1
|
van der Westhuizen C, Newton-Foot M, Nel P. Performance comparison of three commercial multiplex molecular panels for respiratory viruses at a South African academic hospital. Afr J Lab Med 2024; 13:2415. [PMID: 39228900 PMCID: PMC11369576 DOI: 10.4102/ajlm.v13i1.2415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Respiratory infections are a major contributor to hospital admissions. Identification of respiratory pathogens by means of conventional culture and serology methods remains challenging. Multiplex molecular assays are an appealing alternative that endeavours to be rapid, more accurate and less arduous. Objective The study aimed to compare the clinical performance of three commercial multiplex molecular assays for respiratory viruses. Methods Forty-eight respiratory specimens obtained from patients at Tygerberg Hospital in the Western Cape province of South Africa were studied. These specimens were collected between May 2020 and August 2020. The results of the Seegene Anyplex™ II RV16, FilmArray® Respiratory 2.1 plus Panel (FARP), and QIAstat-Dx® Respiratory SARS-CoV-2 Panel (QRP) were analysed based on the overlapping targets. A composite reference standard was applied to provide a standard reference for comparison. Results The overall sensitivity of the Seegene Anyplex™ II RV16 was 96.6% (57/59), the FARP 98.2% (56/57) and the QRP 80.7% (46/57). The overall specificities were 99.8% (660/661), 99.0% (704/711) and 99.7% (709/711), respectively. The QRP failed to detect coronaviruses and parainfluenza viruses in 41.7% (5/12) and 28.6% (4/14) of positive specimens, respectively, while the FARP produced the lowest target specificity of 88.4% (38/43) for rhinovirus/enterovirus. Conclusion The overall specificity of all three platforms was comparable; however, the sensitivity of the QRP was inferior to that of the ARV and FARP. What this study adds This study adds to the body of performance characteristics described for respiratory multiplex panels, especially in the African context where molecular diagnostics for infectious diseases are gaining momentum.
Collapse
Affiliation(s)
- Clinton van der Westhuizen
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medical Microbiology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Mae Newton-Foot
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medical Microbiology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Pieter Nel
- Division of Medical Microbiology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medical Microbiology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
2
|
Challen R, Chatzilena A, Qian G, Oben G, Kwiatkowska R, Hyams C, Finn A, Tsaneva-Atanasova K, Danon L. Combined multiplex panel test results are a poor estimate of disease prevalence without adjustment for test error. PLoS Comput Biol 2024; 20:e1012062. [PMID: 38669293 PMCID: PMC11078360 DOI: 10.1371/journal.pcbi.1012062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Multiplex panel tests identify many individual pathogens at once, using a set of component tests. In some panels the number of components can be large. If the panel is detecting causative pathogens for a single syndrome or disease then we might estimate the burden of that disease by combining the results of the panel, for example determining the prevalence of pneumococcal pneumonia as caused by many individual pneumococcal serotypes. When we are dealing with multiplex test panels with many components, test error in the individual components of a panel, even when present at very low levels, can cause significant overall error. Uncertainty in the sensitivity and specificity of the individual tests, and statistical fluctuations in the numbers of false positives and false negatives, will cause large uncertainty in the combined estimates of disease prevalence. In many cases this can be a source of significant bias. In this paper we develop a mathematical framework to characterise this issue, we determine expressions for the sensitivity and specificity of panel tests. In this we identify a counter-intuitive relationship between panel test sensitivity and disease prevalence that means panel tests become more sensitive as prevalence increases. We present novel statistical methods that adjust for bias and quantify uncertainty in prevalence estimates from panel tests, and use simulations to test these methods. As multiplex testing becomes more commonly used for screening in routine clinical practice, accumulation of test error due to the combination of large numbers of test results needs to be identified and corrected for.
Collapse
Affiliation(s)
- Robert Challen
- Bristol Vaccine Centre, Schools of Population Health Sciences and of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Anastasia Chatzilena
- Bristol Vaccine Centre, Schools of Population Health Sciences and of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - George Qian
- Bristol Vaccine Centre, Schools of Population Health Sciences and of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Glenda Oben
- Bristol Vaccine Centre, Schools of Population Health Sciences and of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Rachel Kwiatkowska
- Population Health Sciences, University of Bristol, United Kingdom
- NIHR Health Protection Unit in Behavioural Science and Evaluation, University of Bristol, United Kingdom
| | - Catherine Hyams
- Bristol Vaccine Centre, Schools of Population Health Sciences and of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Adam Finn
- Bristol Vaccine Centre, Schools of Population Health Sciences and of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Leon Danon
- Bristol Vaccine Centre, Schools of Population Health Sciences and of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
3
|
Hong YJ, Jung BK, Kim JK. Epidemiological Characterization of Respiratory Pathogens Using the Multiplex PCR FilmArray™ Respiratory Panel. Diagnostics (Basel) 2024; 14:734. [PMID: 38611647 PMCID: PMC11011807 DOI: 10.3390/diagnostics14070734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Various pathogens can cause upper respiratory tract infections, presenting challenges in accurate diagnosis due to similar symptomatology. Therefore, rapid and precise diagnostic tests are crucial for effective treatment planning. Traditional culture-based methods for diagnosis are limited by their reliance on skilled personnel and lengthy processing times. In contrast, multiplex polymerase chain reaction (PCR) techniques offer enhanced accuracy and speed in identifying respiratory pathogens. In this study, we aimed to assess the efficacy of the FilmArray™ Respiratory Panel (RP), a multiplex PCR test capable of simultaneously screening 20 pathogens. This retrospective analysis was conducted at Dankook University Hospital, South Korea, between January 2018 and December 2022. Samples from patients with upper respiratory tract infections were analyzed. Results revealed adenovirus as the most prevalent pathogen (18.9%), followed by influenza virus A (16.5%), among others. Notably, a 22.5% co-infection rate was observed. The FilmArray™ RP method successfully identified 20 pathogens within 2 h, facilitating prompt treatment decisions and mitigating unnecessary antibiotic prescriptions. This study underscores the utility of multiplex PCR in respiratory pathogen identification, offering valuable insights for epidemiological surveillance and diagnosis.
