1
|
Vaheri A, Smura T, Vauhkonen H, Hepojoki J, Sironen T, Strandin T, Tietäväinen J, Outinen T, Mäkelä S, Pörsti I, Mustonen J. Puumala Hantavirus Infections Show Extensive Variation in Clinical Outcome. Viruses 2023; 15:v15030805. [PMID: 36992513 PMCID: PMC10054505 DOI: 10.3390/v15030805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
The clinical outcome of Puumala hantavirus (PUUV) infection shows extensive variation, ranging from inapparent subclinical infection (70-80%) to severe hemorrhagic fever with renal syndrome (HFRS), with about 0.1% of cases being fatal. Most hospitalized patients experience acute kidney injury (AKI), histologically known as acute hemorrhagic tubulointerstitial nephritis. Why this variation? There is no evidence that there would be more virulent and less virulent variants infecting humans, although this has not been extensively studied. Individuals with the human leukocyte antigen (HLA) alleles B*08 and DRB1*0301 are likely to have a severe form of the PUUV infection, and those with B*27 are likely to have a benign clinical course. Other genetic factors, related to the tumor necrosis factor (TNF) gene and the C4A component of the complement system, may be involved. Various autoimmune phenomena and Epstein-Barr virus infection are associated with PUUV infection, but hantavirus-neutralizing antibodies are not associated with lower disease severity in PUUV HFRS. Wide individual differences occur in ocular and central nervous system (CNS) manifestations and in the long-term consequences of nephropathia epidemica (NE). Numerous biomarkers have been detected, and some are clinically used to assess and predict the severity of PUUV infection. A new addition is the plasma glucose concentration associated with the severity of both capillary leakage, thrombocytopenia, inflammation, and AKI in PUUV infection. Our question, "Why this variation?" remains largely unanswered.
Collapse
Affiliation(s)
- Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Teemu Smura
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Hanna Vauhkonen
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Johanna Tietäväinen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Tuula Outinen
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Satu Mäkelä
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Ilkka Pörsti
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|
5
|
Tietäväinen J, Mäkelä S, Huhtala H, Pörsti IH, Strandin T, Vaheri A, Mustonen J. The Clinical Presentation of Puumala Hantavirus Induced Hemorrhagic Fever with Renal Syndrome Is Related to Plasma Glucose Concentration. Viruses 2021; 13:v13061177. [PMID: 34202952 PMCID: PMC8235586 DOI: 10.3390/v13061177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
Puumala hantavirus (PUUV) causes a hemorrhagic fever with renal syndrome characterized by thrombocytopenia, increased capillary leakage, and acute kidney injury (AKI). As glucosuria at hospital admission predicts the severity of PUUV infection, we explored how plasma glucose concentration associates with disease severity. Plasma glucose values were measured during hospital care in 185 patients with PUUV infection. They were divided into two groups according to maximum plasma glucose concentration: P-Gluc < 7.8 mmol/L (n = 134) and P-Gluc ≥ 7.8 mmol/L (n = 51). The determinants of disease severity were analyzed across groups. Patients with P-Gluc ≥7.8 mmol/L had higher hematocrit (0.46 vs. 0.43; p < 0.001) and lower plasma albumin concentration (24 vs. 29 g/L; p < 0.001) than patients with P-Gluc < 7.8 mmol/L. They presented with higher prevalence of pulmonary infiltrations and pleural effusion in chest radiograph, higher prevalence of shock and greater weight change during hospitalization. Patients with P-Gluc ≥ 7.8 mmol/L were characterized by lower platelet count (50 vs. 66 × 109/L; p = 0.001), more severe AKI (plasma creatinine 272 vs. 151 µmol/L; p = 0.001), and longer hospital treatment (8 vs. 6 days; p < 0.001) than patients with P-Gluc < 7.8 mmol/L. Plasma glucose level is associated with the severity of capillary leakage, thrombocytopenia, inflammation, and AKI in patients with acute PUUV infection.
Collapse
Affiliation(s)
- Johanna Tietäväinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (S.M.); (I.H.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
- Correspondence:
| | - Satu Mäkelä
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (S.M.); (I.H.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, 33520 Tampere, Finland;
| | - Ilkka H. Pörsti
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (S.M.); (I.H.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Tomas Strandin
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland; (T.S.); (A.V.)
