1
|
Yin J, Fang Y, Liao Y, Chen Z, Liu S, Zhu H, Song K, Shi B. Bioinformatics investigation of adaptive immune-related genes in peri-implantitis and periodontitis: Characteristics and diagnostic values. Immun Inflamm Dis 2024; 12:e1272. [PMID: 38780047 PMCID: PMC11112631 DOI: 10.1002/iid3.1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Peri-implantitis and periodontitis have similar immunological bioprocesses and inflammatory phenotypes. In the inflammatory process, the adaptive immune cells can drive the development of disease. This research investigated the differences and diagnostic significance of peri-implantitis and periodontitis in adaptive immune responses. METHODS We acquired four GEO datasets of gene expressions in surrounding tissues in healthy person, healthy implant, periodontitis, and peri-implantitis patients. The structural characteristics and enrichment analyses of differential expression genes were examined. The adaptive immune landscapes in peri-implantitis and periodontitis were then evaluated using single sample gene set enrichment analysis. The STRING database and Cytoscape were used to identify adaptive hub genes, and the ROC curve was used to verify them. Finally, qRT-PCR method was used to verify the expression level of Hub gene in activated T cells on the titanium-containing or titanium-free culture plates. RESULTS At the transcriptome level, the data of healthy implant, peri-implantitis and periodontitis were highly dissimilar. The peri-implantitis and periodontitis both exhibited adaptive immune response. Except for the activated CD4+T cells, there was no significant difference in other adaptive immune cells between peri-implantitis and periodontitis. In addition, correlation analysis showed that CD53, CYBB, and PLEK were significantly positively linked with activated CD4+T cells in the immune microenvironment of peri-implantitis, making them effective biomarkers to differentiate it from periodontitis. CONCLUSIONS Peri-implantitis has a uniquely immunogenomic landscape that differs from periodontitis. This study provides new insights and ideas into the activated CD4+T cells and hub genes that underpin the immunological bioprocess of peri-implantitis.
Collapse
Affiliation(s)
- Jingju Yin
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Oral Medicine Center, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- School of StomatologyFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Oral Diseases, School and Hospital of StomatologyFujian Medical UniversityFuzhouChina
| | - Youran Fang
- School of StomatologyFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Oral Diseases, School and Hospital of StomatologyFujian Medical UniversityFuzhouChina
| | - Yunyang Liao
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Oral Medicine Center, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- School of StomatologyFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Oral Diseases, School and Hospital of StomatologyFujian Medical UniversityFuzhouChina
| | - Zhe Chen
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Oral Medicine Center, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- School of StomatologyFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Oral Diseases, School and Hospital of StomatologyFujian Medical UniversityFuzhouChina
| | - Shaofeng Liu
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Oral Medicine Center, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- School of StomatologyFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Oral Diseases, School and Hospital of StomatologyFujian Medical UniversityFuzhouChina
| | - Hanghang Zhu
- School of StomatologyFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Oral Diseases, School and Hospital of StomatologyFujian Medical UniversityFuzhouChina
| | - Kun Song
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Oral Medicine Center, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Bin Shi
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Oral Medicine Center, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
- School of StomatologyFujian Medical UniversityFuzhouChina
| |
Collapse
|
2
|
Ahmadi M, Mahmoodi M, Shoaran M, Nazari-Khanamiri F, Rezaie J. Harnessing Normal and Engineered Mesenchymal Stem Cells Derived Exosomes for Cancer Therapy: Opportunity and Challenges. Int J Mol Sci 2022; 23:ijms232213974. [PMID: 36430452 PMCID: PMC9699149 DOI: 10.3390/ijms232213974] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
There remains a vital necessity for new therapeutic approaches to combat metastatic cancers, which cause globally over 8 million deaths per year. Mesenchymal stem cells (MSCs) display aptitude as new therapeutic choices for cancer treatment. Exosomes, the most important mediator of MSCs, regulate tumor progression. The potential of harnessing exosomes from MSCs (MSCs-Exo) in cancer therapy is now being documented. MSCs-Exo can promote tumor progression by affecting tumor growth, metastasis, immunity, angiogenesis, and drug resistance. However, contradictory evidence has suggested that MSCs-Exo suppress tumors through several mechanisms. Therefore, the exact association between MSCs-Exo and tumors remains controversial. Accordingly, the applications of MSCs-Exo as novel drug delivery systems and standalone therapeutics are being extensively explored. In addition, engineering MSCs-Exo for targeting tumor cells has opened a new avenue for improving the efficiency of antitumor therapy. However, effective implementation in the clinical trials will need the establishment of standards for MSCs-Exo isolation and characterization as well as loading and engineering methods. The studies outlined in this review highlight the pivotal roles of MSCs-Exo in tumor progression and the promising potential of MSCs-Exo as therapeutic drug delivery vehicles for cancer treatment.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5665665811, Iran
| | - Monireh Mahmoodi
- Department of Biology, Faculty of Science, Arak University, Arak 3815688349, Iran
| | - Maryam Shoaran
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz 5665665811, Iran
| | - Fereshteh Nazari-Khanamiri
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
- Correspondence: ; Tel.: +98-9148548503; Fax: +98-4432222010
| |
Collapse
|
3
|
Hou N, Lv D, Xu X, Lu Y, Li J, Ma R, Tang Y, Zheng Y. Development of a decellularized hypopharynx with vascular pedicle scaffold for use in reconstructing hypopharynx. Artif Organs 2022; 46:1268-1280. [PMID: 35191556 DOI: 10.1111/aor.14214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hypopharynx reconstruction after hypopharyngectomy is still a great challenge. Perfusion decellularization is for extracellular matrix (ECM) scaffolding and had been used in organ reconstruction. Our study aimed to prepare an acellular, natural, three-dimensional biological hypopharynx with vascular pedicle scaffold as the substitute materials to reconstruct hypopharynx. RESULT Scanning electron microscope and histology staining showed that the decellularized hypopharynx with vascular pedicle scaffold retained intact native anatomical ECM structure. Myoblasts were observed on the recellularized scaffolds with bone marrow mesenchymal stem cells induced by 5-azacytidine implanted in the rabbit greater omentum by immunohistochemical analysis. CONCLUSION The decellularized hypopharynx with vascular pedicle scaffold prepared by detergent perfusion in our study has a potential to be an alternative material to pharynx reconstruction.
