1
|
RT-LAMP as Diagnostic Tool for Influenza—A Virus Detection in Swine. Vet Sci 2023; 10:vetsci10030220. [PMID: 36977259 PMCID: PMC10051247 DOI: 10.3390/vetsci10030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Point-of-care diagnostic technologies are becoming more widely available for production species. Here, we describe the application of reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect the matrix (M) gene of influenza A virus in swine (IAV-S). M-specific LAMP primers were designed based on M gene sequences from IAV-S isolated in the USA between 2017 and 2020. The LAMP assay was incubated at 65 °C for 30 min, with the fluorescent signal read every 20 s. The assay’s limit of detection (LOD) was 20 M gene copies for direct LAMP of the matrix gene standard, and 100 M gene copies when using spiked extraction kits. The LOD was 1000 M genes when using cell culture samples. Detection in clinical samples showed a sensitivity of 94.3% and a specificity of 94.9%. These results show that the influenza M gene RT-LAMP assay can detect the presence of IAV in research laboratory conditions. With the appropriate fluorescent reader and heat block, the assay could be quickly validated as a low-cost, rapid, IAV-S screening tool for use on farms or in clinical diagnostic labs.
Collapse
|
2
|
Finch J, Zuckerman M, Smith M. Investigating the sequence variation in the influenza A matrix genes during the 2017-2018 and 2018-2019 seasons in samples from a local population in London. J Virol Methods 2021; 297:114250. [PMID: 34339766 DOI: 10.1016/j.jviromet.2021.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Recent publications have highlighted the emergence of mutations in the M1 gene of both influenza A H1N1pdm09 and H3N2 subtypes affecting the performance of commercial RT-PCR assays. Respiratory samples from the 2018/2019 season positive by our in-house RT-PCR for influenza A were analysed for the prevalence and impact of any M1 gene mutations. Sequence information was used to re-design primers for our routine assay and their performance assessed. Forty-five samples, consisting of 11 H1N1pdm09 and 34 H3N2 subtypes, together with the NIBSC H1N1 control were sequenced. All samples displayed the core mutations for H1N1 M1(C154T; G174A and G238A) and for H3N2 M1(C153T; C163T and G189T); three of the H1N1pdm09 viruses also showed a small number of point mutations. None of the mutations appeared to affect either the sensitivity or efficiency of the RT-PCR when compared to the re-designed primers. Although the mutations we found agreed with those in the publications cited we did not encounter any problems with our routine diagnostic assay and no improvements were found when the primers were modified to suit those mutations. However, it is likely that the influenza A virus M1 gene will accumulate further mutations that could impact RT-PCR assays and, therefore, it would be prudent to implement routine sequencing of samples during the influenza seasons to ensure no loss in assay performance.
Collapse
Affiliation(s)
- James Finch
- Viapath Analytics, South London Specialist Virology Centre, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, United Kingdom
| | - Mark Zuckerman
- Viapath Analytics, South London Specialist Virology Centre, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, United Kingdom
| | - Melvyn Smith
- Viapath Analytics, South London Specialist Virology Centre, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, United Kingdom.
| |
Collapse
|
3
|
Kim DH, Park BJ, Ahn HS, Go HJ, Kim DY, Kim JH, Lee JB, Park SY, Song CS, Lee SW, Choi IS. Canine interferon lambda 3 expressed using an adenoviral vector effectively induces antiviral activity against canine influenza virus. Virus Res 2021; 296:198342. [PMID: 33607185 DOI: 10.1016/j.virusres.2021.198342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022]
Abstract
Interferon-lambda (IFN-λ) is a type-III IFN and is considered a candidate of antiviral therapeutics. Although the antiviral effects of IFN-λ have been investigated in several studies, it has not been clinically approved as an antiviral agent. In this study, an adenoviral vector expression system employing a tetracycline-operator system was developed to control the expression of canine IFN-λ3. The antiviral effects of canine IFN-λ3 were determined in Madin-Darby canine kidney cells and canine tracheal epithelial cells. After transducing each cell line with recombinant adenovirus containing canine interferon lambda3 gene (Ad-caIFNλ3), the mRNA-expression of interferon-stimulated genes Mx1, ISG15, and OAS1 increased significantly (P < 0.05). The replication of canine influenza virus (CIV) was significantly suppressed in Ad-caIFNλ3-infected cells. These results indicate that the newly constructed adenoviral vector system could express canine IFN-λ3, which could subsequently inhibit CIV replication in two canine cell lines. These data imply that the recombinant Ad-caIFNλ3 can potentially be used to treat canine influenza and other viral diseases.
