1
|
McKelvey KJ, Hudson AL, Back M, Eade T, Diakos CI. Radiation, inflammation and the immune response in cancer. Mamm Genome 2018; 29:843-865. [PMID: 30178305 PMCID: PMC6267675 DOI: 10.1007/s00335-018-9777-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/22/2018] [Indexed: 01/17/2023]
Abstract
Radiation is an important component of cancer treatment with more than half of all patients receive radiotherapy during their cancer experience. While the impact of radiation on tumour morphology is routinely examined in the pre-clinical and clinical setting, the impact of radiation on the tumour microenvironment and more specifically the inflammatory/immune response is less well characterised. Inflammation is a key contributor to short- and long-term cancer eradication, with significant tumour and normal tissue consequences. Therefore, the role of radiation in modulating the inflammatory response is highly topical given the current wave of targeted and immuno-therapeutic treatments for cancer. This review provides a general overview of how radiation modulates the inflammatory and immune response—(i) how radiation induces the inflammatory/immune system, (ii) the cellular changes that take place, (iii) how radiation dose delivery affects the immune response, and (iv) a discussion on research directions to improve patient survival, reduce side effects, improve quality of life, and reduce financial costs in the immediate future. Harnessing the benefits of radiation on the immune response will enhance its maximal therapeutic benefit and reduce radiation-induced toxicity.
Collapse
Affiliation(s)
- Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Northern Sydney Local Health District Research and the Northern Clinical School, University of Sydney, St Leonards, NSW, 2065, Australia. .,Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia. .,Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| | - Amanda L Hudson
- Bill Walsh Translational Cancer Research Laboratory, Northern Sydney Local Health District Research and the Northern Clinical School, University of Sydney, St Leonards, NSW, 2065, Australia.,Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia.,Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Michael Back
- Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Tom Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Connie I Diakos
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| |
Collapse
|
2
|
Weiss E, Ziegler S, Fliesser M, Schmitt AL, Hünniger K, Kurzai O, Morton CO, Einsele H, Loeffler J. First Insights in NK-DC Cross-Talk and the Importance of Soluble Factors During Infection With Aspergillus fumigatus. Front Cell Infect Microbiol 2018; 8:288. [PMID: 30177958 PMCID: PMC6110135 DOI: 10.3389/fcimb.2018.00288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/30/2018] [Indexed: 01/12/2023] Open
Abstract
Invasive aspergillosis (IA) is an infectious disease caused by the fungal pathogen Aspergillus fumigatus that mainly affects immunocompromised hosts. To investigate immune cell cross-talk during infection with A. fumigatus, we co-cultured natural killer (NK) cells and dendritic cells (DC) after stimulation with whole fungal structures, components of the fungal cell wall, fungal lysate or ligands for distinct fungal receptors. Both cell types showed activation after stimulation with fungal components and were able to transfer activation signals to the counterpart not stimulated cell type. Interestingly, DCs recognized a broader spectrum of fungal components and thereby initiated NK cell activation when those did not recognize fungal structures. These experiments highlighted the supportive function of DCs in NK cell activation. Furthermore, we focused on soluble DC mediated NK cell activation and showed that DCs stimulated with the TLR2/Dectin-1 ligand zymosan could maximally stimulate the expression of CD69 on NK cells. Thus, we investigated the influence of both receptors for zymosan, Dectin-1 and TLR2, which are highly expressed on DCs but show only minimal expression on NK cells. Specific focus was laid on the question whether Dectin-1 or TLR2 signaling in DCs is important for the secretion of soluble factors leading to NK cell activation. Our results show that Dectin-1 and TLR2 are negligible for NK cell activation. We conclude that besides Dectin-1 and TLR2 other receptors on DCs are able to compensate for the missing signal.