Collapse
Affiliation(s)
- Nan Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Clinical Medical College and The First Affiliated Hospital, Chengdu Medical College, Chengdu City, China
| | - Die Lv
- Department of Otorhinolaryngology Head and Neck Surgery, Clinical Medical College and The First Affiliated Hospital, Chengdu Medical College, Chengdu City, China.,Department of Otorhinolaryngology Head and Neck Surgery, Renshou People Hospital, Chengdu City, China
| | - Xiaoli Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Clinical Medical College and The First Affiliated Hospital, Chengdu Medical College, Chengdu City, China
| | - Yanqing Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Clinical Medical College and The First Affiliated Hospital, Chengdu Medical College, Chengdu City, China
| | - Jingzhi Li
- Department of Otorhinolaryngology Head and Neck Surgery, Clinical Medical College and The First Affiliated Hospital, Chengdu Medical College, Chengdu City, China
| | - Ruina Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an City, China
| | - Ying Tang
- Department of Otorhinolaryngology Head and Neck Surgery, Clinical Medical College and The First Affiliated Hospital, Chengdu Medical College, Chengdu City, China
| | - Yun Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu City, China
| |
Collapse
|
4
|
Li X, Guan Y, Li C, Zhang T, Meng F, Zhang J, Li J, Chen S, Wang Q, Wang Y, Peng J, Tang J. Immunomodulatory effects of mesenchymal stem cells in peripheral nerve injury. Stem Cell Res Ther 2022; 13:18. [PMID: 35033187 PMCID: PMC8760713 DOI: 10.1186/s13287-021-02690-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Various immune cells and cytokines are present in the aftermath of peripheral nerve injuries (PNI), and coordination of the local inflammatory response is of great significance for the recovery of PNI. Mesenchymal stem cells (MSCs) exhibit immunosuppressive and anti-inflammatory abilities which can accelerate tissue regeneration and attenuate inflammation, but the role of MSCs in the regulation of the local inflammatory microenvironment after PNI has not been widely studied. Here, we summarize the known interactions between MSCs, immune cells, and inflammatory cytokines following PNI with a focus on the immunosuppressive role of MSCs. We also discuss the immunomodulatory potential of MSC-derived extracellular vesicles as a new cell-free treatment for PNI.
Collapse
Affiliation(s)
- Xiangling Li
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,The School of Medicine, Jinzhou Medical University, Jinzhou, 121099, People's Republic of China
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Chaochao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Tieyuan Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Fanqi Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,Department of Spine Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Jian Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Junyang Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,The School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Shengfeng Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Qi Wang
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.,The School of Medicine, Jinzhou Medical University, Jinzhou, 121099, People's Republic of China
| | - Yi Wang
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.
| | - Jinshu Tang
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
5
|
Zhang F, Guo J, Zhang Z, Qian Y, Wang G, Duan M, Zhao H, Yang Z, Jiang X. Mesenchymal stem cell-derived exosome: A tumor regulator and carrier for targeted tumor therapy. Cancer Lett 2021; 526:29-40. [PMID: 34800567 DOI: 10.1016/j.canlet.2021.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that have the ability to differentiate into multiple cell types. Several studies have shown that exosomes secreted by MSCs (MSCs-Exo) play an important role in tumor growth, angiogenesis, invasion, and drug resistance. However, contradictory results have suggested that MSCs-Exo can also suppress tumors through specific mechanisms, such as regulating immune responses and intercellular signaling. Consequently, the relationship between MSCs-Exo and tumors remains controversial. However, it is undeniable that exosomes, as natural vesicles, can be excellent drug carriers and show promise for application in targeted tumor therapy. Here, we review the current knowledge regarding the involvement of MSCs-Exo in tumor progression and their potential as drug delivery systems in targeted therapy. We argue that MSCs-Exo can be used as safe carriers of antitumor drugs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jinshuai Guo
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhenghou Zhang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yiping Qian
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Guang Wang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Meiqi Duan
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi Yang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaofeng Jiang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
6
|
Tynecka M, Moniuszko M, Eljaszewicz A. Old Friends with Unexploited Perspectives: Current Advances in Mesenchymal Stem Cell-Based Therapies in Asthma. Stem Cell Rev Rep 2021; 17:1323-1342. [PMID: 33649900 PMCID: PMC7919631 DOI: 10.1007/s12015-021-10137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have a great regenerative and immunomodulatory potential that was successfully tested in numerous pre-clinical and clinical studies of various degenerative, hematological and inflammatory disorders. Over the last few decades, substantial immunoregulatory effects of MSC treatment were widely observed in different experimental models of asthma. Therefore, it is tempting to speculate that stem cell-based treatment could become an attractive means to better suppress asthmatic airway inflammation, especially in subjects resistant to currently available anti-inflammatory therapies. In this review, we discuss mechanisms accounting for potent immunosuppressive properties of MSCs and the rationale for their use in asthma. We describe in detail an intriguing interplay between MSCs and other crucial players in the immune system as well as lung microenvironment. Finally, we reveal the potential of MSCs in maintaining airway epithelial integrity and alleviating lung remodeling.
Collapse
Affiliation(s)
- Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, Białystok, 15-276, Poland.
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
| |
Collapse
|
7
|
Herzig MC, Christy BA, Montgomery RK, Delavan CP, Jensen KJ, Lovelace SE, Cantu C, Salgado CL, Cap AP, Bynum JA. Interactions of human mesenchymal stromal cells with peripheral blood mononuclear cells in a Mitogenic proliferation assay. J Immunol Methods 2021; 492:113000. [PMID: 33609532 DOI: 10.1016/j.jim.2021.113000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/05/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Immunomodulation by mesenchymal stromal cells (MSCs) is a potentially important therapeutic modality. MSCs suppress peripheral blood mononuclear cell (PBMC) proliferation in vitro, suggesting a mechanism for suppressing inflammatory responses in vivo. This study details the interactions of PBMCs and MSCs. METHODS Pooled human PBMCs and MSCs were co-cultured at different MSC:PBMC ratios and harvested from 0 to 120 h, with and without phytohaemagglutin A (PHA) stimulation. Proliferation of adherent MSCs and non-adherent PBMCs was assessed by quantitation of ATP levels. PBMC surface marker expression was analyzed by flow cytometry. Indoleamine 2,3-dioxygenase (IDO) activity was determined by kynurenine assay and IDO mRNA by RT-PCR. Cytokine release was measured by ELISA. Immunofluorescent microscopy detected MSC, PBMC, monocyte (CD14+) and apoptotic events. RESULTS PBMC proliferation in response to PHA gave a robust ATP signal by 72 h, which was suppressed by co-culture with densely plated MSCs. Very low level MSC seeding densities relative to PBMC number reproducibly stimulated PBMC proliferation. The CD4+/CD3+ population significantly decreased over time while the CD8+/CD3+ population significantly increased. No change in CD4+/CD8+ ratio is seen with high density MSC co-culture; very low density MSCs augment the changes seen in PHA stimulated PBMCs alone. IDO activity in MSCs co-cultured with PBMCs correlated with PBMC suppression. MSCs increased the secretion of IL-10 and IL-6 from stimulated co-cultures and decreased TNF-α secretion. In stimulated co-culture, low density MSCs decreased in number; fluorescence immunomicroscopy detected association of PBMC with MSC and phosphatidyl serine externalization in both cell populations. CONCLUSIONS A bidirectional interaction between MSCs and PBMCs occurs during co-culture. High numbers of MSCs inhibit PHA-stimulated PBMC proliferation and the PBMC response to stimulation; low numbers of MSCs augment these responses. Low density MSCs are susceptible to attrition, apparently by PBMC-induced apoptosis. These results may have direct application when considering therapeutic dosing of patients; low MSC doses may have unintended detrimental consequences.