Collapse
Affiliation(s)
- Young Jun Hong
- Department of Biomedical Laboratory Science, College of Health Sciences, Dankook University, Cheonan 31116, Republic of Korea;
| | - Bo Kyeung Jung
- Department of Laboratory Medicine, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea;
| | - Jae Kyung Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Dankook University, Cheonan 31116, Republic of Korea;
| |
Collapse
|
4
|
Bălan AM, Bodolea C, Trancă SD, Hagău N. Trends in Molecular Diagnosis of Nosocomial Pneumonia Classic PCR vs. Point-of-Care PCR: A Narrative Review. Healthcare (Basel) 2023; 11:1345. [PMID: 37174887 PMCID: PMC10177880 DOI: 10.3390/healthcare11091345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/23/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Nosocomial pneumonia is one of the most frequent hospital-acquired infections. One of the types of nosocomial pneumonia is ventilator-associated pneumonia, which occurs in endotracheally intubated patients in intensive care units (ICU). Ventilator-associated pneumonia may be caused by multidrug-resistant pathogens, which increase the risk of complications due to the difficulty in treating them. Pneumonia is a respiratory disease that requires targeted antimicrobial treatment initiated as early as possible to have a good outcome. For the therapy to be as specific and started sooner, diagnostic methods have evolved rapidly, becoming quicker and simpler to perform. Polymerase chain reaction (PCR) is a rapid diagnostic technique with numerous advantages compared to classic plate culture-based techniques. Researchers continue to improve diagnostic methods; thus, the newest types of PCR can be performed at the bedside, in the ICU, so-called point of care testing-PCR (POC-PCR). The purpose of this review is to highlight the benefits and drawbacks of PCR-based techniques in managing nosocomial pneumonia.
Collapse
Affiliation(s)
- Andrei-Mihai Bălan
- Department of Anaesthesia and Intensive Care 2, “Iuliu Hatieganu”, University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (N.H.)
- Department of Anaesthesia and Intensive Care, Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
| | - Constantin Bodolea
- Department of Anaesthesia and Intensive Care 2, “Iuliu Hatieganu”, University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (N.H.)
- Department of Anaesthesia and Intensive Care, Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
| | - Sebastian Daniel Trancă
- Department of Anaesthesia and Intensive Care 2, “Iuliu Hatieganu”, University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (N.H.)
- Emergency Department, The Emergency County Hospital Cluj, 400347 Cluj-Napoca, Romania
| | - Natalia Hagău
- Department of Anaesthesia and Intensive Care 2, “Iuliu Hatieganu”, University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania (N.H.)
- Department of Anaesthesia and Intensive Care, “Regina Maria” Hospital, 400221 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Baghdadi JD, Yang JM, Lynen A, Sorongon S, Harris AD, Johnson JK, Morgan DJ. Clinical yield of multiple testing with respiratory pathogen panels. Diagn Microbiol Infect Dis 2022; 102:115629. [PMID: 35149391 PMCID: PMC9942518 DOI: 10.1016/j.diagmicrobio.2021.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 01/21/2023]
Abstract
Though multiplex respiratory pathogen panels (RPP) have high sensitivity, multiple tests are occasionally performed simultaneously or in rapid succession in an attempt to increase the yield. The purpose of this study was to assess the impact of this practice. METHODS "Multiple testing" was defined as >1 RPP performed within 12 hours on the same patient and specimen type. All cases of multiple testing for adults at two hospitals over a 5-year period were included. Chart review was performed to determine whether discordant results led to a clinical diagnosis or change in clinical management. RESULTS Of 18,779 RPPs, 462 (2.5%) represented cases of multiple testing. Twenty-six of 462 cases (5.6%) produced discordant results. Five discordant results (1.1% of 462 multiple testing episodes) were associated with a clinical diagnosis, and 4 (0.9%) influenced clinical management. CONCLUSION Multiple RPP testing facilitates clinical management in <1% of cases. Medical centers may consider de-implementing this practice.