Collapse
Affiliation(s)
- Esther Weiss
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Wuerzburg, Germany
| | - Sabrina Ziegler
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Wuerzburg, Germany
| | - Mirjam Fliesser
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Wuerzburg, Germany
| | - Anna-Lena Schmitt
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Wuerzburg, Germany
| | - Kerstin Hünniger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Department of Microbiology and Mycology, Institute for Hygiene and Microbiology, Julius-Maximilian University, Wuerzburg, Germany
| | - Oliver Kurzai
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Department of Microbiology and Mycology, Institute for Hygiene and Microbiology, Julius-Maximilian University, Wuerzburg, Germany
| | | | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Wuerzburg, Germany
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital Wuerzburg, WÜ4i, Wuerzburg, Germany
| |
Collapse
|
3
|
Fekete N, Béland AV, Campbell K, Clark SL, Hoesli CA. Bags versus flasks: a comparison of cell culture systems for the production of dendritic cell-based immunotherapies. Transfusion 2018; 58:1800-1813. [PMID: 29672857 DOI: 10.1111/trf.14621] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Abstract
In recent years, cell-based therapies targeting the immune system have emerged as promising strategies for cancer treatment. This review summarizes manufacturing challenges related to production of antigen presenting cells as a patient-tailored cancer therapy. Understanding cell-material interactions is essential because in vitro cell culture manipulations to obtain mature antigen-producing cells can significantly alter their in vivo performance. Traditional antigen-producing cell culture protocols often rely on cell adhesion to surface-treated hydrophilic polystyrene flasks. More recent commercial and investigational cancer immunotherapy products were manufactured using suspension cell culture in closed hydrophobic fluoropolymer bags. The shift to closed cell culture systems can decrease risks of contamination by individual operators, as well as facilitate scale-up and automation. Selecting closed cell culture bags over traditional open culture systems entails different handling procedures and processing controls, which can affect product quality. Changes in culture vessels also entail changes in vessel materials and geometry, which may alter the cell microenvironment and resulting cell fate decisions. Strategically designed culture systems will pave the way for the generation of more sophisticated and highly potent cell-based cancer vaccines. As an increasing number of cell-based therapies enter the clinic, the selection of appropriate cell culture vessels and materials becomes a critical consideration that can impact the therapeutic efficacy of the product, and hence clinical outcomes and patient quality of life.
Collapse
Affiliation(s)
- Natalie Fekete
- Department of Chemical Engineering, McGill University, Montreal, Canada.,Saint-Gobain Ceramics & Plastics, Inc., Northboro R&D Center, Northborough, Massachusetts
| | - Ariane V Béland
- Department of Chemical Engineering, McGill University, Montreal, Canada
| | - Katie Campbell
- Saint-Gobain Ceramics & Plastics, Inc., Northboro R&D Center, Northborough, Massachusetts
| | - Sarah L Clark
- Saint-Gobain Ceramics & Plastics, Inc., Northboro R&D Center, Northborough, Massachusetts
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, Canada
| |
Collapse
|
4
|
Abstract
Characterization of human cytomegalovirus-specific T cells (CMV-T) is of critical importance for their potential use in adoptive immunotherapy after allogeneic hematopoietic stem cell transplantation. Background frequencies of CMV-T in peripheral blood mononuclear cells (PBMCs) of CMV-seropositive healthy subjects are usually very low, hence the requirement for prolonged culture time and multiple stimulations to expand them. The evaluation of the end-culture specificity and composition has sometimes been neglected or difficult to assess in these settings. We explored the identity and the functionality of pp65-specific and IE1-specific T cells, enriched in short-term cultures from PBMCs. Antigen-specific T cells were further isolated by IFN-γ capture system and/or CD154 microbeads. Frequency of IE1-specific cytotoxic T cells in PBMCs secreting IFN-γ was higher compared with the pp65-specific one, whereas the latter cell types showed a higher median CD107a degranulation. Cell viability, rate of CMV-T increase, and multicytokine secretion profile after epitope-specific short-term cultures were heterogenous. T cells were mainly of late effector stages but they significantly dropped off upon CMV rechallenge with peptide pools. In parallel, CMV-T expansion was accompanied by a significant increase of cytotoxic naive/memory stem cells (CTLs), whereas the CD4 counterpart significantly increased only upon stimulation with IE1. Outcome was variable and showed donor and epitope dependency. Differences in human leukocyte antigen and epitope dominance and variability in the relative number of CD3 effector cells and IFN-γ/CD154 expression among healthy donors could reflect the observed individual CMV-specific cellular immunity. This heterogeneity raises points to be considered when approaching adoptive immunotherapy.