Collapse
Affiliation(s)
- Dong-Hwi Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Byung-Joo Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hee-Seop Ahn
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyeon-Jeong Go
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Da-Yoon Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jae-Hyeong Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
4
|
The Panther Fusion System with Open Access Functionality for Laboratory-Developed Tests for Influenza A Virus Subtyping. J Clin Microbiol 2020; 58:JCM.00188-20. [PMID: 32229600 PMCID: PMC7269382 DOI: 10.1128/jcm.00188-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/21/2020] [Indexed: 11/25/2022] Open
Abstract
Nucleic acid amplification tests, such as PCR, are the method of choice for respiratory virus testing, due to their superior diagnostic accuracy and fast turnaround time. The Panther Fusion (Fusion; Hologic) system has an array of highly sensitive in vitro diagnostic (IVD) real-time PCR assays for respiratory viruses, including an assay for influenza A (FluA) virus, influenza B (FluB) virus, and respiratory syncytial virus (RSV) (FFABR assay). The Fusion system has Open Access functionality to perform laboratory-developed tests (LDTs) alongside IVD assays. Nucleic acid amplification tests, such as PCR, are the method of choice for respiratory virus testing, due to their superior diagnostic accuracy and fast turnaround time. The Panther Fusion (Fusion; Hologic) system has an array of highly sensitive in vitro diagnostic (IVD) real-time PCR assays for respiratory viruses, including an assay for influenza A (FluA) virus, influenza B (FluB) virus, and respiratory syncytial virus (RSV) (FFABR assay). The Fusion system has Open Access functionality to perform laboratory-developed tests (LDTs) alongside IVD assays. We developed two LDTs for FluA virus strain typing on the Panther Fusion instrument, enabling side-by-side testing with the FFABR assay. The LDT-FAST assay uses proprietary primers and probes designed by Hologic for the Prodesse ProFAST+ (PFAST) assay. The exWHO-FAST assay is an expanded redesign of the WHO-recommended reverse transcriptase PCRs (RT-PCRs). To evaluate the performance of these two LDTs, 110 FluA virus-positive samples were tested. Of these, 104 had been subtyped previously; 54 were H3, 46 were 09H1, and 4 were fsH1. All were appropriately subtyped by both LDTs. Of the untyped FluA virus samples, three were subtyped as H3 by both LDTs and two were subtyped as H3 by the LDT-FAST assay only. The sample not subtyped by either LDT was retested with the FFABR assay and was now negative. Limit-of-detection (LOD) analyses were performed with five FluA virus strains. The LDT-FAST LODs were similar to the FFABR assay LODs, while the exWHO-FAST LODs were higher for two H3N2 strains, findings that were explained by analysis of primer/probe homology. In conclusion, either FluA virus typing assay would be a valuable complement to the Panther Fusion respiratory menu given the performance of these LDTs, the system’s full automation, and the ability to split eluates for both IVD and LDT testing.
Collapse
|
5
|
Nanopore Sequencing Reveals Novel Targets for Detection and Surveillance of Human and Avian Influenza A Viruses. J Clin Microbiol 2020; 58:JCM.02127-19. [PMID: 32132187 DOI: 10.1128/jcm.02127-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Accurate detection of influenza A virus (IAV) is crucial for patient management, infection control, and epidemiological surveillance. The World Health Organization and the Centers for Disease Control and Prevention have recommended using the M gene as the diagnostic gene target for reverse-transcription-PCR (RT-PCR). However, M gene RT-PCR has reduced sensitivity for recent IAV due to novel gene mutations. Here, we sought to identify novel diagnostic targets for the molecular detection of IAV using long-read third-generation sequencing. Direct nanopore sequencing from 18 nasopharyngeal specimens and one saliva specimen showed that the 5' and 3' ends of the PB2 gene and the entire NS gene were highly abundant. Primers selected for PB2 and NS genes were well matched with seasonal or avian IAV gene sequences. Our novel PB2 and NS gene real-time RT-PCR assays showed limits of detection similar to or lower than that of M gene RT-PCR and achieved 100% sensitivity and specificity in the detection of A(H1N1), A(H3N2), and A(H7N9) in nasopharyngeal and saliva specimens. For 10 patients with IAV detected by M gene RT-PCR conversion in sequentially collected specimens, NS and/or PB2 gene RT-PCR was positive in 2 (20%) of the initial specimens that were missed by M gene RT-PCR. In conclusion, we have shown that PB2 or NS gene RT-PCRs are suitable alternatives to the recommended M gene RT-PCR for diagnosis of IAV. Long-read nanopore sequencing facilitates the identification of novel diagnostic targets.