Collapse
Affiliation(s)
- Maryanne C Herzig
- Blood and Coagulation Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America.
| | - Barbara A Christy
- Blood and Coagulation Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America; Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, United States of America.
| | - Robbie K Montgomery
- Blood and Coagulation Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America.
| | - Christopher P Delavan
- Blood and Coagulation Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America.
| | - Katherine J Jensen
- Blood and Coagulation Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America.
| | - Sarah E Lovelace
- Blood and Coagulation Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America.
| | - Carolina Cantu
- Blood and Coagulation Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America.
| | - Christi L Salgado
- Blood and Coagulation Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America.
| | - Andrew P Cap
- Blood and Coagulation Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America; Department of Surgery, UT Health San Antonio, San Antonio, TX, United States of America.
| | - James A Bynum
- Blood and Coagulation Research, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, United States of America.
| |
Collapse
|
8
|
Yang JH, Liu FX, Wang JH, Cheng M, Wang SF, Xu DH. Mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles: Potential roles in rheumatic diseases. World J Stem Cells 2020; 12:688-705. [PMID: 32843922 PMCID: PMC7415241 DOI: 10.4252/wjsc.v12.i7.688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been widely investigated in rheumatic disease due to their immunomodulatory and regenerative properties. Recently, mounting studies have implicated the therapeutic potency of MSCs mostly due to the bioactive factors they produce. Extracellular vesicles (EVs) derived from MSCs have been identified as a promising cell-free therapy due to low immunogenicity. Rheumatic disease, primarily including rheumatoid arthritis and osteoarthritis, is a group of diseases in which immune dysregulation and chronic progressive inflammation lead to irreversible joint damage. Targeting MSCs and MSC-derived EVs may be a more effective and promising therapeutic strategy for rheumatic diseases.
AIM To evaluate the potential therapeutic effectiveness of MSCs and EVs generated from MSCs in rheumatic diseases.
METHODS PubMed was searched for the relevant literature using corresponding search terms alone or in combination. Papers published in English language from January 1999 to February 2020 were considered. Preliminary screening of papers concerning analysis of "immunomodulatory function" or "regenerative function" by scrutinizing the titles and abstracts of the literature, excluded the papers not related to the subject of the article. Some other related studies were obtained by manually retrieving the reference lists of papers that comply with the selection criteria, and these studies were screened to meet the final selection and exclusion criteria.
RESULTS Eighty-six papers were ultimately selected for analysis. After analysis of the literature, it was found that both MSCs and EVs generated from MSCs have great potential in multiple rheumatic diseases, such as rheumatoid arthritis and osteoarthritis, in repair and regeneration of tissues, inhibition of inflammatory response, and regulation of body immunity via promoting chondrogenesis, regulating innate and adaptive immune cells, and regulating the secretion of inflammatory factors. But EVs from MSCs exhibit much more advantages over MSCs, which may represent another promising cell-free restorative strategy. Targeting MSCs and MSC-derived EVs may be a more efficient treatment for patients with rheumatic diseases.
CONCLUSION The enormous potential of MSCs and EVs from MSCs in immunomodulation and tissue regeneration offers a new idea for the treatment of rheumatism. However, more in-depth exploration is needed before their clinical application.
Collapse
Affiliation(s)
- Jing-Han Yang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, Shandong Province, China
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Feng-Xia Liu
- Department of Allergy, Weifang People’s Hospital, Weifang 261000, Shandong Province, China
| | - Jing-Hua Wang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, Shandong Province, China
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Shu-Feng Wang
- Medical Experimental Training Center, Weifang Medical University, Weifang 261000, Shandong Province, China
| | - Dong-Hua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, Shandong Province, China
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, Shandong Province, China
| |
Collapse
|
9
|
Bowles AC, Kouroupis D, Willman MA, Perucca Orfei C, Agarwal A, Correa D. Signature quality attributes of CD146 + mesenchymal stem/stromal cells correlate with high therapeutic and secretory potency. Stem Cells 2020; 38:1034-1049. [PMID: 32379908 DOI: 10.1002/stem.3196] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/01/2020] [Indexed: 12/22/2022]
Abstract
CD146+ bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) play key roles in the perivascular niche, skeletogenesis, and hematopoietic support; however, comprehensive evaluation of therapeutic potency has yet to be determined. In this study, in vitro inflammatory priming to crude human BM-MSCs (n = 8) captured a baseline of signature responses, including enriched CD146+ with coexpression of CD107aHigh , CXCR4High , and LepRHigh , transcriptional profile, enhanced secretory capacity, and robust immunomodulatory secretome and function, including immunopotency assays (IPAs) with stimulated immune cells. These signatures were significantly more pronounced in CD146+ (POS)-sorted subpopulation than in the CD146- (NEG). Mechanistically, POS BM-MSCs showed a markedly higher secretory capacity with significantly greater immunomodulatory and anti-inflammatory protein production upon inflammatory priming compared with the NEG BM-MSCs. Moreover, IPAs with stimulated peripheral blood mononuclear cells and T lymphocytes demonstrated robust immunosuppression mediated by POS BM-MSC while inducing significant frequencies of regulatory T cells. in vivo evidence showed that POS BM-MSC treatment promoted pronounced M1-to-M2 macrophage polarization, ameliorating inflammation/fibrosis of knee synovium and fat pad, unlike treatment with NEG BM-MSCs. These data correlate the expression of CD146 with innately higher immunomodulatory and secretory capacity, and thus therapeutic potency. This high-content, reproducible evidence suggests that the CD146+ (POS) MSC subpopulation are the mediators of the beneficial effects achieved using crude BM-MSCs, leading to translational implications for improving cell therapy and manufacturing.
Collapse
Affiliation(s)
- Annie C Bowles
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Department of Biomedical Engineering College of Engineering, University of Miami, Miami, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, Florida, USA
| | - Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Melissa A Willman
- Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Ashutosh Agarwal
- Department of Biomedical Engineering College of Engineering, University of Miami, Miami, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, Florida, USA
| | - Diego Correa
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, Florida, USA
| |
Collapse
|
10
|
Roselli E, Frieling JS, Thorner K, Ramello MC, Lynch CC, Abate-Daga D. CAR-T Engineering: Optimizing Signal Transduction and Effector Mechanisms. BioDrugs 2020; 33:647-659. [PMID: 31552606 DOI: 10.1007/s40259-019-00384-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The adoptive transfer of genetically engineered T cells expressing a chimeric antigen receptor (CAR) has shown remarkable results against B cell malignancies. This immunotherapeutic approach has advanced and expanded rapidly from preclinical models to the recent approval of CAR-T cells to treat lymphomas and leukemia by the Food and Drug Administration (FDA). Ongoing research efforts are focused on employing CAR-T cells as a therapy for other cancers, and enhancing their efficacy and safety by optimizing their design. Here we summarize modifications in the intracellular domain of the CAR that gave rise to first-, second-, third- and next-generation CAR-T cells, together with the impact that these different designs have on CAR-T cell biology and function. Further, we describe how the structure of the antigen-sensing ectodomain can be enhanced, leading to superior CAR-T cell signaling and/or function. Finally we discuss how tissue-specific factors may impact the clinical efficacy of CAR-T cells for bone and the central nervous system, as examples of specific indications that may require further CAR signaling optimization to perform in such inhospitable microenvironments.