Collapse
|
5
|
Talsma DT, Katta K, Boersema M, Adepu S, Naggi A, Torri G, Stegeman C, Navis G, van Goor H, Hillebrands JL, Yazdani S, van den Born J. Increased migration of antigen presenting cells to newly-formed lymphatic vessels in transplanted kidneys by glycol-split heparin. PLoS One 2017; 12:e0180206. [PMID: 28665959 PMCID: PMC5493359 DOI: 10.1371/journal.pone.0180206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 06/12/2017] [Indexed: 11/18/2022] Open
Abstract
Background Chronic renal transplant dysfunction is characterized by loss of renal function and tissue remodeling, including chronic inflammation and lymph vessel formation. Proteoglycans are known for their chemokine presenting capacity. We hypothesize that interruption of the lymphatic chemokine–proteoglycan interaction interferes with the lymphatic outflow of leukocytes from the renal graft and might decrease the anti-graft allo-immune response. Methods In a rat renal chronic transplant dysfunction model (female Dark-Agouti to male Wistar Furth), chemokines were profiled by qRT-PCR in microdissected tubulo-interstitial tissue. Disruption of lymphatic chemokine–proteoglycan interaction was studied by (non-anticoagulant) heparin-derived polysaccharides in vitro and in renal allografts. The renal allograft function was assessed by rise in plasma creatinine and urea. Results Within newly-formed lymph vessels of transplanted kidneys, numerous CD45+ leukocytes were found, mainly MHCII+, ED-1-, IDO-, HIS14-, CD103- antigen presenting cells, most likely representing a subset of dendritic cells. Treatment of transplanted rats with regular heparin and two different (non-)anticoagulant heparin derivatives revealed worsening of kidney function only in the glycol-split heparin treated group despite a two-fold reduction of tubulo-interstitial leukocytes (p<0.02). Quantitative digital image analysis however revealed increased numbers of intra-lymphatic antigen-presenting cells only in the glycol-split heparin group (p<0.01). The number of intra-lymphatic leukocytes significantly correlates with plasma creatinine and urea, and inversely with creatinine clearance. Conclusions Treatment of transplanted rats with glycol-split heparin significantly increases the number of intra-lymphatic antigen presenting cells, by increased renal diffusion of lymphatic chemokines, thereby increasing the activation and recruitment of antigen presenting cells towards the lymph vessel. This effect is unwanted in the transplantation setting, but might be advantageous in e.g., dendritic cell vaccination.
Collapse
Affiliation(s)
- Ditmer T. Talsma
- Department of Nephrology, University Medical Centre Groningen, Groningen, Netherlands
- * E-mail:
| | - Kirankumar Katta
- Department of Nephrology, University Medical Centre Groningen, Groningen, Netherlands
| | - Miriam Boersema
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, Netherlands
| | - Saritha Adepu
- Department of Nephrology, University Medical Centre Groningen, Groningen, Netherlands
| | | | | | - Coen Stegeman
- Department of Nephrology, University Medical Centre Groningen, Groningen, Netherlands
| | - Gerjan Navis
- Department of Nephrology, University Medical Centre Groningen, Groningen, Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, Netherlands
| | - Saleh Yazdani
- Department of Nephrology, University Medical Centre Groningen, Groningen, Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Centre Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Dagvadorj N, Deuretzbacher A, Weisenberger D, Baumeister E, Trebing J, Lang I, Köchel C, Kapp M, Kapp K, Beilhack A, Hünig T, Einsele H, Wajant H, Grigoleit GU. Targeting of the WT1 91-138 fragment to human dendritic cells improves leukemia-specific T-cell responses providing an alternative approach to WT1-based vaccination. Cancer Immunol Immunother 2017; 66:319-332. [PMID: 27896368 PMCID: PMC11028450 DOI: 10.1007/s00262-016-1938-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/19/2016] [Indexed: 12/22/2022]
Abstract
