1
|
Shamhari A‘A, Jefferi NES, Abd Hamid Z, Budin SB, Idris MHM, Taib IS. The Role of Promyelocytic Leukemia Zinc Finger (PLZF) and Glial-Derived Neurotrophic Factor Family Receptor Alpha 1 (GFRα1) in the Cryopreservation of Spermatogonia Stem Cells. Int J Mol Sci 2023; 24:ijms24031945. [PMID: 36768269 PMCID: PMC9915902 DOI: 10.3390/ijms24031945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
The cryopreservation of spermatogonia stem cells (SSCs) has been widely used as an alternative treatment for infertility. However, cryopreservation itself induces cryoinjury due to oxidative and osmotic stress, leading to reduction in the survival rate and functionality of SSCs. Glial-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger (PLZF) are expressed during the self-renewal and differentiation of SSCs, making them key tools for identifying the functionality of SSCs. To the best of our knowledge, the involvement of GFRα1 and PLZF in determining the functionality of SSCs after cryopreservation with therapeutic intervention is limited. Therefore, the purpose of this review is to determine the role of GFRα1 and PLZF as biomarkers for evaluating the functionality of SSCs in cryopreservation with therapeutic intervention. Therapeutic intervention, such as the use of antioxidants, and enhancement in cryopreservation protocols, such as cell encapsulation, cryoprotectant agents (CPA), and equilibrium of time and temperature increase the expression of GFRα1 and PLZF, resulting in maintaining the functionality of SSCs. In conclusion, GFRα1 and PLZF have the potential as biomarkers in cryopreservation with therapeutic intervention of SSCs to ensure the functionality of the stem cells.
Collapse
Affiliation(s)
- Asma’ ‘Afifah Shamhari
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Nur Erysha Sabrina Jefferi
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Zariyantey Abd Hamid
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Siti Balkis Budin
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Muhd Hanis Md Idris
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Izatus Shima Taib
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
- Correspondence: ; Tel.: +603-928-97608
| |
Collapse
|
2
|
Arutyunyan I, Elchaninov A, Sukhikh G, Fatkhudinov T. Cryopreservation of Tissue-Engineered Scaffold-Based Constructs: from Concept to Reality. Stem Cell Rev Rep 2022; 18:1234-1252. [PMID: 34761366 DOI: 10.1007/s12015-021-10299-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Creation of scaffold-based tissue-engineered constructs (SB TECs) is costly and requires coordinated qualified efforts. Cryopreservation enables longer shelf-life for SB TECs while enormously enhancing their availability as medical products. Regenerative treatment with cryopreserved SB TECs prepared in advance (possibly prêt-à-porter) can be started straight away on demand. Animal studies and clinical trials indicate similar levels of safety for cryopreserved and freshly prepared SB TECs. Although cryopreservation of such constructs is more difficult than that of cell suspensions or tissues, years of research have proved the principal possibility of using ready-to-transplant SB TECs after prolonged cryostorage. Cryopreservation efficiency depends not only on the sheer viability of adherent cells on scaffolds after thawing, but largely on the retention of proliferative and functional properties by the cells, as well as physical and mechanical properties by the scaffolds. Cryopreservation protocols require careful optimization, as their efficiency depends on multiple parameters including cryosensitivity of cells, chemistry and architecture of scaffolds, conditions of cell culture before freezing, cryoprotectant formulations, etc. In this review we discuss recent achievements in SB TEC cryopreservation as a major boost for the field of tissue engineering and biobanking.
Collapse
Affiliation(s)
- Irina Arutyunyan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Research Institute of Human Morphology, Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Human Morphology, Moscow, Russia.
- Department of Histology, Cytology and Embryology, Peoples' Friendship University of Russia (RUDN University, 6, Miklukho-Maklaya Street, 117198, Moscow, Russia.
| |
Collapse
|
3
|
Effect of serum replacement on murine spermatogonial stem cell cryopreservation. Theriogenology 2020; 159:165-175. [PMID: 33157454 DOI: 10.1016/j.theriogenology.2020.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/13/2023]
Abstract
Cryopreservation of spermatogonial stem cells (SSCs) is a necessity to preserve the genetic information of valuable livestock herds and to produce transgenic animals. However, serum, a key component that allows efficient cryopreservation, has many limitations attributed to its undefined composition, inter-batch variations, and contamination potential. Therefore, we aimed to establish a method for serum-free cryopreservation of SSCs. To evaluate the cryopreservation efficiency of serum replacements, we assessed the recovery rate, relative proliferation potential, proliferation capacity, and apoptosis capacity. SSCs were characterized, and their functional activity was determined through immunofluorescence, RT-qPCR, and spermatogonial transplantation. The efficiency of each serum replacement was compared to that of the negative control (10% DMSO in DPBS) and positive control (10% DMSO and 40% FBS in DPBS). Our results indicated that cryopreservation with 5% human serum albumin (rHSA) exhibited a higher relative proliferation potential (274.0 ± 13.4%) than with DMSO control (100 ± 8.6%), with no significant difference from the 40% FBS (190.0 ± 20.1%). Moreover, early apoptosis also significantly decreased to a greater extent with 5% rHSA (5.1 ± 0.7%) than with DMSO control (12.9 ± 0.8%) and was at a level comparable to the 40% FBS (4.9 ± 0.8%). In addition, the SSCs cryopreserved with 5% rHSA exhibited normal self-renewal and differentiation abilities. In conclusion, 5% rHSA is a potential serum replacement for SSC cryopreservation, with properties comparable to that of serum. These results would contribute to the application of SSCs in improving livestock and in future clinical trials for human infertility treatment.