Collapse
Affiliation(s)
- Jonathan D Baghdadi
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Epidemiology and Public Health, VA Maryland Health Care System, Baltimore, MD, USA.
| | - Jerry M Yang
- Department of Epidemiology and Public Health, University of Maryland, College Park, MD, USA
| | - Amanda Lynen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Scott Sorongon
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony D Harris
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Epidemiology and Public Health, VA Maryland Health Care System, Baltimore, MD, USA
| | - Jennifer Kristie Johnson
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel J Morgan
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Epidemiology and Public Health, VA Maryland Health Care System, Baltimore, MD, USA
| |
Collapse
|
6
|
Sanz I, Perez D, Rojo S, Domínguez-Gil M, de Lejarazu RO, Eiros JM. Coinfections of influenza and other respiratory viruses are associated to children. An Pediatr (Barc) 2022; 96:334-341. [DOI: 10.1016/j.anpede.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022] Open
|
7
|
D'Aleo F, Bonanno R, Bonofiglio M. New methods in meningitis diagnosis. MICROBIOLOGIA MEDICA 2021. [DOI: 10.4081/mm.2021.10235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Meningitis remains a worldwide problem and Central nervous system (CNS) infections are associated with devastating sequelae, including cognitive deficits, vision and hearing impairment, motor and sensory deficits and epilepsy in over one-half of survivors. Rapid diagnosis of meningitis is essential to improve chances at survival and minimize unnecessary healthcare costs related to isolation procedures and empiric treatment. Multiplex molecular assays are an attractive option for the simultaneous detection of several microbial targets. Currently, several assays are marketed. The aim of our review is to comprehensively evaluate the molecular available systems of using a new multiplex PCR panel in determining the microbiologic etiologies of meningitis.
Collapse
|
8
|
Comparative Evaluation of Allplex Respiratory Panels 1, 2, 3, and BioFire FilmArray Respiratory Panel for the Detection of Respiratory Infections. Diagnostics (Basel) 2021; 12:diagnostics12010009. [PMID: 35054176 PMCID: PMC8775103 DOI: 10.3390/diagnostics12010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Multiplex nucleic acid amplification assays that simultaneously detect multiple respiratory pathogens in a single nasopharyngeal swab (NPS) specimen are widely used for rapid clinical diagnostics. We evaluated Allplex Respiratory Panel (RP) 1, 2, 3, and the BioFire FilmArray RP assay for detecting respiratory pathogens from NPS specimens. In all, 181 NPS specimens obtained from patients suspected of having respiratory infections during the non-influenza season (August–December 2019) were included. The Allplex RP 1, 2, and 3 detected 154 samples positive for respiratory viruses, whereas the BioFire FilmArray detected viruses in 98 samples. Co-infection with two or more viruses was detected in 41 and 17 NPS specimens by Allplex RP and the BioFire FilmArray RP, respectively. For adenoviruses, Allplex RP 1 detected 31 specimens, compared to 34 by the BioFire FilmArray. In all, 64 NPS specimens were positive for human enterovirus (HEV) and human rhinovirus (HRV) on the Allplex RP, in contrast to 39 HEV/HRV on the BioFire FilmArray. The parainfluenza virus (PIV-1–4) detection rate differed between the two systems. Most discrepant results were observed for NPS specimens with high cycle threshold values obtained by Allplex RP. This study showed concordant performance of the Allplex RP 1, 2, 3, and the BioFire FilmArray RP for the simultaneous detection of multiple respiratory viruses.
Collapse
|
9
|
Shen N, Zhou Y, Zhou Y, Luo L, Chen W, Wang J, Zhao R, Xie L, Cao Q, Tao Y, Mo X. Evaluation of Molecular Point-of-Care Testing for Respiratory Pathogens in Children With Respiratory Infections: A Retrospective Case-Control Study. Front Cell Infect Microbiol 2021; 11:778808. [PMID: 34869077 PMCID: PMC8640230 DOI: 10.3389/fcimb.2021.778808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives Overuse of antibiotics and antibiotic resistance are global healthcare problems. In pediatric patients with respiratory infections, viral and bacterial etiologies are challenging to distinguish, leading to irrational antibiotic use. Rapid and accurate molecular diagnostic testing methods for respiratory pathogens has been shown to facilitate effective clinical decision-making and guide antibiotic stewardship interventions in the developed regions, but its impacts on pediatric patient care in the developing countries remain unclear. Methods In this single-center, retrospective case-control study, we compared demographics, clinical characteristics, especially microbiological findings, and antibiotic usage between pediatric patients with respiratory infection receiving FilmArray Respiratory Panel (FilmArray RP) testing and a matched routine testing control group. Our primary outcome was the duration of intravenous antibiotics treatment (DOT) during hospitalization. Results Each group consisted of 346 children with a respiratory infection. In the FilmArray RP testing group, the DOT was shorter than that in the routine testing group (6.41 ± 3.67 days versus 7.23 ± 4.27 days; p = 0.006). More patients in the FilmArray RP testing group de-escalated antibiotic treatments within 72 hours of hospitalization (7.80%, 27/346 versus 2.60%, 9/346; p = 0.002). By contrast, fewer patients in the FilmArray RP testing group had escalated antibiotic treatments between 72 hours and seven days (7.80% versus 14.16%; p = 0.007). The cost of hospitalization was significantly lower in the FilmArray RP testing group ($ 1413.51 ± 1438.01 versus $ 1759.37 ± 1929.22; p = 0.008). Notably, the subgroup analyses revealed that the FilmArray RP test could shorten the DOT, improve early de-escalation of intravenous antibiotics within 72 hours of hospitalization, decline the escalation of intravenous antibiotics between 72 hours and seven days, and reduce the cost of hospitalization for both patient populations with or without underlying diseases. Conclusions Molecular point-of-care testing for respiratory pathogens could help to reduce intravenous antibiotic use and health care costs of pediatric patients with respiratory infections in developing countries.
