1
|
Raj SA, Zhou AL, Fedorova E, Yuan Z, Mandelbrot DA, Astor BC, Parajuli S. Low 25-Hydroxyvitamin D Post-Kidney Transplant Is Associated with Increased Risk of BK Polyomavirus-Associated Nephropathy. Microorganisms 2024; 12:2588. [PMID: 39770789 PMCID: PMC11678680 DOI: 10.3390/microorganisms12122588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BK viremia (BKPyV-DNAemia) and nephropathy (BKPyVAN) are significant causes of morbidity and mortality in kidney transplant recipients (KTRs). Vitamin D supports immune function, yet low 25-hydroxyvitamin D [25(OH)D] is common among KTRs. The association between serum 25(OH)D, measured 61 days to 2 years post-transplant, and subsequent incident BKPyV-DNAemia and BKPyVAN was examined in KTRs without previous BKPyV-DNAemia or BKPyVAN, respectively. Out of 3308 KTRs, 399 (12%) were vitamin D deficient [25(OH)D ≤ 20 ng/mL], and 916 (27.7%) were insufficient [25(OH)D 21-29 ng/mL]. A total of 184 KTRs developed BKPyV-DNAemia and 44 developed BKPyVAN. The incidence rate (/100 person-years) for BKPyV-DNAemia was 2.88 in the 25(OH)D sufficient group, 2.22 in the insufficient group, and 2.37 in the deficient group. The incidence rate (/100 person-years) for BKPyVAN was 0.30 in the 25(OH)D sufficient group, 0.75 in the insufficient group, and 1.28 in the deficient group. Vitamin D deficiency (adjusted hazard ratio [aHR] compared to 25(OH)D sufficiency: 3.92; 95% CI: 1.66-9.23) and insufficiency (aHR: 2.22; 95% CI: 1.11-4.45) remained significantly associated with the incidence of BKPyVAN after adjustment for baseline characteristics. Low serum 25(OH)D was associated with an increased risk of BKPyVAN but not BKPyV-DNAemia.
Collapse
Affiliation(s)
- Suseela A. Raj
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA (Z.Y.)
| | - Angela L. Zhou
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA (Z.Y.)
| | - Ekaterina Fedorova
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Zhongyu Yuan
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA (Z.Y.)
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Didier A. Mandelbrot
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA (Z.Y.)
| | - Brad C. Astor
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA (Z.Y.)
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sandesh Parajuli
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA (Z.Y.)
| |
Collapse
|
2
|
Tang Y, Wang Z, Du D. Challenges and opportunities in research on BK virus infection after renal transplantation. Int Immunopharmacol 2024; 141:112793. [PMID: 39146777 DOI: 10.1016/j.intimp.2024.112793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Renal transplantation is one of the primary approaches for curing end-stage kidney disease. With advancements in immunosuppressive agents, the short-term and long-term survival rates of transplanted kidneys have significantly improved. However, infections associated with potent immunosuppression have remained a persistent challenge. Among them, BK virus (BKV) reactivation following renal transplantation leading to BK virus-associated nephropathy (BKVAN) is a major cause of graft dysfunction. However, we still face significant challenges in understanding the pathogenesis, prevention, diagnosis, and treatment of BKVAN. These challenges include: 1. The mechanism of BKV reactivation under immunosuppressive conditions has not been well elucidated, leading to difficulties in breakthroughs in clinical research on prevention, diagnosis, and treatment. 2. Lack of proper identification of high-risk individuals, and effective personalized clinical management strategies. 3.Lack of early and sensitive diagnostic markers. 4. Lack of direct and effective treatment options due to the absence of specific antiviral drugs. The purpose of this review is to summarize the current status and cutting-edge advancements in BKV-related research, providing new methods and perspectives to address future research challenges.