Collapse
Affiliation(s)
- Emiliano Roselli
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jeremy S Frieling
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Konrad Thorner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - María C Ramello
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Conor C Lynch
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA. .,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA. .,Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA. .,Department of Oncologic Sciences, Morsani School of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
11
|
Cheng RJ, Xiong AJ, Li YH, Pan SY, Zhang QP, Zhao Y, Liu Y, Marion TN. Mesenchymal Stem Cells: Allogeneic MSC May Be Immunosuppressive but Autologous MSC Are Dysfunctional in Lupus Patients. Front Cell Dev Biol 2019; 7:285. [PMID: 31799252 PMCID: PMC6874144 DOI: 10.3389/fcell.2019.00285] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have a potently immunosuppressive capacity in both innate and adaptive immune responses. Consequently, MSCs transplantation has emerged as a potential beneficial therapy for autoimmune diseases even though the mechanisms underlying the immunomodulatory activity of MSCs is incompletely understood. Transplanted MSCs from healthy individuals with no known history of autoimmune disease are immunosuppressive in systemic lupus erythematosus (SLE) patients and can ameliorate SLE disease symptoms in those same patients. In contrast, autologous MSCs from SLE patients are not immunosuppressive and do not ameliorate disease symptoms. Recent studies have shown that MSCs from SLE patients are dysfunctional in both proliferation and immunoregulation and phenotypically senescent. The senescent phenotype has been attributed to multiple genes and signaling pathways. In this review, we focus on the possible mechanisms for the defective phenotype and function of MSCs from SLE patients and summarize recent research on MSCs in autoimmune diseases.
Collapse
Affiliation(s)
- Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - An-Ji Xiong
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Yan-Hong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shu-Yue Pan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu-Ping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Tony N Marion
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
12
|
Ma Y, Dong L, Zhou D, Li L, Zhang W, Zhen Y, Wang T, Su J, Chen D, Mao C, Wang X. Extracellular vesicles from human umbilical cord mesenchymal stem cells improve nerve regeneration after sciatic nerve transection in rats. J Cell Mol Med 2019; 23:2822-2835. [PMID: 30772948 PMCID: PMC6433678 DOI: 10.1111/jcmm.14190] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 01/03/2023] Open
Abstract
Peripheral nerve injury results in limited nerve regeneration and severe functional impairment. Mesenchymal stem cells (MSCs) are a remarkable tool for peripheral nerve regeneration. The involvement of human umbilical cord MSC-derived extracellular vesicles (hUCMSC-EVs) in peripheral nerve regeneration, however, remains unknown. In this study, we evaluated functional recovery and nerve regeneration in rats that received hUCMSC-EV treatment after nerve transection. We observed that hUCMSC-EV treatment promoted the recovery of motor function and the regeneration of axons; increased the sciatic functional index; resulted in the generation of numerous axons and of several Schwann cells that surrounded individual axons; and attenuated the atrophy of the gastrocnemius muscle. hUCMSC-EVs aggregated to rat nerve defects, down-regulated interleukin (IL)-6 and IL-1β, up-regulated IL-10 and modulated inflammation in the injured nerve. These effects likely contributed to the promotion of nerve regeneration. Our findings indicate that hUCMSC-EVs can improve functional recovery and nerve regeneration by providing a favourable microenvironment for nerve regeneration. Thus, hUCMSC-EVs have considerable potential for application in the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Yongbin Ma
- Department of Central LaboratoryThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina
- Department of Neurology LaboratoryJintan Hospital, Jiangsu UniversityJintanChina
| | - Liyang Dong
- Department of Nuclear Medicine and Institute of OncologyThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Dan Zhou
- Department of Neurology LaboratoryJintan Hospital, Jiangsu UniversityJintanChina
| | - Li Li
- Department of Central LaboratoryThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Wenzhe Zhang
- Department of Central LaboratoryThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Yu Zhen
- Department of Central LaboratoryThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Ting Wang
- Department of Central LaboratoryThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Jianhua Su
- Department of Neurology LaboratoryJintan Hospital, Jiangsu UniversityJintanChina
| | - Deyu Chen
- Department of Nuclear Medicine and Institute of OncologyThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Chaoming Mao
- Department of Nuclear Medicine and Institute of OncologyThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Xuefeng Wang
- Department of Central LaboratoryThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina
- Department of Neurology LaboratoryJintan Hospital, Jiangsu UniversityJintanChina
- Department of Nuclear Medicine and Institute of OncologyThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina
| |
Collapse
|
13
|
Shen Y, Xue C, Li X, Ba L, Gu J, Sun Z, Han Q, Zhao RC. Effects of Gastric Cancer Cell-Derived Exosomes on the Immune Regulation of Mesenchymal Stem Cells by the NF-kB Signaling Pathway. Stem Cells Dev 2019; 28:464-476. [PMID: 30717632 DOI: 10.1089/scd.2018.0125] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are important components of the tumor microenvironment, which play an important role in tumor development. Exosomes derived from tumor cells can affect the biological characteristics of MSCs. Our study examined the effects of exosomes derived from gastric cancer cells on MSC immunomodulatory functions. Exosomes were extracted from gastric cancer cell line AGS (AGS-Exos) and cultured with MSCs. MSCs were then cocultured with both human peripheral blood mononuclear cells and macrophages [phorbol-12-myristate-13-acetate (PMA)-stimulated THP1 cells]. The activation levels of T cells and macrophages were detected by flow cytometry and real-time quantitative polymerase chain reaction (RT-PCR). Changes in the MSC signaling pathway after AGS-Exos stimulation were studied using RNA Chip, and the molecular mechanisms of functional change in MSCs were studied by inhibiting the signaling pathway. MSCs treated with AGS-Exos could promote macrophage phagocytosis and upregulate the secretion of proinflammatory factor, and promote the activation of CD69 and CD25 on the surface of T cells. RNA Chip results indicated the abnormal activation of the NF-kB signaling pathway in MSCs after AGS-Exos stimulation, and this was verified by the identification of key proteins in the pathway using western blot analysis. After NF-kB signaling pathway inhibition, the effect of MSCs stimulated by AGS-Exos on T cells and macrophages was markedly weakened. Therefore, AGS-Exos affected the immunomodulation function of MSCs through the NF-kB signaling pathway, which enhanced the ability of MSCs to activate immune cells, maintain the inflammatory environment, and support tumor growth.
Collapse
Affiliation(s)
- Yamei Shen
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, People's Republic of China
| | - Chunling Xue
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, People's Republic of China
| | - Xuechun Li
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, People's Republic of China
| | - Li Ba
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, People's Republic of China
| | - Junjie Gu
- 2 Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhao Sun
- 2 Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Qin Han
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, People's Republic of China
| | - Robert Chunhua Zhao
- 1 Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, People's Republic of China
| |
Collapse
|
14
|
Immunomodulatory effect of mesenchymal stem cells: Cell origin and cell quality variations. Mol Biol Rep 2019; 46:1157-1165. [PMID: 30628022 DOI: 10.1007/s11033-018-04582-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
The immunomodulatory property of mesenchymal stem cells (MSCs) has been previously reported. Still it is unclear if this property can be affected by the cell origin and cell quality. Using primary MSCs expanded from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) of mice, we investigated whether the immunomodulatory property of MSCs varied with cell origin and cell quality (early- vs. late-passaged BM-MSCs). BM-MSCs (p1) and AD-MSCs (p1) had a typical spindle shape, but morphological changes were observed in late-passaged BM-MSCs (p6). A pathway-focused array showed that the expression of chemokine/cytokine genes varied with different cell origins and qualities. By co-culturing with spleen mononuclear cells (MNC) for 3 days, the expression of CD4 was suppressed by all types of MSCs. By contrast, the expression of CD8 was suppressed by BM-MSCs and increased by AD-MSCs. The expression ratio of CD206 to CD86 was at a comparable level after co-culture with AD-MSCs and BM-MSCs, but was lower with late-passaged BM-MSCs. AD-MSCs highly induced the release of IL6, IL-10 and TGF-β in culture medium. Compared with early-passaged BM-MSCs (p1), late-passaged BM-MSCs (p6) released less TGF-β. Our data suggests that the immunomodulatory properties of MSCs vary with cell origin and cell quality and that BM-MSCs of good quality are likely the optimal source of immunomodulation.
