMID: 30064099 PMCID: PMC6294842 DOI: 10.1016/j.coph.2018.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022]
Abstract
Enteroviral infection has been long-associated with type 1 diabetes in epidemiological studies. β-Cells express a specific enteroviral receptor isoform, CAR-SIV, mainly on secretory granules. β-Cells respond to enteroviruses by allowing the establishment of a persistent infection. Enteroviral vaccines are under development that might be effective in type 1 diabetes.
The development of islet autoimmunity and type 1 diabetes has long been linked with enteroviral infection but a causal relationship has proven hard to establish. This is partly because much of the epidemiological evidence derives from studies of neutralising antibody generation in blood samples while less attention has been paid to the pancreatic beta cell as a site of infection. Nevertheless, recent studies have revealed that beta cells express specific enteroviral receptors and that they can sustain a productive enteroviral infection. Importantly, they can also mount antiviral responses which attenuate viral replication and may favour the establishment of a persistent enteroviral infection. Together, these responses combine to create the Trojan horse by which enteroviruses might precipitate islet autoimmunity.
Collapse
|
2
|
Harvala H, Broberg E, Benschop K, Berginc N, Ladhani S, Susi P, Christiansen C, McKenna J, Allen D, Makiello P, McAllister G, Carmen M, Zakikhany K, Dyrdak R, Nielsen X, Madsen T, Paul J, Moore C, von Eije K, Piralla A, Carlier M, Vanoverschelde L, Poelman R, Anton A, López-Labrador FX, Pellegrinelli L, Keeren K, Maier M, Cassidy H, Derdas S, Savolainen-Kopra C, Diedrich S, Nordbø S, Buesa J, Bailly JL, Baldanti F, MacAdam A, Mirand A, Dudman S, Schuffenecker I, Kadambari S, Neyts J, Griffiths MJ, Richter J, Margaretto C, Govind S, Morley U, Adams O, Krokstad S, Dean J, Pons-Salort M, Prochazka B, Cabrerizo M, Majumdar M, Nebbia G, Wiewel M, Cottrell S, Coyle P, Martin J, Moore C, Midgley S, Horby P, Wolthers K, Simmonds P, Niesters H, Fischer TK. Recommendations for enterovirus diagnostics and characterisation within and beyond Europe. J Clin Virol 2018; 101:11-17. [DOI: 10.1016/j.jcv.2018.01.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 12/18/2022]
|
3
|
Application of bioinformatics in probe design enables detection of enteroviruses on different taxonomic levels by advanced in situ hybridization technology. J Clin Virol 2015. [PMID: 26209400 DOI: 10.1016/j.jcv.2015.06.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Enteroviral infections are common, affecting humans across all age groups. RT-PCR is widely used to detect these viruses in clinical samples. However, there is a need for sensitive and specific in situ detection methods for formalin-fixed tissues, allowing for the anatomical localization of the virus and identification of its serotype. OBJECTIVES The aim was to design novel enterovirus probes, assess the impact of probe design for the detection and optimize the new single molecule in situ hybridization technology for the detection of enteroviruses in formalin-fixed paraffin-embedded samples. STUDY DESIGN Four enterovirus RNA-targeted oligonucleotide RNA probes - two probes for wide range enterovirus detection and two for serotype-targeted detection of Coxsackievirus B1 (CVB1) - were designed and validated for the commercially available QuantiGene ViewRNA in situ hybridization method. The probe specificities were tested using a panel of cell lines infected with different enterovirus serotypes and CVB infected mouse pancreata. RESULTS The two widely reactive probe sets recognized 19 and 20 of the 20 enterovirus serotypes tested, as well as 27 and 31 of the 31 CVB1 strains tested. The two CVB1 specific probe sets detected 30 and 14 of the 31 CVB1 strains, with only minor cross-reactivity to other serotypes. Similar results were observed in stained tissues from CVB -infected mice. CONCLUSIONS These novel in-house designed probe sets enable the detection of enteroviruses from formalin-fixed tissue samples. Optimization of probe sequences makes it possible to tailor the assay for the detection of enteroviruses on the serotype or species level.