Collapse
Affiliation(s)
- Nan Shen
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanjie Zhou
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yajuan Zhou
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijuan Luo
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Chen
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Wang
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruike Zhao
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xie
- Clinical Research Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Cao
- Department of Infectious Diseases, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Tao
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Mo
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Respiratory viral infections in pragmatically selected adults in intensive care units. Sci Rep 2021; 11:20058. [PMID: 34625621 PMCID: PMC8501073 DOI: 10.1038/s41598-021-99608-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Respiratory viruses can be detected in 18.3 to 48.9% of critically ill adults with severe respiratory tract infections (RTIs). The present study aims to assess the clinical significance of respiratory viruses in pragmatically selected adults in medical intensive care unit patients and to identify factors associated with viral respiratory viral tract infections (VRTIs). We conducted a prospective study on critically ill adults with suspected RTIs without recognized respiratory pathogens. Viral cultures with monoclonal antibody identification, in-house real-time polymerase chain reaction (PCR) for influenza virus, and FilmArray respiratory panel were used to detect viral pathogens. Multivariable logistic regression was applied to identify factors associated with VRTIs. Sixty-four (40.5%) of the included 158 critically ill adults had respiratory viruses detected in their respiratory specimens. The commonly detected viruses included influenza virus (20), followed by human rhinovirus/enterovirus (11), respiratory syncitial virus (9), human metapneumovirus (9), human parainfluenza viruses (8), human adenovirus (7), and human coronaviruses (2). The FilmArray respiratory panel detected respiratory viruses in 54 (34.6%) patients, but showed negative results for seven of 13 patients with influenza A/H3 infection. In the multivariable logistic regression model, patient characters associated with VRTIs included those aged < 65 years, household contact with individuals with upper RTI, the presence of fever, cough with sputum production, and sore throat. Respiratory viruses were not uncommonly detected in the pragmatically selected adults with critical illness. The application of multiplex PCR testing for respiratory viruses in selected patient population is a practical strategy, and the viral detection rate could be further improved by the patient characters recognized in this study.
Collapse
|
11
|
Sanz I, Perez D, Rojo S, Domínguez-Gil M, Lejarazu ROD, Eiros JM. [Coinfections of influenza and other respiratory viruses are associated to children]. An Pediatr (Barc) 2021; 96:S1695-4033(21)00143-0. [PMID: 33745837 DOI: 10.1016/j.anpedi.2020.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Coinfections of influenza and other respiratory viruses (ORVs) are frequent in the epidemic season. The aim of this study was to examine the demographic and virological variables associated with coinfections by influenza and ORVs. MATERIALS AND METHODS We analysed respiratory samples of patients with laboratory-confirmed influenza using molecular diagnostic methods obtained in 8 consecutive influenza seasons (2011-2012 to 2018-2019). We analysed data focusing on different variables: age, sex, type of patient (hospitalized/sentinel) and detected type/subtype of influenza. RESULTS Coinfections of influenza and ORVs were detected in 17.8% of influenza-positive samples. The probability of detecting coinfection was significantly higher in young children (0-4 years; OR: 2.7; 95% CI: 2.2-3.4), children (5-14 years; OR: 1.6; 95% CI: 1.2-2.1) and patients infected with the A(H3N2) subtype (OR: 1.4; 95% CI: 1.14-1.79). Also, we found a significantly higher frequency of coinfections involving influenza and 2 or more other respiratory viruses in young children (0-4 years; OR: 0.5; 95% CI: 0.32-0.8), adults (40-64 years; OR: 0.5; 95% CI: 0.3-0.9) and women (OR: 0.7; 95% CI: 0.5-0.9). DISCUSSION These results show that coinfections of influenza and ORVs are more frequent in young children and children, and in cases involving the A(H3N2) influenza subtype. Our findings can be useful to guide the use of multiplex diagnostic methods in laboratories with limited resources.