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland; (T.S.); (A.V.)
| | - Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (S.M.); (I.H.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|
6
|
Fevola C, Rossi C, Rosso F, Girardi M, Rosà R, Manica M, Delucchi L, Rocchini D, Garzon-Lopez CX, Arnoldi D, Bianchi A, Buzan E, Charbonnel N, Collini M, Ďureje L, Ecke F, Ferrari N, Fischer S, Gillingham EL, Hörnfeldt B, Kazimírová M, Konečný A, Maas M, Magnusson M, Miller A, Niemimaa J, Nordström Å, Obiegala A, Olsson G, Pedrini P, Piálek J, Reusken CB, Rizzolli F, Romeo C, Silaghi C, Sironen T, Stanko M, Tagliapietra V, Ulrich RG, Vapalahti O, Voutilainen L, Wauters L, Rizzoli A, Vaheri A, Jääskeläinen AJ, Henttonen H, Hauffe HC. Geographical Distribution of Ljungan Virus in Small Mammals in Europe. Vector Borne Zoonotic Dis 2020; 20:692-702. [PMID: 32487013 DOI: 10.1089/vbz.2019.2542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ljungan virus (LV), which belongs to the Parechovirus genus in the Picornaviridae family, was first isolated from bank voles (Myodes glareolus) in Sweden in 1998 and proposed as a zoonotic agent. To improve knowledge of the host association and geographical distribution of LV, tissues from 1685 animals belonging to multiple rodent and insectivore species from 12 European countries were screened for LV-RNA using reverse transcriptase (RT)-PCR. In addition, we investigated how the prevalence of LV-RNA in bank voles is associated with various intrinsic and extrinsic factors. We show that LV is widespread geographically, having been detected in at least one host species in nine European countries. Twelve out of 21 species screened were LV-RNA PCR positive, including, for the first time, the red vole (Myodes rutilus) and the root or tundra vole (Alexandromys formerly Microtus oeconomus), as well as in insectivores, including the bicolored white-toothed shrew (Crocidura leucodon) and the Valais shrew (Sorex antinorii). Results indicated that bank voles are the main rodent host for this virus (overall RT-PCR prevalence: 15.2%). Linear modeling of intrinsic and extrinsic factors that could impact LV prevalence showed a concave-down relationship between body mass and LV occurrence, so that subadults had the highest LV positivity, but LV in older animals was less prevalent. Also, LV prevalence was higher in autumn and lower in spring, and the amount of precipitation recorded during the 6 months preceding the trapping date was negatively correlated with the presence of the virus. Phylogenetic analysis on the 185 base pair species-specific sequence of the 5' untranslated region identified high genetic diversity (46.5%) between 80 haplotypes, although no geographical or host-specific patterns of diversity were detected.
Collapse
Affiliation(s)
- Cristina Fevola
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Chiara Rossi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Fausta Rosso
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Matteo Girardi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center for Agriculture Food Environment-C3A, University of Trento and Fondazione E. Mach, San Michele all'Adige, Italy
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Luca Delucchi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Duccio Rocchini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center for Agriculture Food Environment-C3A, University of Trento and Fondazione E. Mach, San Michele all'Adige, Italy.,Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Povo, Italy
| | - Carol X Garzon-Lopez
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Ecology and Vegetation Physiology Group (EcoFiv), Universidad de los Andes, Bogotá, Colombia
| | - Daniele Arnoldi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Alessandro Bianchi
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna "Bruno Ubertini," Brescia, Italy
| | - Elena Buzan
- Department of Biodiversity, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Nathalie Charbonnel
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Margherita Collini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - L'udovít Ďureje
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Studenec, Czech Republic
| | - Frauke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Nicola Ferrari
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Stefan Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Emma L Gillingham
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Department of Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Salisbury, United Kingdom.,Department of Climate Change and Health, Public Health England, London, United Kingdom
| | - Birger Hörnfeldt
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Mária Kazimírová
- Slovak Academy of Sciences (SAS), Institute of Zoology, Bratislava, Slovakia
| | - Adam Konečný
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Miriam Maas
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Magnus Magnusson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Andrea Miller
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department for Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim, Norway
| | - Jukka Niemimaa
- Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Åke Nordström
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Anna Obiegala
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität, Munich, Germany.,Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Gert Olsson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Paolo Pedrini
- Sezione Zoologia dei Vertebrati, MUSE-Museo delle Scienze, Trento, Italy
| | - Jaroslav Piálek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Studenec, Czech Republic
| | - Chantal B Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Franco Rizzolli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Claudia Romeo
