1
|
Liu H, Liang C, Liu H, Liang P, Cheng H. MiR-10b-5p attenuates spinal cord injury and alleviates LPS-induced PC12 cells injury by inhibiting TGF-β1 decay and activating TGF-β1/Smad3 pathway through PTBP1. Eur J Med Res 2024; 29:554. [PMID: 39558432 PMCID: PMC11575087 DOI: 10.1186/s40001-024-02133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition characterized by significant sensory, motor, and autonomic dysfunctions, leading to severe physical, psychological, and financial burdens. The current therapeutic approaches for SCI show limited effectiveness, highlighting the urgent need for innovative treatments. MicroRNAs (miRNAs) like miR-10b-5p are known to play pivotal roles in gene expression regulation and have been implicated in various neurodegenerative diseases, including SCI. Polypyrimidine tract binding protein 1 (PTBP1) has also been associated with neural injury responses and recovery. This study aims to explore the interaction between miR-10b-5p and PTBP1 in the context of SCI, hypothesizing that miR-10b-5p regulates PTBP1 to influence SCI pathogenesis and recovery using a rat model of SCI and lipopolysaccharide (LPS)-induced PC12 cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to measure miR-10b-5p levels, revealing its low expression in SCI rats. We then assessed neurological function, histopathological changes, and spinal cord water content. We found that administering the agomiR-10b-5p significantly improved neurological function and decreased the spinal cord water content and normal motor neuron loss in SCI rats. Additionally, we explored the functions of miR-10b-5p in LPS-treated PC12 cells. Our results showed that miR-10b-5p repressed LPS-stimulated apoptosis, inflammation, and oxidative stress in PC12 cells. PTBP1 was predicted as a potential target gene of miR-10b-5p using the TargetScan database. Pulldown and luciferase reporter assays further demonstrated that miR-10b-5p binds to the 3' untranslated region (UTR) of PTBP1. RT-qPCR revealed that miR-10b-5p negatively modulated PTBP1 expression both in vivo and in vitro. Furthermore, rescue assays indicated that miR-10b-5p alleviated SCI in rats and LPS-triggered injury in PC12 cells by downregulating PTBP1. We also investigated the regulation of miR-10b-5p and PTBP1 on the transforming growth factor-beta 1 (TGF-β1)/small mother against decapentaplegic (Smad3) pathway. We found that miR-10b-5p targeted PTBP1 to repress TGF-β1 decay and facilitated TGF-β1/Smad3 pathway activation. In conclusion, our results demonstrate that miR-10b-5p alleviates SCI by repressing TGF-β1 decay and inducing TGF-β1/Smad3 pathway activation through PTBP1 downregulation. This study provides novel insights into potential targeted therapy plans for SCI.
Collapse
Affiliation(s)
- Huandong Liu
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Chong Liang
- Department of Neurosurgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Hongfei Liu
- Department of Encephalopathy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Ping Liang
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Huilin Cheng
- Department of Neurosurgery, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
2
|
Gallipoli A, Unger S, El Shahed A, Fan CPS, Signorile M, Wilson D, Hoban R. Outcomes after intranasal human milk therapy in preterm infants with intraventricular hemorrhage. J Perinatol 2024:10.1038/s41372-024-02147-3. [PMID: 39384614 DOI: 10.1038/s41372-024-02147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
OBJECTIVE Intraventricular hemorrhage (IVH) is a common cause of brain injury in preterm infants. Fresh human milk (HM) contains stem cells (SCs) that could potentially be delivered via intranasal HM (IHM). In this IHM pilot study, we describe outcomes. STUDY DESIGN Infants <33 weeks gestation with IVH were given IHM until maximum 28 days of age. Short-term neurologic outcomes and follow-up testing were compared to historic HM-fed infants. Longitudinal outcomes were plotted using linear mixed models. Weighted G-computation quantified treatment effects. Propensity score models calculated inverse probability weights for IVH grade, gestational age, and sex. RESULT 37 infants (35.1% grade 3-4 IVH) were compared to 191 historic controls (17.8% grade 3-4 IVH). Post-hemorrhagic ventricular dilatation was common (25.7% IHM patients). Most weighted outcomes, although not significant, favored IHM at 4-12 and 18 months corrected age. CONCLUSION This phase 1 study suggests powered trials of IHM for brain injury are needed. CLINICAL TRIAL REGISTRY NAME: clinicaltrials.gov identifier NCT04225286.