Collapse
|
4
|
Park S, Lee DR, Nam JS, Ahn CW, Kim H. Fetal bovine serum-free cryopreservation methods for clinical banking of human adipose-derived stem cells. Cryobiology 2018; 81:65-73. [PMID: 29448017 DOI: 10.1016/j.cryobiol.2018.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
Abstract
The use of fetal bovine serum (FBS) as a cryopreservation supplement is not suitable for the banking of mesenchymal stem cells (MSCs) due to the risk of transmission of disease as well as xenogeneic immune reactions in the transplanted host. Here, we investigated if human serum albumin (HSA), human serum (HS), or knockout serum replacement (KSR) can replace FBS for the cryopreservation of MSCs. In addition, we examined the characteristics of MSCs after multiple rounds of cryopreservation. Human adipose-derived stem cells (ASCs) cryopreserved with three FBS replacements, 9% HSA, 90% HS, or 90% KSR, in combination with 10% dimethyl sulfoxide (Me2SO) maintained stem cell properties including growth, immunophenotypes, gene expression patterns, and the potential to differentiate into adipogenic, osteogenic, and chondrogenic lineages, similar to ASCs frozen with FBS. Moreover, the immunophenotype, gene expression, and differentiation capabilities of ASCs were not altered by up to four freeze-thaw cycles. However, the performance of three or four freeze-thaw cycles significantly reduced the proliferation ability of ASCs, as indicated by the longer population doubling time and reduced colony-forming unit-fibroblast frequency. Together, our results suggest that HSA, HS, or KSR can replace FBS for the cryopreservation of ASCs, without altering their stemness, and should be processed with no more than two freeze-thaw cycles for clinical approaches.
Collapse
Affiliation(s)
- Seah Park
- Department of Biotechnology, Seoul Women's University, 621 Hwarangro, Nowon-Gu, Seoul, Republic of Korea.
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, 120 Haeryong-ro, Pocheon-shi, Gyeongghi-do, Republic of Korea.
| | - Ji Sun Nam
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Chul Woo Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Haekwon Kim
- Department of Biotechnology, Seoul Women's University, 621 Hwarangro, Nowon-Gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Newman MR, Benoit DS. Local and targeted drug delivery for bone regeneration. Curr Opin Biotechnol 2016; 40:125-132. [PMID: 27064433 DOI: 10.1016/j.copbio.2016.02.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 01/08/2023]
Abstract
While experimental bone regeneration approaches commonly employ cells, technological hurdles prevent translation of these therapies. Alternatively, emulating the spatiotemporal cascade of endogenous factors through controlled drug delivery may provide superior bone regenerative approaches. Surgically placed drug depots have clinical indications. Additionally, noninvasive systemic delivery can be used as needed for poorly healing bone injuries. However, a major hurdle for systemic delivery is poor bone biodistribution of drugs. Thus, peptides, aptamers, and phosphate-rich compounds with specificity toward proteins, cells, and molecules within the regenerative bone microenvironment may enable the design of targeted carriers with bone biodistribution greater than that achieved by drug alone. These carriers, combined with osteoregenerative drugs and/or stimuli-sensitive linkers, may enhance bone regeneration while minimizing off-target tissue effects.
Collapse
Affiliation(s)
- Maureen R Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Danielle Sw Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
6
|
Bianco J, De Berdt P, Deumens R, des Rieux A. Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it? Cell Mol Life Sci 2016; 73:1413-37. [PMID: 26768693 PMCID: PMC11108394 DOI: 10.1007/s00018-015-2126-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail. Being a true mesenchymal stem cell, their capacities could also prove beneficial in areas outside their natural environment. One such field is the central nervous system, and in particular, repairing the injured spinal cord. One of the most formidable challenges in regenerative medicine is to restore function to the injured spinal cord, and as yet, a cure for paralysis remains to be discovered. A variety of approaches have already been tested, with graft-based strategies utilising cells harbouring appropriate properties for neural regeneration showing encouraging results. Here we present a review focusing on properties of dental stem cells that endorse their use in regenerative medicine, with particular emphasis on repairing the damaged spinal cord.