Due to its immunogenicity and overexpression concomitant with leukemia progression, Wilms tumor protein 1 (WT1) is of particular interest for immunotherapy of AML relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT). So far, WT1-specific T-cell responses have mainly been induced by vaccination with peptides presented by certain HLA alleles. However, this approach is still not widely applicable in clinical practice due to common limitations of HLA restriction. Dendritic cell (DC) vaccines electroporated with mRNA encoding full-length protein have also been tested for generating WT1-derived peptides for presentation to T-cells. Alternatively, an efficient and broad WT1 peptide presentation could be elicited by triggering receptor-mediated protein endocytosis of DCs. Therefore, we developed antibody fusion proteins consisting of an antibody specific for the DEC205 endocytic receptor on human DCs and various fragments of WT1 as DC-targeting recombinant WT1 vaccines (anti-hDEC205-WT1). Of all anti-hDEC205-WT1 fusion proteins designed for overcoming insufficient expression, anti-hDEC205-WT110-35, anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and anti-hDEC205-WT1324-371 were identified in good yields. The anti-hDEC205-WT191-138 was capable of directly inducing ex vivo T-cell responses by co-incubation of the fusion protein-loaded monocyte-derived mature DCs and autologous T-cells of either healthy or HSCT individuals. Furthermore, the DC-targeted WT191-138-induced specific T-cells showed a strong cytotoxic activity by lysing WT1-overexpressing THP-1 leukemia cells in vitro while sparing WT1-negative hematopoietic cells. In conclusion, our approach identifies four WT1 peptide-antibody fusion proteins with sufficient production and introduces an alternative vaccine that could be easily translated into clinical practice to improve WT1-directed antileukemia immune responses after allo-HSCT.
Collapse
Affiliation(s)
- Nergui Dagvadorj
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Anne Deuretzbacher
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Daniela Weisenberger
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Elke Baumeister
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Johannes Trebing
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Carolin Köchel
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Markus Kapp
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Kerstin Kapp
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Andreas Beilhack
- Division of Experimental Stem Cell Transplantation, Interdisciplinary Center for Clinical Research, University of Würzburg, Würzburg, Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Götz Ulrich Grigoleit
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
7
|
Finkel P, Frey B, Mayer F, Bösl K, Werthmöller N, Mackensen A, Gaipl US, Ullrich E. The dual role of NK cells in antitumor reactions triggered by ionizing radiation in combination with hyperthermia. Oncoimmunology 2016; 5:e1101206. [PMID: 27471606 PMCID: PMC4938308 DOI: 10.1080/2162402x.2015.1101206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 02/06/2023] Open
Abstract
Classical tumor therapy consists of surgery, radio(RT)- and/or chemotherapy. Additive immunotherapy has gained in impact and antitumor in situ immunization strategies are promising to strengthen innate and adaptive immune responses. Immunological effects of RT and especially in combination with immune stimulation are mostly described for melanoma. Since hyperthermia (HT) in multimodal settings is capable of rendering tumor cells immunogenic, we analyzed the in vivo immunogenic potential of RT plus HT-treated B16 melanoma cells with an immunization and therapeutic assay. We focused on the role of natural killer (NK) cells in the triggered antitumor reactions. In vitro experiments showed that RT plus HT-treated B16 melanoma cells died via apoptosis and necrosis and released especially the danger signal HMGB1. The in vivo analyses revealed that melanoma cells are rendered immunogenic by RT plus HT. Especially, the repetitive immunization with treated melanoma cells led to an increase in NK cell number in draining lymph nodes, particularly of the immune regulatory CD27+CD11b− NK cell subpopulation. While permanent NK cell depletion after immunization led to a significant acceleration of tumor outgrowth, a single NK cell depletion two days before immunization resulted in significant tumor growth retardation. The therapeutic model, a local in situ immunization closely resembling the clinical situation when solid tumors are exposed locally to RT plus HT, confirmed these effects. We conclude that a dual and time-dependent impact of NK cells on the efficacy of antitumor immune reactions induced by immunogenic tumor cells generated with RT plus HT exists.