Collapse
Affiliation(s)
- Alessia Gallipoli
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sharon Unger
- Department of Paediatrics, Izaak Walton Killam Hospital, Halifax, NS, Canada
| | - Amr El Shahed
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Chun-Po Steve Fan
- Ted Rogers Computational Program, Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Marisa Signorile
- Ted Rogers Computational Program, Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Diane Wilson
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rebecca Hoban
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Neonatology, Seattle Children's Hospital, Seattle, WA, USA.
- University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Rybachuk O, Nesterenko Y, Zhovannyk V. Modern advances in spinal cord regeneration: hydrogel combined with neural stem cells. Front Pharmacol 2024; 15:1419797. [PMID: 38994202 PMCID: PMC11236698 DOI: 10.3389/fphar.2024.1419797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Severe spinal cord injuries (SCI) lead to loss of functional activity of the body below the injury site, affect a person's ability to self-care and have a direct impact on performance. Due to the structural features and functional role of the spinal cord in the body, the consequences of SCI cannot be completely overcome at the expense of endogenous regenerative potential and, developing over time, lead to severe complications years after injury. Thus, the primary task of this type of injury treatment is to create artificial conditions for the regenerative growth of damaged nerve fibers through the area of the SCI. Solving this problem is possible using tissue neuroengineering involving the technology of replacing the natural tissue environment with synthetic matrices (for example, hydrogels) in combination with stem cells, in particular, neural/progenitor stem cells (NSPCs). This approach can provide maximum stimulation and support for the regenerative growth of axons of damaged neurons and their myelination. In this review, we consider the currently available options for improving the condition after SCI (use of NSC transplantation or/and replacement of the damaged area of the SCI with a matrix, specifically a hydrogel). We emphasise the expediency and effectiveness of the hydrogel matrix + NSCs complex system used for the reconstruction of spinal cord tissue after injury. Since such a complex approach (a combination of tissue engineering and cell therapy), in our opinion, allows not only to creation of conditions for supporting endogenous regeneration or mechanical reconstruction of the spinal cord, but also to strengthen endogenous regeneration, prevent the spread of the inflammatory process, and promote the restoration of lost reflex, motor and sensory functions of the injured area of spinal cord.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine
- Institute of Genetic and Regenerative Medicine, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
4
|
Zhang RG, Zheng BW, Zhang J, Hao MY, Diao YH, Hu XJ, Liu YF, Liu XH, Zhu T, Zhao ZL, Rong HT. Spinal Lymphatic Dysfunction Aggravates the Recovery Process After Spinal Cord Injury. Neuroscience 2024; 549:84-91. [PMID: 38460904 DOI: 10.1016/j.neuroscience.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
We aimed to evaluate the role of the spinal lymphatic system in spinal cord injury and whether it has an impact on recovery after spinal cord injury. Flow cytometry was used to evaluate the changes in the number of microvesicles after spinal cord injury. Evans blue extravasation was used to evaluate the function of the lymphatic system. Evans blue extravasation and immunofluorescence were used to evaluate the permeability of blood spinal cord barrier. The spinal cord edema was evaluated by dry and wet weight.Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was used to evaluate apoptosis after spinal cord injury. Nuclear factor-kappa B pathway was detected by Western blot. Behavioral tests were used to evaluate limb function. Microvesicles released after spinal cord injury can enter the thoracic duct and then enter the blood through the lymph around the spine. After ligation of the thoracic duct, it can aggravate the neuropathological manifestations and limb function after spinal cord injury. The potential mechanism may involve nuclear factor-kappa B pathway.