Collapse
|
6
|
Stellrecht KA, Cimino JL, Wilson LI, Maceira VP, Butt SA. Panther Fusion® Respiratory Virus Assays for the detection of influenza and other respiratory viruses. J Clin Virol 2019; 121:104204. [PMID: 31743836 PMCID: PMC7172166 DOI: 10.1016/j.jcv.2019.104204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nucleic acid amplification tests (NAATs), such as PCR, are preferred for respiratory virus testing, due to superior diagnostic accuracy and faster turnaround time. Panther Fusion® Respiratory Assays (Fusion), which includes FluA/B/RSV (FFABR), Paraflu and AdV/hMPV/RV, offers a modular approach to syndromic testing on a fully automated platform while improving gene targets and expanding the test menu. OBJECTIVES AND STUDY DESIGN We evaluated Fusion using 275 consecutive nasopharyngeal specimens previously used in an analysis of five PCRs, as well as 225 archived specimens. RESULTS Of the combined 500 specimens, 134 were positive for influenza A (FluA), 54 for FluB, 65 for RSV, 64 for parainfluenza (PIV), 24 for adenovirus (AdV), 21 for humanmetapneumovirus (hMPV), and 40 for rhinovirus (RV) with Fusion. Of the positive samples Fusion correlated with historical results for all but one, despite multiple freeze-thaws cycles of this collection. Fusion was positive for an additional 33 samples, including 11 FluAs, 7 RSVs, 3 PIV3s, 3 AdV, 6 hMPV and 3 RVs. These samples were retested with corresponding Prodesse (Pro) assays using quadruple sample volume. This resolver test confirmed Fusion results for an additional 4 FluAs, 4 RSVs, 1 PIV3 and 3 AdVs. The sensitivity and specificity ranges of Fusion were 99-100% and 98-100%. Limit of detection (LOD) analyses were performed on a variety of Flu isolates. The LODs ranged from 2.69 to 2.99 log copies/ml and demonstrated superior LOD as compared to previously published data for some assays or to concurrent analyses with two new commercial tests.
Collapse
Affiliation(s)
- Kathleen A Stellrecht
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, United States; Department of Immunology and Microbial Diseases, Albany Medical College, Albany, New York, United States; Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States.
| | - Jesse L Cimino
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States
| | - Lisa I Wilson
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States
| | - Vincente P Maceira
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States
| | - Shafiq A Butt
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States
| |
Collapse
|
7
|
Toth E, Dawson ED, Taylor AW, Stoughton RS, Blair RH, Johnson JE, Slinskey A, Fessler R, Smith CB, Talbot S, Rowlen K. FluChip-8G Insight: HA and NA subtyping of potentially pandemic influenza A viruses in a single assay. Influenza Other Respir Viruses 2019; 14:55-60. [PMID: 31608599 PMCID: PMC6928037 DOI: 10.1111/irv.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Global influenza surveillance in humans and animals is a critical component of pandemic preparedness. The FluChip-8G Insight assay was developed to subtype both seasonal and potentially pandemic influenza viruses in a single assay with a same day result. FluChip-8G Insight uses whole gene segment RT-PCR-based amplification to provide robustness against genetic drift and subsequent microarray detection with artificial neural network-based data interpretation. OBJECTIVES The objective of this study was to verify and validate the performance of the FluChip-8G Insight assay for the detection and positive identification of human and animal origin non-seasonal influenza A specimens. METHODS We evaluated the ability of the FluChip-8G Insight technology to type and HA and NA subtype a sample set consisting of 297 results from 180 unique non-seasonal influenza A strains (49 unique subtypes). RESULTS FluChip-8G Insight demonstrated a positive percent agreement ≥93% for 5 targeted HA and 5 targeted NA subtypes except for H9 (88%), and negative percent agreement exceeding 95% for all targeted subtypes. CONCLUSIONS The FluChip-8G Insight neural network-based algorithm used for virus identification performed well over a data set of 297 naïve sample results, and can be easily updated to improve performance on emerging strains without changing the underlying assay chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Catherine B Smith
- Influenza Division, the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah Talbot
- Influenza Division, the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
8
|