Collapse
Affiliation(s)
- Yukun Tang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zipei Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Dunfeng Du
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
3
|
Nakamura Y, Chikaraishi T, Marui Y, Miki K, Yokoyama T, Kamiyama M, Ishii Y. BK Virus Nephropathy After Kidney Transplantation and Its Diagnosis Using Urinary Micro RNA. Transplant Proc 2024; 56:1967-1975. [PMID: 39477729 DOI: 10.1016/j.transproceed.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/04/2024] [Indexed: 12/10/2024]
Abstract
BK virus-associated nephritis (BKVAN) is an important cause of graft loss in renal transplant recipients B K viremia occurs in up to 30% of renal transplant recipients. Since the discovery of BKV in 1971, effective prophylaxis and treatment have not been established, and it is not uncommon for a transplant kidney to be lost without cure of BKVAN. BK virus infection is reactivated when cellular immunity is suppressed, which is often during the first year after kidney transplantation when cellular immunity is most suppressed. Clinically, it is caused by reactivation of latent infection or new infection from the donor kidney, leading to viremia, viremia, and transplant nephropathy. BK virus nephropathy is currently diagnosed definitively by measuring the amount of BK virus DNA in the blood and proving SV40-positive cells in transplant kidney tissue obtained by transplant kidney biopsy, but the time required for diagnosis and the low sensitivity of immunohistochemistry using antibodies are problematic. Therefore, we investigated whether the diagnosis of BK virus nephropathy could be made earlier by searching for miRNAs in the urine of renal transplant recipients.
Collapse
Affiliation(s)
- Yuki Nakamura
- Department of Surgery Nephrology Center, Toranomon Hospital, Tokyo Japan.
| | | | - Yuhji Marui
- Department of Renal Surgery, Himonya Hospital, Tokyo Japan
| | - Katsuyuki Miki
- Department of Surgery Nephrology Center, Toranomon Hospital, Tokyo Japan
| | - Takayoshi Yokoyama
- Department of Surgery Nephrology Center, Toranomon Hospital, Tokyo Japan
| | - Manabu Kamiyama
- Urology Department, Toranomon Hospital Kajigaya, Tokyo Japan
| | - Yasuo Ishii
- Department of Surgery Nephrology Center, Toranomon Hospital, Tokyo Japan
| |
Collapse
|
4
|
Zhou X, Zhu C, Li H. BK polyomavirus: latency, reactivation, diseases and tumorigenesis. Front Cell Infect Microbiol 2023; 13:1263983. [PMID: 37771695 PMCID: PMC10525381 DOI: 10.3389/fcimb.2023.1263983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The identification of the first human polyomavirus BK (BKV) has been over half century, The previous epidemiological and phylogenetic studies suggest that BKV prevailed and co-evolved with humans, leading to high seroprevalence all over the world. In general, BKV stays latent and symptomless reactivation in healthy individuals. BKV has been mainly interlinked with BKV-associated nephropathy (BKVAN) in kidney-transplant recipients and hemorrhagic cystitis (HC) in hematopoietic stem cell transplant recipients (HSCTRs). However, the mechanisms underlying BKV latency and reactivation are not fully understood and lack of extensive debate. As Merkel cell polyomavirus (MCV) was identified as a pathogenic agent of malignant cutaneous cancer Merkel cell carcinoma (MCC) since 2008, linking BKV to tumorigenesis of urologic tumors raised concerns in the scientific community. In this review, we mainly focus on advances of mechanisms of BKV latency and reactivation, and BKV-associated diseases or tumorigenesis with systematical review of formerly published papers following the PRISMA guidelines. The potential tumorigenesis of BKV in two major types of cancers, head and neck cancer and urologic cancer, was systematically updated and discussed in depth. Besides, BKV may also play an infectious role contributing to HIV-associated salivary gland disease (HIVSGD) presentation. As more evidence indicates the key role of BKV in potential tumorigenesis, it is important to pay more attention on its etiology and pathogenicity in vitro and in vivo.