Collapse
Affiliation(s)
- Rui-Guang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo-Wen Zheng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming-Yu Hao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Hang Diao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao-Jun Hu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ya-Fan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuan-Hui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zi-Long Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| | - Hong-Tao Rong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
5
|
Dong X, Zhang Z, Shu X, Zhuang Z, Liu P, Liu R, Xia S, Bao X, Xu Y, Chen Y. MFG-E8 Alleviates Cognitive Impairments Induced by Chronic Cerebral Hypoperfusion by Phagocytosing Myelin Debris and Promoting Remyelination. Neurosci Bull 2024; 40:483-499. [PMID: 37979054 PMCID: PMC11003935 DOI: 10.1007/s12264-023-01147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/22/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic cerebral hypoperfusion is one of the pathophysiological mechanisms contributing to cognitive decline by causing white matter injury. Microglia phagocytosing myelin debris in a timely manner can promote remyelination and contribute to the repair of white matter. However, milk fat globule-epidermal growth factor-factor 8 (MFG-E8), a microglial phagocytosis-related protein, has not been well studied in hypoperfusion-related cognitive dysfunction. We found that the expression of MFG-E8 was significantly decreased in the brain of mice after bilateral carotid artery stenosis (BCAS). MFG-E8 knockout mice demonstrated more severe BCAS-induced cognitive impairments in the behavioral tests. In addition, we discovered that the deletion of MFG-E8 aggravated white matter damage and the destruction of myelin microstructure through fluorescent staining and electron microscopy. Meanwhile, MFG-E8 overexpression by AAV improved white matter injury and increased the number of mature oligodendrocytes after BCAS. Moreover, in vitro and in vivo experiments showed that MFG-E8 could enhance the phagocytic function of microglia via the αVβ3/αVβ5/Rac1 pathway and IGF-1 production to promote the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes. Interestingly, we found that MFG-E8 was mainly derived from astrocytes, not microglia. Our findings suggest that MFG-E8 is a potential therapeutic target for cognitive impairments following cerebral hypoperfusion.
Collapse
Affiliation(s)
- Xiaohong Dong
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Zi Zhuang
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Pinyi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China
| | - Renyuan Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
| | - Yan Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
| |
Collapse
|
6
|
Ghosh S, Ghosh S, Sharma H, Bhaskar R, Han SS, Sinha JK. Harnessing the power of biological macromolecules in hydrogels for controlled drug release in the central nervous system: A review. Int J Biol Macromol 2024; 254:127708. [PMID: 37923043 DOI: 10.1016/j.ijbiomac.2023.127708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Hydrogels have immense potential in revolutionizing central nervous system (CNS) drug delivery, improving outcomes for neurological disorders. They serve as promising tools for controlled drug delivery to the CNS. Available hydrogel types include natural macromolecules (e.g., chitosan, hyaluronic acid, alginate), as well as hybrid hydrogels combining natural and synthetic polymers. Each type offers distinct advantages in terms of biocompatibility, mechanical properties, and drug release kinetics. Design and engineering considerations encompass hydrogel composition, crosslinking density, porosity, and strategies for targeted drug delivery. The review emphasizes factors affecting drug release profiles, such as hydrogel properties and formulation parameters. CNS drug delivery applications of hydrogels span a wide range of therapeutics, including small molecules, proteins and peptides, and nucleic acids. However, challenges like limited biodegradability, clearance, and effective CNS delivery persist. Incorporating 3D bioprinting technology with hydrogel-based CNS drug delivery holds the promise of highly personalized and precisely controlled therapeutic interventions for neurological disorders. The review explores emerging technologies like 3D bioprinting and nanotechnology as opportunities for enhanced precision and effectiveness in hydrogel-based CNS drug delivery. Continued research, collaboration, and technological advancements are vital for translating hydrogel-based therapies into clinical practice, benefiting patients with CNS disorders. This comprehensive review article delves into hydrogels for CNS drug delivery, addressing their types, design principles, applications, challenges, and opportunities for clinical translation.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India; ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India
| | - Soumya Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Hitaishi Sharma
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea.