Collapse
Affiliation(s)
- Ivan Sanz
- Centro Nacional de Gripe de Valladolid, Edifico Rondilla, Hospital Clínico Universitario de Valladolid, Valladolid, España.
| | - Diana Perez
- Centro Nacional de Gripe de Valladolid, Edifico Rondilla, Hospital Clínico Universitario de Valladolid, Valladolid, España
| | - Silvia Rojo
- Centro Nacional de Gripe de Valladolid, Edifico Rondilla, Hospital Clínico Universitario de Valladolid, Valladolid, España; Unidad de Virología, Servicio de Microbiología e Inmunología, Hospital Clínico Universitario de Valladolid, Valladolid, España
| | - Marta Domínguez-Gil
- Centro Nacional de Gripe de Valladolid, Edifico Rondilla, Hospital Clínico Universitario de Valladolid, Valladolid, España; Servicio de Microbiología, Hospital Universitario Río Hortega, Valladolid, España
| | - Raúl Ortiz de Lejarazu
- Centro Nacional de Gripe de Valladolid, Edifico Rondilla, Hospital Clínico Universitario de Valladolid, Valladolid, España
| | - José María Eiros
- Centro Nacional de Gripe de Valladolid, Edifico Rondilla, Hospital Clínico Universitario de Valladolid, Valladolid, España; Unidad de Virología, Servicio de Microbiología e Inmunología, Hospital Clínico Universitario de Valladolid, Valladolid, España; Servicio de Microbiología, Hospital Universitario Río Hortega, Valladolid, España
| |
Collapse
|
12
|
Vandenberg O, Martiny D, Rochas O, van Belkum A, Kozlakidis Z. Considerations for diagnostic COVID-19 tests. Nat Rev Microbiol 2021; 19:171-183. [PMID: 33057203 PMCID: PMC7556561 DOI: 10.1038/s41579-020-00461-z] [Citation(s) in RCA: 469] [Impact Index Per Article: 156.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
During the early phase of the coronavirus disease 2019 (COVID-19) pandemic, design, development, validation, verification and implementation of diagnostic tests were actively addressed by a large number of diagnostic test manufacturers. Hundreds of molecular tests and immunoassays were rapidly developed, albeit many still await clinical validation and formal approval. In this Review, we summarize the crucial role of diagnostic tests during the first global wave of COVID-19. We explore the technical and implementation problems encountered during this early phase in the pandemic, and try to define future directions for the progressive and better use of (syndromic) diagnostics during a possible resurgence of COVID-19 in future global waves or regional outbreaks. Continuous global improvement in diagnostic test preparedness is essential for more rapid detection of patients, possibly at the point of care, and for optimized prevention and treatment, in both industrialized countries and low-resource settings.
Collapse
Affiliation(s)
- Olivier Vandenberg
- Innovation and Business Development Unit, Laboratoire Hospitalier Universtaire de Bruxelles - Universitair Laboratorium Brussel, Université Libre de Bruxelles, Brussels, Belgium.
- Center for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles, Brussels, Belgium.
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, UK.
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universtaire de Bruxelles - Universitair Laboratorium Brussel, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivier Rochas
- Strategic Intelligence, Corporate Business Development, bioMérieux, Chemin de L'Orme, France
| | - Alex van Belkum
- Open Innovation and Partnerships, bioMérieux, La Balme Les Grottes, France.
| | - Zisis Kozlakidis
- Laboratory Services and Biobank Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
13
|
Pronier C, Gacouin A, Lagathu G, Le Tulzo Y, Tadié JM, Thibault V. Respiratory Influenza viral load as a marker of poor prognosis in patients with severe symptoms. J Clin Virol 2021; 136:104761. [DOI: 10.1016/j.jcv.2021.104761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022]
|
14
|
McIlwain DR, Chen H, Apkarian M, Affrime M, Bock B, Kim K, Mukherjee N, Nolan GP, McNeal MM. Performance of BioFire array or QuickVue influenza A + B test versus a validation qPCR assay for detection of influenza A during a volunteer A/California/2009/H1N1 challenge study. Virol J 2021; 18:45. [PMID: 33632249 PMCID: PMC7905982 DOI: 10.1186/s12985-021-01516-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/18/2021] [Indexed: 01/01/2023] Open
Abstract
Background Influenza places a significant burden on global health and economics. Individual case management and public health efforts to mitigate the spread of influenza are both strongly impacted by our ability to accurately and efficiently detect influenza viruses in clinical samples. Therefore, it is important to understand the performance characteristics of available assays to detect influenza in a variety of settings. We provide the first report of relative performance between two products marketed to streamline detection of influenza virus in the context of a highly controlled volunteer influenza challenge study. Methods Nasopharyngeal swab samples were collected during a controlled A/California/2009/H1N1 influenza challenge study and analyzed for detection of virus shedding using a validated qRT-PCR (qPCR) assay, a sample-to-answer qRT-PCR device (BioMerieux BioFire FilmArray RP), and an immunoassay based rapid test kit (Quidel QuickVue Influenza A + B Test). Results Relative to qPCR, the sensitivity and specificity of the BioFire assay was 72.1% [63.7–79.5%, 95% confidence interval (CI)] and 93.5% (89.3–96.4%, 95% CI) respectively. For the QuickVue rapid test the sensitivity was 8.5% (4.8–13.7%, 95% CI) and specificity was 99.2% (95.6–100%, 95% CI). Conclusion Relative to qPCR, the BioFire assay had superior performance compared to rapid test in the context of a controlled influenza challenge study. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01516-0.