Collapse
Affiliation(s)
- Xianfeng Zhou
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Nanchang, China
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Chunlong Zhu
- Clinical Laboratory, Third Hospital of Nanchang, Nanchang, China
| | - Hui Li
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| |
Collapse
|
5
|
Gilhus NE. Myasthenia gravis, respiratory function, and respiratory tract disease. J Neurol 2023; 270:3329-3340. [PMID: 37101094 PMCID: PMC10132430 DOI: 10.1007/s00415-023-11733-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/28/2023]
Abstract
Myasthenia gravis (MG) is characterized by muscle weakness caused by autoantibodies that bind to the postsynaptic membrane at the neuromuscular junction and impair acetylcholine receptor function. Weakness of respiratory muscles represents the most severe MG manifestation, and 10-15% of all patients experience an MG crisis with the need of mechanical ventilatory support at least once in their life. MG patients with respiratory muscle weakness need active immunosuppressive drug treatment long term, and they need regular specialist follow-up. Comorbidities affecting respiratory function need attention and optimal treatment. Respiratory tract infections can lead to MG exacerbations and precipitate an MG crisis. Intravenous immunoglobulin and plasma exchange are the core treatments for severe MG exacerbations. High-dose corticosteroids, complement inhibitors, and FcRn blockers represent fast-acting treatments that are effective in most MG patients. Neonatal myasthenia is a transient condition with muscle weakness in the newborn caused by mother's muscle antibodies. In rare cases, treatment of respiratory muscle weakness in the baby is required.
Collapse
Affiliation(s)
- Nils Erik Gilhus
- Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway.
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
6
|
BK Virus Nephropathy in Kidney Transplantation: A State-of-the-Art Review. Viruses 2022; 14:v14081616. [PMID: 35893681 PMCID: PMC9330039 DOI: 10.3390/v14081616] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
BK virus maintains a latent infection that is ubiquitous in humans. It has a propensity for reactivation in the setting of a dysfunctional cellular immune response and is frequently encountered in kidney transplant recipients. Screening for the virus has been effective in preventing progression to nephropathy and graft loss. However, it can be a diagnostic and therapeutic challenge. In this in-depth state-of-the-art review, we will discuss the history of the virus, virology, epidemiology, cellular response, pathogenesis, methods of screening and diagnosis, evidence-based treatment strategies, and upcoming therapeutics, along with the issue of re-transplantation in patients.
Collapse
|
7
|
Takajo D, Sehgal S, Blake J, Aggarwal S. Pneumocystis pneumonia with hypogammaglobulinemia in a pediatric patient who underwent heart transplantation. Transpl Infect Dis 2021; 23:e13571. [PMID: 33470002 DOI: 10.1111/tid.13571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/30/2022]
Abstract
A 23-month-old Caucasian female who had heart transplantation (HT) at 11 days of age was diagnosed with Pneumocystis pneumonia (PCP) in the setting of secondary hypogammaglobulinemia (HGG). She was diagnosed with HGG at 5 months of age and had been receiving monthly intravenous immunoglobulin infusion. This is the first case report describing the clinical course of PCP in a pediatric patient with HGG. She developed PCP 23 months after HT even when she was off steroids and was receiving timely IVIG. The case posed some clinical questions regarding PCP prophylaxis and HGG management.
Collapse
Affiliation(s)
- Daiji Takajo
- Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA
| | - Swati Sehgal
- Division of Pediatric Cardiology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA
| | - Jennifer Blake
- Division of Pediatric Cardiology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA
| | - Sanjeev Aggarwal
- Division of Pediatric Cardiology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA
| |
Collapse
|
8
|
Hirsch HH, Randhawa PS. BK polyomavirus in solid organ transplantation-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13528. [PMID: 30859620 DOI: 10.1111/ctr.13528] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
The present AST-IDCOP guidelines update information on BK polyomavirus (BKPyV) infection, replication, and disease, which impact kidney transplantation (KT), but rarely non-kidney solid organ transplantation (SOT). As pretransplant risk factors in KT donors and recipients presently do not translate into clinically validated measures regarding organ allocation, antiviral prophylaxis, or screening, all KT recipients should be screened for BKPyV-DNAemia monthly until month 9, and then every 3 months until 2 years posttransplant. Extended screening after 2 years may be considered in pediatric KT. Stepwise immunosuppression reduction is recommended for KT patients with plasma BKPyV-DNAemia of >1000 copies/mL sustained for 3 weeks or increasing to >10 000 copies/mL reflecting probable and presumptive BKPyV-associated nephropathy, respectively. Reducing immunosuppression is also the primary intervention for biopsy-proven BKPyV-associated nephropathy. Hence, allograft biopsy is not required for treating BKPyV-DNAemic patients with baseline renal function. Despite virological rationales, proper randomized clinical trials are lacking to generally recommend treatment by switching from tacrolimus to cyclosporine-A, from mycophenolate to mTOR inhibitors or leflunomide or by the adjunct use of intravenous immunoglobulins, leflunomide, or cidofovir. Fluoroquinolones are not recommended for prophylaxis or therapy. Retransplantation after allograft loss due to BKPyV nephropathy can be successful if BKPyV-DNAemia is definitively cleared, independent of failed allograft nephrectomy.