Collapse
|
4
|
Krogvold L, Edwin B, Buanes T, Frisk G, Skog O, Anagandula M, Korsgren O, Undlien D, Eike MC, Richardson SJ, Leete P, Morgan NG, Oikarinen S, Oikarinen M, Laiho JE, Hyöty H, Ludvigsson J, Hanssen KF, Dahl-Jørgensen K. Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes 2015; 64:1682-7. [PMID: 25422108 DOI: 10.2337/db14-1370] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/18/2014] [Indexed: 02/05/2023]
Abstract
The Diabetes Virus Detection study (DiViD) is the first to examine fresh pancreatic tissue at the diagnosis of type 1 diabetes for the presence of viruses. Minimal pancreatic tail resection was performed 3-9 weeks after onset of type 1 diabetes in six adult patients (age 24-35 years). The presence of enteroviral capsid protein 1 (VP1) and the expression of class I HLA were investigated by immunohistochemistry. Enterovirus RNA was analyzed from isolated pancreatic islets and from fresh-frozen whole pancreatic tissue using PCR and sequencing. Nondiabetic organ donors served as controls. VP1 was detected in the islets of all type 1 diabetic patients (two of nine controls). Hyperexpression of class I HLA molecules was found in the islets of all patients (one of nine controls). Enterovirus-specific RNA sequences were detected in four of six patients (zero of six controls). The results were confirmed in various laboratories. Only 1.7% of the islets contained VP1(+) cells, and the amount of enterovirus RNA was low. The results provide evidence for the presence of enterovirus in pancreatic islets of type 1 diabetic patients, which is consistent with the possibility that a low-grade enteroviral infection in the pancreatic islets contributes to disease progression in humans.
Collapse
Affiliation(s)
- Lars Krogvold
- Paediatric Department, Oslo University Hospital, Oslo, Norway
| | - Bjørn Edwin
- Intervention Centre and Department of Surgery, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Trond Buanes
- Faculty of Medicine, University of Oslo, Oslo, Norway Department of Surgery, Oslo University Hospital, Oslo, Norway
| | - Gun Frisk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mahesh Anagandula
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Dag Undlien
- Faculty of Medicine, University of Oslo, Oslo, Norway Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Morten C Eike
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sarah J Richardson
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Pia Leete
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Noel G Morgan
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Sami Oikarinen
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland
| | - Maarit Oikarinen
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland
| | - Jutta E Laiho
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland
| | - Heikki Hyöty
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Johnny Ludvigsson
- Division of Paediatrics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Kristian F Hanssen
- Faculty of Medicine, University of Oslo, Oslo, Norway Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Paediatric Department, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Kotani O, Iwata‐Yoshikawa N, Suzuki T, Sato Y, Nakajima N, Koike S, Iwasaki T, Sata T, Yamashita T, Minagawa H, Taguchi F, Hasegawa H, Shimizu H, Nagata N. Establishment of a panel of in-house polyclonal antibodies for the diagnosis of enterovirus infections. Neuropathology 2015; 35:107-21. [PMID: 25263613 PMCID: PMC7168124 DOI: 10.1111/neup.12171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Abstract
The aim of this study was to establish a reliable method of virus detection for the diagnosis of critical enterovirus infections such as acute infective encephalitis, encephalomyelitis and myocarditis. Because histopathological and immunohistochemical analyses of paraffin-embedded tissues play an important role in recognizing infectious agents in tissue samples, six in-house polyclonal antibodies raised against three representative enteroviruses using an indirect immunofluorescence assay and immunohistochemistry were examined. This panel of polyclonal antibodies recognized three serotypes of enterovirus. Two of the polyclonal antibodies were raised against denatured virus particles from enterovirus A71, one was raised against the recombinant VP1 protein of coxsackievirus B3, and the other for poliovirus type 1 were raised against denatured virus particles, the recombinant VP1 protein and peptide 2C. Western blot analysis revealed that each of these antibodies recognized the corresponding viral antigen and none cross-reacted with non-enteroviruses within the family Picornaviridae. However, all cross-reacted to some extent with the antigens derived from other serotypes of enterovirus. Indirect immunofluorescence assay and immunohistochemistry revealed that the virus capsid and non-structural proteins were localized in the cytoplasm of affected culture cells, and skeletal muscles and neurons in neonatal mice experimentally-infected with human enterovirus. The antibodies also recognized antigens derived from recent clinical isolates of enterovirus A71, coxsackievirus B3 and poliovirus. In addition, immunohistochemistry revealed that representative antibodies tested showed the same recognition pattern according to each serotype. Thus, the panel of in-house anti-enterovirus polyclonal antibodies described herein will be an important tool for the screening and pathological diagnosis for enterovirus infections, and may be useful for the classification of different enterovirus serotypes, including coxsackieviruses A and B, echoviruses, enterovirus A71 and poliovirus.