Collapse
|
15
|
Stefani FR, Eberstål S, Vergani S, Kristiansen TA, Bengzon J. Low-dose irradiated mesenchymal stromal cells break tumor defensive properties in vivo. Int J Cancer 2018; 143:2200-2212. [PMID: 29752716 PMCID: PMC6220775 DOI: 10.1002/ijc.31599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022]
Abstract
Solid tumors, including gliomas, still represent a challenge to clinicians and first line treatments often fail, calling for new paradigms in cancer therapy. Novel strategies to overcome tumor resistance are mainly represented by multi-targeted approaches, and cell vector-based therapy is one of the most promising treatment modalities under development. Here, we show that mouse bone marrow-derived mesenchymal stromal cells (MSCs), when primed with low-dose irradiation (irMSCs), undergo changes in their immunogenic and angiogenic capacity and acquire anti-tumoral properties in a mouse model of glioblastoma (GBM). Following grafting in GL261 glioblastoma, irMSCs migrate extensively and selectively within the tumor and infiltrate predominantly the peri-vascular niche, leading to rejection of established tumors and cure in 29% of animals. The therapeutic radiation dose window is narrow, with effects seen between 2 and 15 Gy, peaking at 5 Gy. A single low-dose radiation decreases MSCs inherent immune suppressive properties in vitro as well as shapes their immune regulatory ability in vivo. Intra-tumorally grafted irMSCs stimulate the immune system and decrease immune suppression. Additionally, irMSCs enhance peri-tumoral reactive astrocytosis and display anti-angiogenic properties. Hence, the present study provides strong evidence for a therapeutic potential of low-dose irMSCs in cancer as well as giving new insight into MSC biology and applications.
Collapse
Affiliation(s)
- Francesca Romana Stefani
- Stem Cell Center, Lund University, Lund, Sweden.,Department of Clinical Sciences, Division of Neurosurgery, Lund University, Lund, Sweden
| | - Sofia Eberstål
- Stem Cell Center, Lund University, Lund, Sweden.,Department of Clinical Sciences, Division of Neurosurgery, Lund University, Lund, Sweden
| | - Stefano Vergani
- Stem Cell Center, Lund University, Lund, Sweden.,Department of Laboratory Medicine, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Trine A Kristiansen
- Stem Cell Center, Lund University, Lund, Sweden.,Department of Laboratory Medicine, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Johan Bengzon
- Stem Cell Center, Lund University, Lund, Sweden.,Department of Clinical Sciences, Division of Neurosurgery, Lund University, Lund, Sweden.,Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
16
|
Magne B, Lataillade JJ, Trouillas M. Mesenchymal Stromal Cell Preconditioning: The Next Step Toward a Customized Treatment For Severe Burn. Stem Cells Dev 2018; 27:1385-1405. [PMID: 30039742 DOI: 10.1089/scd.2018.0094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the last century, the clinical management of severe skin burns significantly progressed with the development of burn care units, topical antimicrobials, resuscitation methods, early eschar excision surgeries, and skin grafts. Despite these considerable advances, the present treatment of severe burns remains burdensome, and patients are highly susceptible to skin engraftment failure, infections, organ dysfunction, and hypertrophic scarring. Recent researches have focused on mesenchymal stromal cell (MSC) therapy and hold great promises for tissue repair, as reported in several animal studies and clinical cases. In the present review, we will provide an up-to-date outlook of the pathophysiology of severe skin burns, clinical treatment modalities and current limitations. We will then focus on MSCs and their potential in the burn wound healing both in in vitro and in vivo studies. A specific attention will be paid to the cell preconditioning approach, as a means of improving the MSC efficacy in the treatment of major skin burns. In particular, we will debate how several preconditioning cues would modulate the MSC properties to better match up with the burn pathophysiology in the course of the cell therapy. Finally, we will discuss the clinical interest and feasibility of a MSC-based therapy in comparison to their paracrine derivatives, including microvesicles and conditioned media for the treatment of major skin burn injuries.
Collapse
Affiliation(s)
- Brice Magne
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| | - Jean-Jacques Lataillade
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| | - Marina Trouillas
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| |
Collapse
|
17
|
Nooshabadi VT, Mardpour S, Yousefi-Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F, Ai J, Banafshe HR, Ebrahimi-Barough S. The extracellular vesicles-derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine. J Cell Biochem 2018; 119:8048-8073. [PMID: 29377241 DOI: 10.1002/jcb.26726] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult multipotent cells that due to their ability to homing to damaged tissues and differentiate into specialized cells, are remarkable cells in the field of regenerative medicine. It's suggested that the predominant mechanism of MSCs in tissue repair might be related to their paracrine activity. The utilization of MSCs for tissue repair is initially based on the differentiation ability of these cells; however now it has been revealed that only a small fraction of the transplanted MSCs actually fuse and survive in host tissues. Indeed, MSCs supply the microenvironment with the secretion of soluble trophic factors, survival signals and the release of extracellular vesicles (EVs) such as exosome. Also, the paracrine activity of EVs could mediate the cellular communication to induce cell-differentiation/self-renewal. Recent findings suggest that EVs released by MSCs may also be critical in the physiological function of these cells. This review provides an overview of MSC-derived extracellular vesicles as a hopeful opportunity to advance novel cell-free therapy strategies that might prevail over the obstacles and risks associated with the use of native or engineered stem cells. EVs are very stable; they can pass the biological barriers without rejection and can shuttle bioactive molecules from one cell to another, causing the exchange of genetic information and reprogramming of the recipient cells. Moreover, extracellular vesicles may provide therapeutic cargo for a wide range of diseases and cancer therapy.