Zhang H, Wang Y, Porter E, Lu N, Li Y, Yuan F, Lohman M, Noll L, Zheng W, Stoy C, Lang Y, Huber VC, Ma W, Peddireddi L, Fang Y, Shi J, Anderson G, Liu X, Bai J. Development of a multiplex real-time RT-PCR assay for simultaneous detection and differentiation of influenza A, B, C, and D viruses. Diagn Microbiol Infect Dis 2019; 95:59-66. [PMID: 31130238 PMCID: PMC6697560 DOI: 10.1016/j.diagmicrobio.2019.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 01/18/2023]
Abstract
Influenza is a common and contagious respiratory disease caused by influenza A, B, C, and D viruses (IAV, IBV, ICV, and IDV). A multiplex real-time RT-PCR assay was developed for simultaneous detection of IAV, IBV, ICV, and IDV. The assay was designed to target unique sequences in the matrix gene of IBV and ICV, the RNA polymerase subunit PB1 of IDV, and combined with USDA and CDC IAV assays, both target the matrix gene. The host 18S rRNA gene was included as an internal control. In silico analyses indicated high strain coverages: 97.9% for IBV, 99.5% for ICV, and 100% for IDV. Transcribed RNA, viral isolates and clinical samples were used for validation. The assay specifically detected target viruses without cross-reactivity, nor detection of other common pathogens. The limit of detection was approximately 30 copies for each viral RNA template, which was equivalent to a threshold cycle value of ~37.
Collapse
Affiliation(s)
- Hewei Zhang
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; College of Food and Drugs, Luoyang Polytechnic, Luo Yang, Henan, China
| | - Yin Wang
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Elizabeth Porter
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Fangfeng Yuan
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Molly Lohman
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Lance Noll
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Wanglong Zheng
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Colin Stoy
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yuekun Lang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Victor C Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Lalitha Peddireddi
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Gary Anderson
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Xuming Liu
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
9
|
Analytical evaluation of the microarray-based FluChip-8G Influenza A+B Assay. J Virol Methods 2019; 273:113686. [PMID: 31271790 PMCID: PMC6779046 DOI: 10.1016/j.jviromet.2019.113686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Influenza causes a significant annual disease burden, with characterization of the infecting virus important in clinical and public health settings. Rapid immunoassays are fast but insensitive, whereas real-time RT-PCR is sensitive but susceptible to genetic mutations and often requires multiple serial assays. The FluChip-8G Influenza A+B Assay provides type and subtype/lineage identification of influenza A and B, including non-seasonal A viruses, in a single microarray-based assay with same day turnaround time. OBJECTIVE To evaluate key analytical performance characteristics of the FluChip-8G Influenza A+B Assay. STUDY DESIGN Analytical sensitivity, cross-reactivity, and multi-site reproducibility were evaluated. RESULTS The limit of detection (LOD) for the FluChip-8G influenza A+B Assay ranged from 5.8 × 102-1.5 × 105 genome copies/mL, with most samples ∼2 × 103 genome copies/mL (∼160 genome copies/reaction). Fifty two (52) additional strains were correctly identified near the LOD, demonstrating robust reactivity. Two variant viruses (H1N1v and H3N2v) resulted in dual identification as both "non-seasonal influenza A" and A/H1N1pdm09. No reproducible cross-reactivity was observed for the 34 organisms tested, however, challenges with internal control inhibition due to crude growth matrix were observed. Lastly, samples tested near the LOD showed high reproducibility (97.0% (95% CI 94.7-98.7)) regardless of operator, site, reagent lot, or testing day. CONCLUSION The FluChip-8G Influenza A+B Assay is an effective new method for detecting and identifying both seasonal and non-seasonal influenza viruses, as revealed by good sensitivity and robust reactivity to 52 unique strains of influenza virus. In addition, the lack of cross-reactivity to non-influenza pathogens and high lab-to-lab reproducibility highlight the analytical performance of the assay as an alternative to real-time RT-PCR and sequencing-based assays. Clinical validation of the technology in a multi-site clinical study is the subject of a separate investigation.
Collapse
|