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität, Munich, Germany.,Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michal Stanko
- Slovak Academy of Sciences (SAS), Institute of Zoology, Bratislava, Slovakia.,Slovak Academy of Sciences (SAS), Institute of Parasitology, Košice, Slovakia
| | - Valentina Tagliapietra
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Olli Vapalahti
- Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Lucas Wauters
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Antti Vaheri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne J Jääskeläinen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Heidi C Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
8
|
Fevola C, Kuivanen S, Smura T, Vaheri A, Kallio-Kokko H, Hauffe HC, Vapalahti O, Jääskeläinen AJ. Seroprevalence of lymphocytic choriomeningitis virus and Ljungan virus in Finnish patients with suspected neurological infections. J Med Virol 2017; 90:429-435. [PMID: 28976562 DOI: 10.1002/jmv.24966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/27/2017] [Indexed: 12/30/2022]
Abstract
Directly-transmitted rodent-borne zoonotic viruses, such as lymphocytic choriomeningitis virus (LCMV) can cause nervous system infections. Rodent-borne Ljungan virus (LV) is considered potentially zoonotic possibly causing neurological symptoms. Our objective was to understand the role of these two viruses compared to other pathogens in causing neurological infections in Finnish patients. Routine screening data were available for 400 patients aged 5-50 years, collected from December 2013 to December 2014 with suspected neurological infection. Depending on symptoms, patients were variously tested for herpesviruses, enteroviruses, varicella zoster virus, and Mycoplasma pneumoniae, while those suspected of tick bite were further tested for Borrelia spp. and tick-borne encephalitis virus using antibody and/or nucleic acid tests. For 380 patients, we also screened the RNA and antibody prevalence of LCMV and LV in order to test if either of these viruses were the causative agent. Data collected indicated that the causative microbial agent was confirmed in only 15.5% of all Finnish patients with neurological symptoms, with M. pneumoniae (26 cases) being the most common causative agent found in sera, whereas Borrelia spp. (15), herpes simplex viruses (7), and enteroviruses (5) were the most common agents confirmed in the CSF. The seroprevalences for LV and LCMV were 33.8% and 5.0%, respectively, but no samples were PCR-positive. In this study, M. pneumoniae and Borrelia spp. were the most common causative agents of neurological infections in Finland. No LCMV or LV infections were detected. We conclude there was no association of LV with neurological diseases in this patient cohort.
Collapse
Affiliation(s)
- Cristina Fevola
- Faculty of Medicine,, Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Suvi Kuivanen
- Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Teemu Smura
- Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Vaheri
- Faculty of Medicine,, Department of Virology, University of Helsinki, Helsinki, Finland
| | - Hannimari Kallio-Kokko
- Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heidi C Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Olli Vapalahti
- Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Annemarjut J Jääskeläinen
- Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
9
|
Mustonen J, Outinen T, Laine O, Pörsti I, Vaheri A, Mäkelä S. Kidney disease in Puumala hantavirus infection. Infect Dis (Lond) 2017; 49:321-332. [PMID: 28049381 DOI: 10.1080/23744235.2016.1274421] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acute kidney injury (AKI) remains a predominant clinical expression of nephropathia epidemica (NE). Its pathogenesis is not yet fully understood. Here, we describe the tissue injury comprehensively and present new data aimed to characterize the injury and explain its pathophysiology. When compared to tubulointerstitial nephritis of a wide variety of other aetiologies, a high degree of proteinuria is a distinguished trait of NE, a finding that is also helpful in the clinical suspicion of the disease. Recently, novel biomarkers for the prediction of severe AKI, including neutrophil gelatinase-associated lipocalin (NGAL), have been identified and ultrastructural tissue changes have been more accurately described. A role for soluble urokinase-type plasminogen activator (suPAR) in the pathogenesis of NE has been suggested, and data on gene polymorphisms, in relation to the severity of AKI have been presented. Smoking is a risk factor for NE and smoking is also associated with aggravated AKI in NE. Although no specific treatment is in sight, recent case reports concerning therapy directed against vascular permeability and vasodilation are of interest. In fact, future work trying to explain the pathophysiology of AKI might need concentrated efforts towards the mechanisms of increased vascular permeability and vasodilatation, which irrespective of organ manifestation, are two major determinants of NE.
Collapse
Affiliation(s)
- Jukka Mustonen
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland.,b Department of Internal Medicine , Tampere University Hospital , Tampere , Finland
| | - Tuula Outinen
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland
| | - Outi Laine
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland.,b Department of Internal Medicine , Tampere University Hospital , Tampere , Finland
| | - Ilkka Pörsti
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland.,b Department of Internal Medicine , Tampere University Hospital , Tampere , Finland
| | - Antti Vaheri
- c Department of Virology, Medicum , University of Helsinki , Helsinki , Finland
| | - Satu Mäkelä
- a Faculty of Medicine and Life Sciences , University of Tampere , Tampere , Finland.,b Department of Internal Medicine , Tampere University Hospital , Tampere , Finland
| |
Collapse
|