Collapse
Affiliation(s)
| | - Soura Mardpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Allahverdi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Izadpanah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Daneshimehr
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid R Banafshe
- Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Dorraji SE, Hovd AMK, Kanapathippillai P, Bakland G, Eilertsen GØ, Figenschau SL, Fenton KA. Mesenchymal stem cells and T cells in the formation of Tertiary Lymphoid Structures in Lupus Nephritis. Sci Rep 2018; 8:7861. [PMID: 29777158 PMCID: PMC5959845 DOI: 10.1038/s41598-018-26265-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Tertiary lymphoid structures (TLS) develop in the kidneys of lupus-prone mice and systemic lupus erythematosus (SLE) patients with lupus nephritis (LN). Here we investigated the presence of mesenchymal stem cells (MSCs) in the development of TLS in murine LN, as well as the role of human MSCs as lymphoid tissue organizer (LTo) cells on the activation of CD4+ T cells from three groups of donors including Healthy, SLE and LN patients. Mesenchymal stem like cells were detected within the pelvic wall and TLS in kidneys of lupus-prone mice. An increase in LTβ, CXCL13, CCL19, VCAM1 and ICAM1 gene expressions were detected during the development of murine LN. Human MSCs stimulated with the pro-inflammatory cytokines TNF-α and IL-1β significantly increased the expression of CCL19, VCAM1, ICAM1, TNF-α, and IL-1β. Stimulated MSCs induced proliferation of CD4+ T cells, but an inhibitory effect was observed when in co-culture with non-stimulated MSCs. A contact dependent increase in Th2 and Th17 subsets were observed for T cells from the Healthy group after co-culture with stimulated MSCs. Our data suggest that tissue-specific or/and migratory MSCs could have pivotal roles as LTo cells in accelerating early inflammatory processes and initiating the formation of kidney specific TLS in chronic inflammatory conditions.
Collapse
Affiliation(s)
- S Esmaeil Dorraji
- RNA and Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Aud-Malin K Hovd
- RNA and Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Premasany Kanapathippillai
- RNA and Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Gunnstein Bakland
- University Hospital of Northern Norway, Tromsø, Norway.,Molecular Inflammatory Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Gro Østli Eilertsen
- University Hospital of Northern Norway, Tromsø, Norway.,Molecular Inflammatory Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Stine L Figenschau
- RNA and Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Kristin A Fenton
- RNA and Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
19
|
Hähnlein JS, Nadafi R, de Jong T, Ramwadhdoebe TH, Semmelink JF, Maijer KI, Zijlstra IJA, Maas M, Gerlag DM, Geijtenbeek TBH, Tak PP, Mebius RE, van Baarsen LGM. Impaired lymph node stromal cell function during the earliest phases of rheumatoid arthritis. Arthritis Res Ther 2018; 20:35. [PMID: 29482663 PMCID: PMC5828373 DOI: 10.1186/s13075-018-1529-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/29/2018] [Indexed: 01/09/2023] Open
Abstract
Background Systemic autoimmunity can be present years before clinical onset of rheumatoid arthritis (RA). Adaptive immunity is initiated in lymphoid tissue where lymph node stromal cells (LNSCs) regulate immune responses through their intimate connection with leucocytes. We postulate that malfunctioning of LNSCs creates a microenvironment in which normal immune responses are not properly controlled, possibly leading to autoimmune disease. In this study we established an experimental model for studying the functional capacities of human LNSCs during RA development. Methods Twenty-four patients with RA, 23 individuals positive for autoantibodies but without clinical disease (RA risk group) and 14 seronegative healthy control subjects underwent ultrasound-guided inguinal lymph node (LN) biopsy. Human LNSCs were isolated and expanded in vitro for functional analyses. In analogous co-cultures consisting of LNSCs and peripheral blood mononuclear cells, αCD3/αCD28-induced T-cell proliferation was measured using carboxyfluorescein diacetate succinimidyl ester dilution. Results Fibroblast-like cells expanded from the LN biopsy comprised of fibroblastic reticular cells (gp38+CD31−) and double-negative (gp38−CD31−) cells. Cultured LNSCs stably expressed characteristic adhesion molecules and cytokines. Basal expression of C-X-C motif chemokine ligand 12 (CXCL12) was lower in LNSCs from RA risk individuals than in those from healthy control subjects. Key LN chemokines C-C motif chemokine ligand (CCL19), CCL21 and CXCL13 were induced in LNSCs upon stimulation with tumour necrosis factor-α and lymphotoxin α1β2, but to a lesser extent in LNSCs from patients with RA. The effect of human LNSCs on T-cell proliferation was ratio-dependent and altered in RA LNSCs. Conclusions Overall, we developed an experimental model to facilitate research on the role of LNSCs during the earliest phases of RA. Using this innovative model, we show, for the first time to our knowledge, that the LN stromal environment is changed during the earliest phases of RA, probably contributing to deregulated immune responses early in disease pathogenesis. Electronic supplementary material The online version of this article (10.1186/s13075-018-1529-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janine S Hähnlein
- Amsterdam Rheumatology & immunology Centre (ARC), Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands
| | - Reza Nadafi
- Department of Molecular Cell Biology and Immunology, VU Medical Centre, Amsterdam, the Netherlands
| | - Tineke de Jong
- Amsterdam Rheumatology & immunology Centre (ARC), Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands
| | - Tamara H Ramwadhdoebe
- Amsterdam Rheumatology & immunology Centre (ARC), Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands
| | - Johanna F Semmelink
- Amsterdam Rheumatology & immunology Centre (ARC), Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands
| | - Karen I Maijer
- Amsterdam Rheumatology & immunology Centre (ARC), Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands
| | - IJsbrand A Zijlstra
- Department of Radiology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Danielle M Gerlag
- Amsterdam Rheumatology & immunology Centre (ARC), Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.,Present address: Clinical Unit Cambridge, GlaxoSmithKline, Cambridge, UK
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands
| | - Paul P Tak
- Amsterdam Rheumatology & immunology Centre (ARC), Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.,Present address: Ghent University, Ghent, Belgium.,Present address: University of Cambridge, Cambridge, UK.,Present address: GlaxoSmithKline, Stevenage, UK
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, VU Medical Centre, Amsterdam, the Netherlands
| | - Lisa G M van Baarsen
- Amsterdam Rheumatology & immunology Centre (ARC), Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands. .,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.
| |
Collapse
|
20
|
Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol 2017; 35:69-79. [PMID: 29289420 DOI: 10.1016/j.smim.2017.12.003] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/08/2017] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are a major component of the tumor microenvironment (TME) and play a key role in promoting tumor progression. The tumor uses exosomes to co-opt MSCs and re-program their functional profile from normally trophic to pro-tumorigenic. These tumor-derived small vesicles called "TEX" carry and deliver a cargo rich in proteins and nucleic acids to MSCs. Upon interactions with surface receptors on MSCs and uptake of the exosome cargo by MSCs, molecular, transcriptional and translational changes occur that convert MSCs into producers of factors that are necessary for tumor growth and that also alter functions of non-tumor cells in the TME. The MSCs re-programmed by TEX become avid producers of their own exosomes that carry and deliver mRNA and miRNA species as well as molecular signals not only back to tumor cells, directly enhancing their growth, but also horizontally to fibroblasts, endothelial cells and immune cells in the TME, indirectly enhancing their pro-tumor functions. TEX-driven cross-talk of MSCs with immune cells blocks their anti-tumor activity and/or converts them into suppressor cells. MSCs re-programmed by TEX mediate pro-angiogenic activity and convert stromal cells into cancer-associated fibroblasts (CAFs). Although MSCs have a potential to exert anti-tumor activities, they largely provide service to the tumor using the multidirectional communication system established by exosomes in the TME. Future therapeutic options consider disruption of this complex vicious cycle by either molecular or gene-regulated silencing of pro-tumor effects mediated by MSCs in the TME.