Collapse
Affiliation(s)
- Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Parmjeet S Randhawa
- Division of Transplantation Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Thomas E Starzl Transplantation Institute, Pittsburgh, Pennsylvania
| | | |
Collapse
|
9
|
Gilhus NE, Romi F, Hong Y, Skeie GO. Myasthenia gravis and infectious disease. J Neurol 2018; 265:1251-1258. [DOI: 10.1007/s00415-018-8751-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
|
10
|
Brief Report: Role of Thymic Reconstitution in the Outcome of AIDS-Related PML. J Acquir Immune Defic Syndr 2016; 70:357-61. [PMID: 26181821 DOI: 10.1097/qai.0000000000000754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Implications of thymopoiesis in AIDS-related opportunistic infections remain unexplored. We used progressive multifocal leukoencephalopathy (PML), caused by JC virus (JCV), as an opportunistic infection model, and we simultaneously investigated thymic output and T-cell responses against JCV in 22 patients with PML treated with combined antiretroviral therapy. Thymic output was significantly associated with JCV-specific CD4⁺ and CD8⁺ T-cell responses and improved survival. Our data suggest that patients with AIDS-related PML and impaired thymopoiesis are less likely to develop a robust JCV-specific cellular immune response and consequently are at an increased risk for a poor clinical outcome.
Collapse
|
11
|
Schmidt T, Adam C, Hirsch HH, Janssen MWW, Wolf M, Dirks J, Kardas P, Ahlenstiel-Grunow T, Pape L, Rohrer T, Fliser D, Sester M, Sester U. BK polyomavirus-specific cellular immune responses are age-dependent and strongly correlate with phases of virus replication. Am J Transplant 2014; 14:1334-45. [PMID: 24726000 DOI: 10.1111/ajt.12689] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/22/2014] [Accepted: 01/29/2014] [Indexed: 01/25/2023]
Abstract
BK polyomavirus (BKPyV) infection is widespread and typically asymptomatic during childhood, but may cause nephropathy in kidney transplant recipients. However, there is only limited knowledge on BKPyV-specific immunity in children and adults, and its role in BKPyV-replication and disease posttransplant. We therefore characterized BKPyV-specific immunity from 122 immunocompetent individuals (1-84 years), 38 adult kidney recipients with (n = 14) and without BKPyV-associated complications (n = 24), and 25 hemodialysis (HD) patients. Blood samples were stimulated with overlapping peptides of BKPyV large-T antigen and VP1 followed by flow-cytometric analysis of activated CD4 T cells expressing interferon-γ, IL-2 and tumor necrosis factor-α. Antibody-levels were determined using enzyme-linked immunosorbent assay. Both BKPyV-IgG levels and BKPyV-specific CD4 T cell frequencies were age-dependent (p = 0.0059) with maximum levels between 20 and 30 years (0.042%, interquartile range 0.05%). Transplant recipients showed a significantly higher BKPyV-specific T cell prevalence (57.9%) compared to age-matched controls (21.7%) or HD patients (28%, p = 0.017). Clinically relevant BKPyV-replication was associated with elevated frequencies of BKPyV-specific T cells (p = 0.0002), but decreased percentage of cells expressing multiple cytokines (p = 0.009). In conclusion, BKPyV-specific cellular immunity reflects phases of active BKPyV-replication either after primary infection in childhood or during reactivation after transplantation. Combined analysis of BKPyV-specific T cell functionality and viral loads may improve individual risk assessment.
Collapse
Affiliation(s)
- T Schmidt
- Department of Transplant and Infection Immunology, Institute of Virology, Saarland University, Homburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|