Collapse
Affiliation(s)
- David R McIlwain
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA. .,WCCT Global, Cypress, CA, USA.
| | - Han Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | - Nilanjan Mukherjee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Monica M McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
15
|
Hardick J, Shaw-Saliba K, McBryde B, Gaydos CA, Hsieh YH, Lovecchio F, Steele M, Talan D, Rothman RE. Identification of pathogens from the upper respiratory tract of adult emergency department patients at high risk for influenza complications in a pre-Sars-CoV-2 environment. Diagn Microbiol Infect Dis 2021; 100:115352. [PMID: 33639376 DOI: 10.1016/j.diagmicrobio.2021.115352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 11/24/2022]
Abstract
The emergence of SARS-CoV-2 and subsequent COVID-19 pandemic highlights the morbidity and potential disease severity caused by respiratory viruses. To elucidate pathogen prevalence, etiology of coinfections and URIs from symptomatic adult Emergency department patients in a pre-SARS-CoV-2 environment, we evaluated specimens from four geographically diverse Emergency departments in the United States from 2013-2014 utilizing ePlex RP RUO cartridges (Genmark Diagnostics). The overall positivity was 30.1% (241/799), with 6.6% (16/241) coinfections. Noninfluenza pathogens from most to least common were rhinovirus/enterovirus, coronavirus, human metapneumovirus and RSV, respectively. Broad differences in disease prevalence and pathogen distributions were observed across geographic regions; the site with the highest detection rate (for both mono and coinfections) demonstrated the greatest pathogen diversity. A variety of respiratory pathogens and geographic variations in disease prevalence and copathogen type were observed. Further research is required to evaluate the clinical relevance of these findings, especially considering the SARS-CoV-2 pandemic and related questions regarding SARS-CoV-2 disease severity and the presence of co-infections.
Collapse
Affiliation(s)
- Justin Hardick
- Johns Hopkins University School of Medicine, Department of Infectious Diseases, Baltimore, MD, USA.
| | - Kathryn Shaw-Saliba
- Johns Hopkins University School of Medicine, Department of Emergency Medicine, Baltimore, MD, USA
| | - Breana McBryde
- Johns Hopkins University School of Medicine, Department of Emergency Medicine, Baltimore, MD, USA
| | - Charlotte A Gaydos
- Johns Hopkins University School of Medicine, Department of Infectious Diseases, Baltimore, MD, USA; Johns Hopkins University School of Medicine, Department of Emergency Medicine, Baltimore, MD, USA
| | - Yu-Hsiang Hsieh
- Johns Hopkins University School of Medicine, Department of Emergency Medicine, Baltimore, MD, USA
| | | | | | - David Talan
- Oliver View Medical Center, Los Angeles, CA, USA
| | - Richard E Rothman
- Johns Hopkins University School of Medicine, Department of Infectious Diseases, Baltimore, MD, USA; Johns Hopkins University School of Medicine, Department of Emergency Medicine, Baltimore, MD, USA
| | | |
Collapse
|
16
|
[Virological diagnosis of lower respiratory tract infections]. Rev Mal Respir 2021; 38:58-73. [PMID: 33461842 DOI: 10.1016/j.rmr.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 08/06/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The etiological diagnosis of bronchopulmonary infections cannot be assessed with clinical, radiological and epidemiological data alone. Viruses have been demonstrated to cause a large proportion of these infections, both in children and adults. BACKGROUND The diagnosis of viral bronchopulmonary infections is based on the analysis of secretions, collected from the lower respiratory tract when possible, by techniques that detect either influenza and respiratory syncytial viruses, or a large panel of viruses that can be responsible for respiratory disease. The latter, called multiplex PCR assays, allow a syndromic approach to respiratory infection. Their high cost for the laboratory raises the question of their place in the management of patients in terms of antibiotic economy and isolation. In the absence of clear recommendations, the strategy and equipment are very unevenly distributed in France. OUTLOOK Medico-economic analyses need to be performed in France to evaluate the place of these tests in the management of patients. The evaluation of the role of the different viruses often detected in co-infection, especially in children, also deserves the attention of virologists and clinicians. CONCLUSIONS The availability of new diagnostic technologies, the recent emergence of SARS-CoV-2, together with the availability of new antiviral drugs are likely to impact future recommendations for the management of viral bronchopulmonary infections.