Collapse
Affiliation(s)
- Osamu Kotani
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
- Department of Virology and Viral InfectionsFaculty of Veterinary MedicineNippon Veterinary and Life Science UniversityAichiJapan
| | | | - Tadaki Suzuki
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
| | - Yuko Sato
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
| | - Noriko Nakajima
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
| | - Satoshi Koike
- Neurovirology ProjectTokyo Metropolitan Institute of Medical ScienceAichiJapan
| | - Takuya Iwasaki
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
| | - Tetsutaro Sata
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
| | - Teruo Yamashita
- Department of Microbiology and Medical ZoologyAichi Prefectural Institute of Public HealthAichiJapan
| | - Hiroko Minagawa
- Department of Microbiology and Medical ZoologyAichi Prefectural Institute of Public HealthAichiJapan
| | - Fumihiro Taguchi
- Department of Virology and Viral InfectionsFaculty of Veterinary MedicineNippon Veterinary and Life Science UniversityAichiJapan
| | - Hideki Hasegawa
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
| | - Hiroyuki Shimizu
- Department of Virology IINational Institute of Infectious DiseasesAichiJapan
| | - Noriyo Nagata
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
| |
Collapse
|
6
|
Abstract
Type 1 diabetes is a multifactorial disease resulting from a complex interplay between host genetics, the immune system and the environment, that culminates in the destruction of insulin-producing beta cells. The incidence of type 1 diabetes is increasing at an alarming rate, especially in children under the age of 5 (Gepts in Diabetes 14(10):619-613, 1965; Foulis et al. in Lancet 29(5):267-274, 1986; Gamble, Taylor and Cumming in British Medical Journal 4(5887):260-262 1973). Genetic predisposition, although clearly important, cannot explain this rise, and so, it has been proposed that changes in the 'environment' and/or changes in 'how we respond to our environment' must contribute to this rising incidence. In order to gain an improved understanding of the factors influencing the disease process, it is important, firstly, to focus on the organ at the centre of the illness-the pancreas. This review summarises our knowledge of the pathology of the endocrine pancreas in human type 1 diabetes and, in particular, explores the progression of this understanding over the past 25 years.
Collapse
Affiliation(s)
- Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building Barrack Road, Exeter, EX2 5DW, Devon, UK,
| | | | | |
Collapse
|
7
|
Richardson SJ, Leete P, Dhayal S, Russell MA, Oikarinen M, Laiho JE, Svedin E, Lind K, Rosenling T, Chapman N, Bone AJ, Foulis AK, Frisk G, Flodstrom-Tullberg M, Hober D, Hyoty H, Morgan NG. Evaluation of the fidelity of immunolabelling obtained with clone 5D8/1, a monoclonal antibody directed against the enteroviral capsid protein, VP1, in human pancreas. Diabetologia 2014; 57:392-401. [PMID: 24190581 DOI: 10.1007/s00125-013-3094-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/02/2013] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Enteroviral infection has been implicated in the development of islet autoimmunity in type 1 diabetes and enteroviral antigen expression has been detected by immunohistochemistry in the pancreatic beta cells of patients with recent-onset type 1 diabetes. However, the immunohistochemical evidence relies heavily on the use of a monoclonal antibody, clone 5D8/1, raised against an enteroviral capsid protein, VP1. Recent data suggest that the clone 5D8/1 may also recognise non-viral antigens; in particular, a component of the mitochondrial ATP synthase (ATP5B) and an isoform of creatine kinase (CKB). Therefore, we evaluated the fidelity of immunolabelling by clone 5D8/1 in the islets of patients with type 1 diabetes. METHODS Enteroviral VP1, CKB and ATP5B expression were analysed by western blotting, RT-PCR and immunocytochemistry in a range of cultured cell lines, isolated human islets and human tissue. RESULTS Clone 5D8/1 labelled CKB, but not ATP5B, on western blots performed under denaturing conditions. In cultured human cell lines, isolated human islets and pancreas sections from patients with type 1 diabetes, the immunolabelling of ATP5B, CKB and VP1 by 5D8/1 was readily distinguishable. Moreover, in a human tissue microarray displaying more than 80 different cells and tissues, only two (stomach and colon; both of which are potential sites of enterovirus infection) were immunopositive when stained with clone 5D8/1. CONCLUSIONS/INTERPRETATION When used under carefully optimised conditions, the immunolabelling pattern detected in sections of human pancreas with clone 5D8/1 did not reflect cross-reactivity with either ATP5B or CKB. Rather, 5D8/1 is likely to be representative of enteroviral antigen expression.