Collapse
Affiliation(s)
- Theresa L Whiteside
- University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
21
|
Abstract
The mechanisms underlying immunomodulatory ability of mesenchymal stromal cells (MSCs) remain unknown. Recently, studies suggested that the immunomodulatory activity of MSCs is largely mediated by paracrine factors. Among which, exosome is considered to play a major role in the communication between MSCs and target tissue. The aim of our study is to investigate the effect of MSCs-derived exosome on peripheral blood mononuclear cells (PBMCs), especially T cells. We find that the MSCs-derived exosome extracted from healthy donors' bone marrow suppressed the secretion of pro-inflammatory factor TNF-α and IL-1β, but increased the concentration of anti-inflammatory factor TGF-β during in vitro culture. In addition, exosome may induce conversion of T helper type 1 (Th1) into T helper type 2 (Th2) cells and reduced potential of T cells to differentiate into interleukin 17-producing effector T cells (Th17). Moreover, the level of regulatory T cells (Treg) and cytotoxic T lymphocyte-associated protein 4 were also increased. These results suggested that MSC-derived exosome possesses the immunomodulatory properties. However, it showed no effects on the proliferation of PBMCs or CD3+ T cells, but increases the apoptosis of them. In addition, indoleamine 2, 3-dioxygenase (IDO) was previously shown to mediate the immunoregulation of MSCs, which was increased in PBMCs co-cultured with MSCs. In our study, IDO showed no significant changes in PBMCs exposed to MSCs-derived exosome. We conclude that exosome and MSCs might differ in their immune-modulating activities and mechanisms.
Collapse
|
22
|
Colbath AC, Dow SW, Phillips JN, McIlwraith CW, Goodrich LR. Autologous and Allogeneic Equine Mesenchymal Stem Cells Exhibit Equivalent Immunomodulatory Properties In Vitro. Stem Cells Dev 2017; 26:503-511. [DOI: 10.1089/scd.2016.0266] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Aimée C. Colbath
- Orthopaedic Research Center, Colorado State University, Fort Collins, Colorado
| | - Steven W. Dow
- Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | | | - C. Wayne McIlwraith
- Orthopaedic Research Center, Colorado State University, Fort Collins, Colorado
| | - Laurie R. Goodrich
- Orthopaedic Research Center, Colorado State University, Fort Collins, Colorado
- Clinical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
23
|
Abstract
Immunomodulators regulate stem cell activity at all stages of development as well as during adulthood. Embryonic stem cell (ESC) proliferation as well as neurogenic processes during embryonic development are controlled by factors of the immune system. We review here immunophenotypic expression patterns of different stem cell types, including ESC, neural (NSC) and tissue-specific mesenchymal stem cells (MSC), and focus on immunodulatory properties of these cells. Immune and inflammatory responses, involving actions of cytokines as well as toll-like receptor (TLR) signaling are known to affect the differentiation capacity of NSC and MSC. Secretion of pro- and anti-inflammatory messengers by MSC have been observed as the consequence of TLR and cytokine activation and promotion of differentiation into specified phenotypes. As result of augmented differentiation capacity, stem cells secrete angiogenic factors including vascular endothelial growth factor, resulting in multifactorial actions in tissue repair. Immunoregulatory properties of tissue specific adult stem cells are put into the context of possible clinical applications.
Collapse
|
24
|
Chen Y, Yang J, Zhang HJ, Fan H, An N, Xin J, Li N, Xu J, Yin W, Wu Z, Hu X. Sca-1+mesenchymal stromal cells inhibit splenic marginal zone B lymphocytes commitment through Caspase-3. Cell Biol Int 2016; 40:549-59. [PMID: 26861667 DOI: 10.1002/cbin.10591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/07/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Yaozhen Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jialei Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Hui-Jie Zhang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Hong Fan
- Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ning An
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jiajia Xin
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Na Li
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jinmei Xu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Wen Yin
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Zhongliang Wu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Xingbin Hu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| |
Collapse
|
25
|
Miceli M, Dell'Aversana C, Russo R, Rega C, Cupelli L, Ruvo M, Altucci L, Chambery A. Secretome profiling of cytokines and growth factors reveals that neuro-glial differentiation is associated with the down-regulation of Chemokine Ligand 2 (MCP-1/CCL2) in amniotic fluid derived-mesenchymal progenitor cells. Proteomics 2016; 16:674-88. [PMID: 26604074 DOI: 10.1002/pmic.201500223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/09/2015] [Accepted: 11/20/2015] [Indexed: 01/09/2023]
Abstract
Secreted cytokines and growth factors play a key role in the modulation of stem cell proliferation, differentiation and survival. To investigate the interplay between the changes in their expression levels, we used the newly characterized human amniotic fluid derived-mesenchymal progenitor MePR-2B cell line differentiated to a neuro-glial phenotype and exploited the very high sensitivity and versatility of magnetic beads-based immunoassays. We found that a sub-set of proteins, including the cytokines IL-6, TNFα, IL-15, IFNγ, IL-8, IL-1ra, MCP-1/CCL2, RANTES and the growth factor PDGFbb, underwent a significant down-regulation following neuro-glial differentiation, whereas the expression levels of IL-12 p70, IL-5, IL-7, bFGF, VEGF and G-CSF were increased. The role of MCP-1/CCL2, previously identified as a regulator of neural progenitor stem cell differentiation, has been further investigated at transcriptional level, revealing that both the chemokine and its receptor are co-expressed in MePR-2B cells and that are regulated upon differentiation, suggesting the presence of an autocrine and paracrine loop in differentiating cells. Moreover, we demonstrated that exogenous CCL2 is capable to affect neuro-glial differentiation in MePR-2B cells, thus providing novel evidences for the potential involvement of chemokine-mediated signaling in progenitor/stem cells differentiation processes and fate specification.
Collapse
Affiliation(s)
- Marco Miceli
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy.,Istituto di Genetica e Biofisica 'Adriano Buzzati Traverso' IGB, CNR, Napoli, Italy
| | - Carmela Dell'Aversana
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy.,Istituto di Genetica e Biofisica 'Adriano Buzzati Traverso' IGB, CNR, Napoli, Italy
| | - Rosita Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Camilla Rega
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Lorenzo Cupelli
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy.,Istituto di Genetica e Biofisica 'Adriano Buzzati Traverso' IGB, CNR, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, IBB, CNR, Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy.,Istituto di Genetica e Biofisica 'Adriano Buzzati Traverso' IGB, CNR, Napoli, Italy
| | - Angela Chambery
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy.,IRCCS, Multimedica, Milano, Italy
| |
Collapse
|
26
|
Abstract
Compared with traditional 2D adherent cell culture, 3D spheroidal cell aggregates, or spheroids, are regarded as more physiological, and this technique has been exploited in the field of oncology, stem cell biology, and tissue engineering. Mesenchymal stem cells (MSCs) cultured in spheroids have enhanced anti-inflammatory, angiogenic, and tissue reparative/regenerative effects with improved cell survival after transplantation. Cytoskeletal reorganization and drastic changes in cell morphology in MSC spheroids indicate a major difference in mechanophysical properties compared with 2D culture. Enhanced multidifferentiation potential, upregulated expression of pluripotency marker genes, and delayed replicative senescence indicate enhanced stemness in MSC spheroids. Furthermore, spheroid formation causes drastic changes in the gene expression profile of MSC in microarray analyses. In spite of these significant changes, underlying molecular mechanisms and signaling pathways triggering and sustaining these changes are largely unknown.