Collapse
|
17
|
Bianchini S, Silvestri E, Argentiero A, Fainardi V, Pisi G, Esposito S. Role of Respiratory Syncytial Virus in Pediatric Pneumonia. Microorganisms 2020; 8:microorganisms8122048. [PMID: 33371276 PMCID: PMC7766387 DOI: 10.3390/microorganisms8122048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory viral infections represent the leading cause of hospitalization in infants and young children worldwide and the second leading cause of infant mortality. Among these, Respiratory Syncytial Virus (RSV) represents the main cause of lower respiratory tract infections (LRTIs) in young children worldwide. RSV manifestation can range widely from mild upper respiratory infections to severe respiratory infections, mainly bronchiolitis and pneumonia, leading to hospitalization, serious complications (such as respiratory failure), and relevant sequalae in childhood and adulthood (wheezing, asthma, and hyperreactive airways). There are no specific clinical signs or symptoms that can distinguish RSV infection from other respiratory pathogens. New multiplex platforms offer the possibility to simultaneously identify different pathogens, including RSV, with an accuracy similar to that of single polymerase chain reaction (PCR) in the majority of cases. At present, the treatment of RSV infection relies on supportive therapy, mainly consisting of oxygen and hydration. Palivizumab is the only prophylactic method available for RSV infection. Advances in technology and scientific knowledge have led to the creation of different kinds of vaccines and drugs to treat RSV infection. Despite the good level of these studies, there are currently few registered strategies to prevent or treat RSV due to difficulties related to the unpredictable nature of the disease and to the specific target population.
Collapse
Affiliation(s)
- Sonia Bianchini
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (S.B.); (E.S.)
- Pediatric Unit, ASST Santi Carlo e Paolo, 20142 Milan, Italy
| | - Ettore Silvestri
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (S.B.); (E.S.)
| | - Alberto Argentiero
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.A.); (V.F.); (G.P.)
| | - Valentina Fainardi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.A.); (V.F.); (G.P.)
| | - Giovanna Pisi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.A.); (V.F.); (G.P.)
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.A.); (V.F.); (G.P.)
- Correspondence: ; Tel.: +39-0521-704790
| |
Collapse
|
18
|
Qian Y, Ai J, Wu J, Yu S, Cui P, Gao Y, Jin J, Weng X, Zhang W. Rapid detection of respiratory organisms with FilmArray respiratory panel and its impact on clinical decisions in Shanghai, China, 2016-2018. Influenza Other Respir Viruses 2019; 14:142-149. [PMID: 31786832 PMCID: PMC7040966 DOI: 10.1111/irv.12701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In this study, we evaluated the diagnostic potential and clinical impact of an automated multiplex PCR platform (the FilmArray Respiratory Panel; FA-RP), specially designed for pathogen detection in respiratory tract infections in adults with unexplained pneumonia (UP). METHODS A total of 112 UP patients in Shanghai, China, were enrolled prospectively and assessed using the FA-RP from October 2016 to March 2018. We examined the test results and their influence on clinical decisions. Furthermore, as a control group, we retrospectively obtained the clinical data of 70 UP patients between October 2014 and March 2016 (before the FA-RP was available). The two patient groups were compared with respect to factors, including general antimicrobial use and defined daily dose (DDD) numbers. RESULTS Between October 2016 and March 2018, the positive rate obtained using FA-RP for UP was 76.8%. The primary pathogens in adults with UP were Influenza A/B (47.3%, 53/112). Compared with the patients before FA-RP was available, patients who underwent FA-RP testing had higher rates of antiviral drug use and antibiotic de-escalation during clinical treatment. FA-RP significantly decreased the total DDDs of antibiotic or antifungal drugs DDDs by 7 days after admission (10.6 ± 2.5 vs 14.1 ± 8.8, P < .01). CONCLUSIONS The FA-RP is a rapid and sensitive nucleic acid amplification test method for UP diagnosis in adults. The application of FA-RP may lead to a more accurately targeted antimicrobial treatment and reduced use of antibiotic/antifungal drugs.