Collapse
Affiliation(s)
- Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hammerstad SS, Jahnsen FL, Tauriainen S, Hyöty H, Paulsen T, Norheim I, Dahl-Jørgensen K. Inflammation and increased myxovirus resistance protein A expression in thyroid tissue in the early stages of Hashimoto's thyroiditis. Thyroid 2013; 23:334-41. [PMID: 22998463 DOI: 10.1089/thy.2012.0264] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The role of viruses as environmental triggers for Hashimoto's thyroiditis (HT) is controversial. Thyroid epithelial cells express a variety of molecules involved in antiviral responses. This study combined histological, immunological, and virological tests to describe changes in tissue from patients with newly diagnosed and untreated HT. To study the early events, patients with positive thyroid peroxidase antibodies (TPO-Ab) and normal thyroid function were also included. This stage was defined as "prethyroiditis." METHODS Thyroid tissue was collected from 47 patients with high titers of TPO-Ab and from 24 controls. Seventeen patients had prethyroiditis, 17 had subclinical hypothyroidism, and 13 had overt hypothyroidism. The interferon (IFN)-α/β-inducible myxovirus resistance protein 1 (myxovirus resistance protein A; MxA) was used as a surrogate marker for type I IFN expression. Inflammation, expression of MxA, and the presence of the enteroviralcapsid protein (VP1) were characterized by immunohistochemistry. The presence of enterovirus (EV) RNA was examined by in situ hybridization. RESULTS The density of CD4+ T cells was increased in all three patient groups, while CD8+ T cells were increased only in patients with overt hypothyroidism. The density of plasma cells increased as the disease progressed. The density of plasmacytoid dendritic cells and the expression of MxA were significantly increased in all patient groups compared with controls (p<0.01). EV RNA was present in 11% of HT patients, but in none of the control subjects, whereas the enteroviral protein was detected in 19% and 16%, respectively. CONCLUSION The inflammatory reaction in the thyroid gland is a very early event in the pathogenesis of HT. The increased expression of MxA in the inflamed tissue suggests that type I IFN plays a role in disease development. Whether this is virus-dependent needs to be explored in further studies.
Collapse
|
9
|
Hammerstad SS, Tauriainen S, Hyöty H, Paulsen T, Norheim I, Dahl-Jørgensen K. Detection of enterovirus in the thyroid tissue of patients with graves' disease. J Med Virol 2012; 85:512-8. [PMID: 23280563 DOI: 10.1002/jmv.23476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2012] [Indexed: 12/15/2022]
Abstract
The etiology and pathogenesis of Graves' disease (GD) are still unknown, although it is thought that both genetic and environmental factors are important. Some indirect evidence implies that a viral infection may be a possible etiologic factor in autoimmunity. The main objective of this study was to examine direct evidence of the presence of enteroviruses (EVs) in the thyroid tissue of patients with GD. Thyroid tissue from 22 patients with newly diagnosed GD was obtained by core needle biopsy, while tissue from 24 patients with chronic GD and 24 control subjects without any autoimmune thyroid diseases was collected during neck surgery. Formalin-fixed, paraffin-embedded thyroid tissue samples were examined for the presence of enterovirus capsid protein using immunohistochemistry and for enterovirus RNA using in situ hybridization. Enterovirus capsid protein was detected in 17 (37%) patients and in 4 (17%) control subjects (P = 0.103). Enterovirus RNA was identified in thyroid tissue from nine (20%) patients, but in none of the control subjects (P = 0.016). Eight (90%) of the nine virus RNA positive patients were also positive for enterovirus protein. This is the first study to analyze thyroid tissue for EVs, including patients with untreated, newly diagnosed GD. The results suggest that EVs are more frequently present in thyroid tissue of patients than controls. Further studies are indicated to explore this association to find out if a low-grade chronic enteroviral infection might be involved in the pathogenesis of GD and if this could offer new therapeutic and preventive opportunities.