Collapse
|
27
|
Williams LB, Tessier L, Koenig JB, Koch TG. Post-thaw non-cultured and post-thaw cultured equine cord blood mesenchymal stromal cells equally suppress lymphocyte proliferation in vitro. PLoS One 2014; 9:e113615. [PMID: 25438145 PMCID: PMC4249887 DOI: 10.1371/journal.pone.0113615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/29/2014] [Indexed: 01/27/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) are receiving increased attention for their non-progenitor immunomodulatory potential. Cryopreservation is commonly used for long-term storage of MSC. Post-thaw MSC proliferation is associated with a lag-phase in vitro. How this lag-phase affect MSC immunomodulatory properties is unknown. We hypothesized that in vitro there is no difference in lymphocyte suppression potential between quick-thawed cryopreserved equine cord blood (CB) MSC immediately included in mixed lymphocyte reaction (MLR) and same MSC allowed post-thaw culture time prior to inclusion in MLR. Cryopreserved CB-MSC from five unrelated foals were compared using two-way MLR. For each of the five unrelated MSC cultures, paired MLR assays of MSC allowed five days of post-thaw culture and MSC included in MLR assay immediately post-thawing were evaluated. We report no difference in the suppression of lymphocyte proliferation by CB-MSC that had undergone post-thaw culture and MSC not cultured post-thaw (p<0.0001). Also, there was no inter-donor variability between the lymphocyte suppressive properties of MSC harvested from the five different donors (p = 0.13). These findings suggest that cryopreserved CB-MSC may have clinical utility immediately upon thawing. One implication hereof is the possibility of using cryopreserved CB-MSC at third party locations without the need for cell culture equipment or competencies.
Collapse
Affiliation(s)
- Lynn B. Williams
- Department of Clinical Studies, University of Guelph, Guelph, Ontario, Canada
| | - Laurence Tessier
- Department of Biomedical Science, University of Guelph, Guelph, Ontario, Canada
| | - Judith B. Koenig
- Department of Clinical Studies, University of Guelph, Guelph, Ontario, Canada
| | - Thomas G. Koch
- Department of Biomedical Science, University of Guelph, Guelph, Ontario, Canada
- Department of Clinical Studies, Orthopaedic Research Lab, Aarhus University, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
28
|
Hegyi B, Környei Z, Ferenczi S, Fekete R, Kudlik G, Kovács KJ, Madarász E, Uher F. Regulation of mouse microglia activation and effector functions by bone marrow-derived mesenchymal stem cells. Stem Cells Dev 2014; 23:2600-12. [PMID: 24870815 DOI: 10.1089/scd.2014.0088] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stems or stromal cells (MSCs) are rare multipotent cells with potent regenerative and immunomodulatory properties. Microglial cells (MGs) are specialized tissue macrophages of the central nervous system (CNS) that continuously survey their environment with highly motile extensions. Recently, several studies have shown that MSCs are capable of reprogramming microglia into an "M2-like" phenotype characterized by increased phagocytic activity and upregulated expression of anti-inflammatory mediators in vitro. However, the precise polarization states of microglia in the presence of MSCs under physiological or under inflammatory conditions remain largely unknown. In this study, we found that MSCs induce a mixed microglia phenotype defined as Arg1-high, CD86-high, CD206-high, IL-10-high, PGE2-high, MCP-1/CCL2-high, IL-1β-moderate, NALP-3-low, and TNF-α-low cells. These MSC-elicited MGs have high phagocytic activity and antigen-presenting ability. Lipopolysaccharide is able to shape this microglia phenotype quantitatively, but not qualitatively in the presence of MSCs. This unique polarization state resembles a novel regulatory microglia phenotype, which might contribute to the resolution of inflammation and to tissue repair in the CNS.
Collapse
Affiliation(s)
- Beáta Hegyi
- 1 Laboratory of Molecular Cell Biology, Institute of Molecular Pharmacology, Research Center for Natural Sciences , Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Phinney DG, Isakova IA. Mesenchymal stem cells as cellular vectors for pediatric neurological disorders. Brain Res 2014; 1573:92-107. [PMID: 24858930 DOI: 10.1016/j.brainres.2014.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/07/2014] [Accepted: 05/16/2014] [Indexed: 12/15/2022]
Abstract
Lysosomal storage diseases are a heterogeneous group of hereditary disorders characterized by a deficiency in lysosomal function. Although these disorders differ in their etiology and phenotype those that affect the nervous system generally manifest as a profound deterioration in neurologic function with age. Over the past several decades implementation of various treatment regimens including bone marrow and cord blood cell transplantation, enzyme replacement, and substrate reduction therapy have proved effective for managing some clinical manifestations of these diseases but their ability to ameliorate neurologic complications remains unclear. Consequently, there exists a need to develop alternative therapies that more effectively target the central nervous system. Recently, direct intracranial transplantation of tissue-specific stem and progenitor cells has been explored as a means to reconstitute metabolic deficiencies in the CNS. In this chapter we discuss the merits of bone marrow-derived mesenchymal stem cells (MSCs) for this purpose. Originally identified as progenitors of connective tissue cell lineages, recent findings have revealed several novel aspects of MSC biology that make them attractive as therapeutic agents in the CNS. We relate these advances in MSC biology to their utility as cellular vectors for treating neurologic sequelae associated with pediatric neurologic disorders.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, A213, Jupiter, FL 33458, USA.
| | - Iryna A Isakova
- Division of Clinical Laboratory Diagnostics, Biology Department, National Dnepropetrovsk University, Dnepropetrovsk, Ukraine
| |
Collapse
|
30
|
Fierabracci A, Del Fattore A, Luciano R, Muraca M, Teti A, Muraca M. Recent advances in mesenchymal stem cell immunomodulation: the role of microvesicles. Cell Transplant 2013; 24:133-49. [PMID: 24268069 DOI: 10.3727/096368913x675728] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells are the most widely used cell phenotype for therapeutic applications, the main reasons being their well-established abilities to promote regeneration of injured tissues and to modulate immune responses. Efficacy was reported in the treatment of several animal models of inflammatory and autoimmune diseases and, in clinical settings, for the management of disorders such as GVHD, systemic lupus erythematosus, multiple sclerosis, and inflammatory bowel disease. The effects of mesenchymal stem cells are believed to be largely mediated by paracrine signals, and several secreted molecules have been identified as contributors to the net biological effect. Recently, it has been recognized that bioactive molecules can be shuttled from cell to cell packed in microvesicles, tiny portions of cytoplasm surrounded by a membrane. Coding and noncoding RNAs are also carried in such microvesicles, transferring relevant biological activity to target cells. Several reports indicate that the regenerative effect of mesenchymal stem cells can be reproduced by microvesicles isolated from their culture medium. More recent evidence suggests that the immunomodulatory effects of mesenchymal stem cells are also at least partially mediated by secreted microvesicles. These findings allow better understanding of the mechanisms involved in cell-to-cell interaction and may have interesting implications for the development of novel therapeutic tools in place of the parent cells.
Collapse
|