Collapse
Affiliation(s)
- Yiyi Qian
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Ai
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shenglei Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Cui
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Gao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jialin Jin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinhua Weng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH) and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Shengchen D, Gu X, Fan G, Sun R, Wang Y, Yu D, Li H, Zhou F, Xiong Z, Lu B, Zhu G, Cao B. Evaluation of a molecular point-of-care testing for viral and atypical pathogens on intravenous antibiotic duration in hospitalized adults with lower respiratory tract infection: a randomized clinical trial. Clin Microbiol Infect 2019; 25:1415-1421. [PMID: 31229593 PMCID: PMC7173318 DOI: 10.1016/j.cmi.2019.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 01/03/2023]
Abstract
Objectives The primary objective was to evaluate whether a molecular point-of-care test (POCT) for viral and atypical pathogens added to routine real-time PCR could reduce duration of intravenous antibiotics in hospitalized patients with lower respiratory tract infection (LRTI) compared with routine real-time PCR. Methods In this single-centre, open-label, randomized controlled study, we enrolled hospitalized adults diagnosed with LRTI. Patients were randomized to an intervention group (POCT FilmArray Panel for 20 viruses, atypical pathogens and bacteria plus routine real-time PCR) or a control group (routine real-time PCR for ten pathogens). The primary outcome was duration of intravenous antibiotics during hospitalization. The secondary outcomes included length of stay, cost of hospitalization and de-escalation within 72 hours and between 72 hours and 7 days. Intention-to-treat analysis was used. Results Between October 2017 and July 2018, we enrolled 800 eligible patients (398 in the intervention group and 402 in the control group). Duration of intravenous antibiotics in the intervention group was shorter than in the control (7.0 days (interquartile range (IQR) 5.0–9.0) versus 8.0 days (IQR 6.0–11.0); p <0.001). Length of hospital stay in the intervention group was significantly shorter (8.0 days (IQR 7.0–11.0) versus 9.0 days (IQR 7.0–12.0; p <0.001) and the cost of hospitalization in the intervention group was significantly lower ($1804.7 (IQR 1298.4–2633.8) versus $2042.5 (IQR 1427.4–2926.2); p 0.002) than control group. More patients in the intervention group achieved de-escalation within 72 hours (7.9%, 29/367 versus 3.2%, 12/377; p 0.005) and between 72 hours and 7 days (29.7%, 109/367 versus 22.0%, 83/377; p 0.024). Conclusions Use of molecular POCT testing for respiratory viruses and atypical pathogens might help to reduce intravenous antibiotic use in hospitalized LRTI patients. Clinical Trial Registration clinicaltrials.gov Identifier: NCT03391076.
Collapse
Affiliation(s)
- D Shengchen
- Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - X Gu
- Department of Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China; National Clinical Research Centre of Respiratory Diseases, Beijing, China
| | - G Fan
- Department of Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China; National Clinical Research Centre of Respiratory Diseases, Beijing, China
| | - R Sun
- Department of Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China; National Clinical Research Centre of Respiratory Diseases, Beijing, China
| | - Y Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - D Yu
- Department of Pulmonary and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - H Li
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - F Zhou
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Z Xiong
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Beijing, China
| | - B Lu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Beijing, China
| | - G Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - B Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing, China; National Clinical Research Centre of Respiratory Diseases, Beijing, China; Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Beijing, China; Clinical Centre for Pulmonary Infections, Capital Medical University, Beijing, China; Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing, China.
| |
Collapse
|
20
|
Esposito S, Mencacci A, Cenci E, Camilloni B, Silvestri E, Principi N. Multiplex Platforms for the Identification of Respiratory Pathogens: Are They Useful in Pediatric Clinical Practice? Front Cell Infect Microbiol 2019; 9:196. [PMID: 31275863 PMCID: PMC6593267 DOI: 10.3389/fcimb.2019.00196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/21/2019] [Indexed: 01/31/2023] Open
Abstract
Respiratory tract infections (RTIs) are extremely common especially in the first year of life. Knowledge of the etiology of a RTI is essential to facilitate the appropriate management and the implementation of the most effective control measures. This perspective explains why laboratory methods that can identify pathogens in respiratory secretions have been developed over the course of many years. High-complexity multiplex panel assays that can simultaneously detect up to 20 viruses and up to four bacteria within a few hours have been marketed. However, are these platforms actually useful in pediatric clinical practice? In this manuscript, we showed that these platforms appear to be particularly important for epidemiological studies and clinical research. On the contrary, their routine use in pediatric clinical practice remains debatable. They can be used only in the hospital as they require specific equipment and laboratory technicians with considerable knowledge, training, and experience. Moreover, despite more sensitive and specific than other tests routinely used for respiratory pathogen identification, they do not offer significantly advantage for detection of the true etiology of a respiratory disease. Furthermore, knowledge of which virus is the cause of a respiratory disease is not useful from a therapeutic point of view unless influenza virus or respiratory syncytial virus are the infecting agents as effective drugs are available only for these pathogens. On the other hand, multiplex platforms can be justified in the presence of severe clinical manifestations, and in immunocompromised patients for whom specific treatment option can be available, particularly when they can be used simultaneously with platforms that allow identification of antimicrobial resistance to commonly used drugs. It is highly likely that these platforms, particularly those with high sensitivity and specificity and with low turnaround time, will become essential when new drugs effective and safe against most of the respiratory viruses will be available. Further studies on how to differentiate carriers from patients with true disease, as well as studies on the implications of coinfections and identification of antimicrobial resistance, are warranted.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Antonella Mencacci
- Microbiology Unit, Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Elio Cenci
- Microbiology Unit, Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Barbara Camilloni
- Microbiology Unit, Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Ettore Silvestri
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | | |
Collapse
|
21
|
Serología en el siglo xxi: ¿continúa teniendo interés? Enferm Infecc Microbiol Clin 2019; 37 Suppl 1:40-46. [DOI: 10.1016/s0213-005x(19)30181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|