Collapse
Affiliation(s)
- Patrick Finkel
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany; LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen , Erlangen, Germany
| | - Friederike Mayer
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen , Erlangen, Germany
| | - Karina Bösl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen , Erlangen, Germany
| | - Nina Werthmöller
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen , Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen , Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen , Erlangen, Germany
| | - Evelyn Ullrich
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany; LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany; Childrens Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
8
|
Tolerogenic Dendritic Cells on Transplantation: Immunotherapy Based on Second Signal Blockage. J Immunol Res 2015; 2015:856707. [PMID: 26543876 PMCID: PMC4620289 DOI: 10.1155/2015/856707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs), the most important professional antigen-presenting cells (APC), play crucial role in both immunity and tolerance. It is well known that DCs are able to mount immune responses against foreign antigens and simultaneously tolerate self-antigens. Since DCs can be modulated depending on the surrounding microenvironment, they can act as a bridge between innate and adaptive immunity. However, the mechanisms that support this dual role are not entirely clear. Recent studies have shown that DCs can be manipulated ex vivo in order to trigger their tolerogenic profile, what can be a tool to be used in clinical trials aiming the treatment of various diseases and the prevention of transplant rejection. In this sense, the blockage of costimulatory molecules on DC, in the attempt of inhibiting the second signal in the immunological synapse, can be considered as one of the main strategies under development. This review brings an update on current therapies using tolerogenic dendritic cells modulated with costimulatory blockers with the aim of reducing transplant rejection. However, although there are current clinical trials using tolerogenic DC to treat allograft rejection, the actual challenge is to modulate these cells in order to maintain a permanent tolerogenic profile.
Collapse
|
9
|
Li X, Liu X, Zhao Y, Zhong R, Song A, Sun L. Effect of thymosin α₁ on the phenotypic and functional maturation of dendritic cells from children with acute lymphoblastic leukemia. Mol Med Rep 2015; 12:6093-7. [PMID: 26239360 DOI: 10.3892/mmr.2015.4153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 06/15/2015] [Indexed: 11/06/2022] Open
Abstract
To determine the effect of thymosin α1 (Tα1) on the phenotypic and functional maturation of HL‑60 cells, freeze‑thaw antigen‑loaded dendritic cells (DCs) were derived from peripheral blood mononuclear cells (PBMCs) of children with acute lymphoblastic leukemia (ALL). The DCs were generated from the PBMC samples that were collected from the PB of 10 consecutive ALL children. On day 3 of culturing, the cells in the antigen + no Tα1 (AN) and antigen + Tα1 (AT) groups were incubated with 100 µl lysates obtained from freeze‑thaw cycling. After 5 days of incubation, the AT group was administered with 100 ng/ml Tα1. On day 8, the DCs were stained with fluorescein isothiocyanate‑conjugated cluster of differentiation (CD)1a, CD83 and HLA‑DR antibodies and analyzed by flow cytometry. In addition, the killing activity of cytotoxic T lymphocytes (CTLs) from the different groups on wild‑type leukemia cells was measured. The DCs in the AT group exhibited more apparent, characteristic dendritic morphologies than the control and AN group DCs. Furthermore, the lowest expression level of CD1a, and the highest expression of CD83 and HLA‑DR were observed in the AT group when compared with the AN and control groups (P<0.05). The lactate dehydrogenase release assay demonstrated that the killing rate of CTL in the AT group was significantly higher than that in the control and AN groups (P<0.01). Thus, Tα1 may markedly promote the phenotypic and functional maturation of DCs, and may serve as a suitable immunomodulator of DC‑based immunotherapy for treatment of hematological malignancies.
Collapse
Affiliation(s)
- Xuerong Li
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiaodan Liu
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanxia Zhao
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ren Zhong
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Aiqin Song
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lirong Sun
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|