Collapse
Affiliation(s)
- John Bianco
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium.
- Integrated Center for Cell Therapy and Regenerative Medicine, International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
| | - Pauline De Berdt
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
| | - Ronald Deumens
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
7
|
Comparison of the Effects of Different Cryoprotectants on Stem Cells from Umbilical Cord Blood. Stem Cells Int 2015; 2016:1396783. [PMID: 26770201 PMCID: PMC4685149 DOI: 10.1155/2016/1396783] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/09/2015] [Accepted: 07/26/2015] [Indexed: 12/16/2022] Open
Abstract
Purpose. Cryoprotectants (CPA) for stem cells from umbilical cord blood (UCB) have been widely developed based on empirical evidence, but there is no consensus on a standard protocol of preservation of the UCB cells. Methods. In this study, UCB from 115 donors was collected. Each unit of UCB was divided into four equal parts and frozen in different kinds of cryoprotectant as follows: group A, 10% ethylene glycol and 2.0% dimethyl sulfoxide (DMSO) (v/v); group B, 10% DMSO and 2.0% dextran-40; group C, 2.5% DMSO (v/v) + 30 mmol/L trehalose; and group D, without CPA. Results. CD34+, cell viability, colony forming units (CFUs), and cell apoptosis of pre- and postcryopreservation using three cryoprotectants were analyzed. After thawing, significant differences in CD34+ count, CFUs, cell apoptosis, and cell viability were observed among the four groups (P < 0.05). Conclusion. The low concentration of DMSO with the addition of trehalose might improve the cryopreservation outcome.
Collapse
|
8
|
Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects. Cryobiology 2015; 71:181-97. [PMID: 26186998 DOI: 10.1016/j.cryobiol.2015.07.003] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/13/2015] [Indexed: 12/11/2022]
Abstract
Originally isolated from bone marrow, mesenchymal stromal cells (MSCs) have since been obtained from various fetal and post-natal tissues and are the focus of an increasing number of clinical trials. Because of their tremendous potential for cellular therapy, regenerative medicine and tissue engineering, it is desirable to cryopreserve and bank MSCs to increase their access and availability. A remarkable amount of research and resources have been expended towards optimizing the protocols, freezing media composition, cooling devices and storage containers, as well as developing good manufacturing practices in order to ensure that MSCs retain their therapeutic characteristics following cryopreservation and that they are safe for clinical use. Here, we first present an overview of the identification of MSCs, their tissue sources and the properties that render them suitable as a cellular therapeutic. Next, we discuss the responses of cells during freezing and focus on the traditional and novel approaches used to cryopreserve MSCs. We conclude that viable MSCs from diverse tissues can be recovered after cryopreservation using a variety of freezing protocols, cryoprotectants, storage periods and temperatures. However, alterations in certain functions of MSCs following cryopreservation warrant future investigations on the recovery of cells post-thaw followed by expansion of functional cells in order to achieve their full therapeutic potential.
Collapse
|
9
|
Briquet A, Grégoire C, Comblain F, Servais L, Zeddou M, Lechanteur C, Beguin Y. RETRACTED: Human bone marrow, umbilical cord or liver mesenchymal stromal cells fail to improve liver function in a model of CCl4-induced liver damage in NOD/SCID/IL-2Rγ(null) mice. Cytotherapy 2014; 16:1511-1518. [PMID: 25174737 DOI: 10.1016/j.jcyt.2014.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/11/2014] [Accepted: 07/18/2014] [Indexed: 01/09/2023]
Abstract
This article has been removed: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).
This article has been removed at the request of the Editor in Chief.
This retraction comes after a thorough investigation of the scientific research presented in the article, along with an investigation into the authorship of the article and the ownership of the data presented. The Editor in Chief's decision to retract the article is based upon the authors' misuse and misrepresentation of a peer's scientific data without consent or approval.
Collapse
Affiliation(s)
- Alexandra Briquet
- Giga-I³, Hematology Research Unit, University of Liege, Liege, Belgium
| | - Céline Grégoire
- Giga-I³, Hematology Research Unit, University of Liege, Liege, Belgium
| | - Fanny Comblain
- Giga-I³, Hematology Research Unit, University of Liege, Liege, Belgium
| | - Laurence Servais
- Giga-I³, Hematology Research Unit, University of Liege, Liege, Belgium
| | - Mustapha Zeddou
- Giga-I³, Hematology Research Unit, University of Liege, Liege, Belgium
| | | | - Yves Beguin
- Department of Hematology, CHU University Hospital of Liege, Liege, Belgium of Liege; Giga-I³, Hematology Research Unit, University of Liege, Liege, Belgium.
| |
Collapse
|