Collapse
|
10
|
Oikarinen M, Tauriainen S, Oikarinen S, Honkanen T, Collin P, Rantala I, Mäki M, Kaukinen K, Hyöty H. Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes 2012; 61:687-91. [PMID: 22315304 PMCID: PMC3282798 DOI: 10.2337/db11-1157] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enterovirus infections have been linked to type 1 diabetes in several studies. Enteroviruses also have tropism to pancreatic islets and can cause β-cell damage in experimental models. Viral persistence has been suspected to be an important pathogenetic factor. This study evaluates whether gut mucosa is a reservoir for enterovirus persistence in type 1 diabetic patients. Small-bowel mucosal biopsy samples from 39 type 1 diabetic patients, 41 control subjects, and 40 celiac disease patients were analyzed for the presence of enterovirus using in situ hybridization (ISH), RT-PCR, and immunohistochemistry. The presence of virus was compared with inflammatory markers such as infiltrating T cells, HLA-DR expression, and transglutaminase 2-targeted IgA deposits. Enterovirus RNA was found in diabetic patients more frequently than in control subjects and was associated with a clear inflammation response in the gut mucosa. Viral RNA was often detected in the absence of viral protein, suggesting defective replication of the virus. Patients remained virus positive in follow-up samples taken after 12 months' observation. The results suggest that a large proportion of type 1 diabetic patients have prolonged/persistent enterovirus infection associated with an inflammation process in gut mucosa. This finding opens new opportunities for studying the viral etiology of type 1 diabetes.
Collapse
Affiliation(s)
- Maarit Oikarinen
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Common intestinal infections caused by human enteroviruses (HEVs) are considered major environmental factors predisposing to type 1 diabetes (T1D). In spite of the active research of the field, the HEV-induced pathogenetic processes are poorly understood. Recently, after the first documented report on HEV infections in the pancreatic islets of deceased T1D patients, several groups became interested in the issue and studied valuable human material, the autopsy pancreases of diabetic and/or autoantibody-positive patients for HEV infections. In this review, the data on HEV infections in human pancreatic islets are discussed with special reference to the methods used. Likewise, mechanisms that could increase viral access to the pancreas are reviewed and discussed.
Collapse
Affiliation(s)
- Merja Roivainen
- Intestinal Viruses Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland.
| | | |
Collapse
|
12
|
Abstract
Type 1 diabetes mellitus is a chronic autoimmune disease resulting from the progressive immune-mediated destruction of pancreatic beta cells in genetically susceptible individuals, with the likely contribution of environmental factors, among which viruses have been extensively studied. The pathologic hallmark of the disease is insulitis-a process characterized by islet infiltration of immunocompetent cells that has been well characterized in animal models of islet autoimmunity, and to a lesser extent, in humans. Insulitis characterization has provided valuable information to gain insights into the disease pathogenesis. We review the recent literature on the viral contribution to beta-cell destruction and dysfunction in type 1 diabetes, with particular reference to the pathology of the pancreatic islet in humans and in animal models of the disease.
Collapse
Affiliation(s)
- Francesco Dotta
- Diabetes Unit, Department of Internal Medicine, Endocrine and Metabolic Sciences and Biochemistry, U.O. Diabetologia, University of Siena, Policlinico Le Scotte, Viale Bracci 18, Siena, Italy.
| | | | | | | |
Collapse
|
13
|
Use of antisera directed against dsRNA to detect viral infections in formalin-fixed paraffin-embedded tissue. J Clin Virol 2010; 49:180-5. [PMID: 20729142 DOI: 10.1016/j.jcv.2010.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 06/23/2010] [Accepted: 07/26/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND The detection of viral infection in paraffin-embedded, formalin-fixed tissue is notoriously difficult and often requires inherent knowledge about the specific virus being sought. For this reason, there is an ongoing need for reagents and methods which can identify a range of different virus types in paraffin embedded tissue. OBJECTIVES The aim of this study was to optimise and validate the use of antisera directed against dsRNA (>50 bp in length) in paraffin-embedded formalin-fixed tissue samples. STUDY DESIGN dsRNA antisera were optimised for use in a range of virally-infected tissue culture cells, Coxsackie-infected mice and human tissues. The specificity of labelling was confirmed by pre-adsorption of antisera with poly-IC and by digestion of dsRNA with RNaseIII. RESULTS Two different polyclonal dsRNA antisera (J2 and K1) were capable of recognising dsRNA encoded by all the multiple different viral types (including (+) ssRNA viruses, dsRNA viruses and DNA viruses) tested in paraffin-embedded formalin fixed infected cells and tissues. In contrast, the enteroviral vp1 antisera detected only a subset of the (+) ssRNA viruses tested. Staining was not seen in uninfected cells or in uninfected control tissues. Positive staining was ablated following incubation of antisera with poly-IC or by pre-treating sections with RNaseIII prior to staining. CONCLUSIONS The dsRNA antisera J2 and K1 are useful for the detection of viral infection in formalin-fixed, paraffin-embedded, human tissue samples.
Collapse
|