| | | |
Collapse
|
7
|
Zhu B, Gu G, Ren J, Song X, Li J, Wang C, Zhang W, Huo Y, Wang H, Jin L, Feng S, Wei Z. Schwann Cell-Derived Exosomes and Methylprednisolone Composite Patch for Spinal Cord Injury Repair. ACS NANO 2023; 17:22928-22943. [PMID: 37948097 DOI: 10.1021/acsnano.3c08046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Spinal cord injury (SCI) can cause permanent loss of sensory and motor function, and there is no effective clinical treatment, to date. Due to the complex pathological process involved after injury, synergistic treatments are very urgently needed in clinical practice. We designed a nanofiber scaffold hyaluronic acid hydrogel patch to release both exosomes and methylprednisolone to the injured spinal cord in a non-invasive manner. This composite patch showed good biocompatibility in the stabilization of exosome morphology and toxicity to nerve cells. Meanwhile, the composite patch increased the proportion of M2-type macrophages and reduced neuronal apoptosis in an in vitro study. In vivo, the functional and electrophysiological performance of rats with SCI was significantly improved when the composite patch covered the surface of the hematoma. The composite patch inhibited the inflammatory response through macrophage polarization from M1 type to M2 type and increased the survival of neurons by inhibition neuronal of apoptosis after SCI. The therapeutic effects of this composite patch can be attributed to TLR4/NF-κB, MAPK, and Akt/mTOR pathways. Thus, the composite patch provides a medicine-exosomes dual-release system and may provide a non-invasive method for clinical treatment for individuals with SCI.
Collapse
Affiliation(s)
- Bin Zhu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Guangjin Gu
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| | - Jie Ren
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xiaomeng Song
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Junjin Li
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Chunyan Wang
- Department of Rehabilitation Medicine, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Wencan Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| | - Yanqing Huo
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Haifeng Wang
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Shiqing Feng
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, The Second Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| | - Zhijian Wei
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, The Second Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250033, China
| |
Collapse
|
8
|
Turhan Z, d’Arcy R, El Mohtadi F, Teixeira LI, Francini N, Geven M, Castagnola V, Alshamsan A, Benfenati F, Tirelli N. Dual Thermal- and Oxidation-Responsive Polymers Synthesized by a Sequential ROP-to-RAFT Procedure Inherently Temper Neuroinflammation. Biomacromolecules 2023; 24:4478-4493. [PMID: 36757736 PMCID: PMC10565819 DOI: 10.1021/acs.biomac.2c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Indexed: 02/10/2023]
Abstract
This study is about multiple responsiveness in biomedical materials. This typically implies "orthogonality" (i.e., one response does not affect the other) or synergy (i.e., one increases efficacy or selectivity of the other), but an antagonist effect between responses may also occur. Here, we describe a family of very well-defined amphiphilic and micelle-forming block copolymers, which show both oxidative and temperature responses. They are produced via successive anionic ring-opening polymerization of episulfides and RAFT polymerization of dialkylacrylamides and differ only in the ratio between inert (N,N-dimethylacrylamide, DMA) and temperature-sensitive (N,N-diethylacrylamide, DEA) units. By scavenging Reactive Oxygen Species (ROS), these polymers are anti-inflammatory; through temperature responsiveness, they can macroscopically aggregate, which may allow them to form depots upon injection. The localization of the anti-inflammatory action is an example of synergy. An extensive evaluation of toxicity and anti-inflammatory effects on in vitro models, including BV2 microglia, C8D30 astrocytes and primary neurons, shows a link between capacity of aggregation and detrimental effects on viability which, albeit mild, can hinder the anti-inflammatory potential (antagonist action). Although limited in breadth (e.g., only in vitro models and only DEA as a temperature-responsive unit), this study suggests that single-responsive controls should be used to allow for a precise assessment of the (synergic or antagonist) potential of double-responsive systems.
Collapse
Affiliation(s)
- Zulfiye
Y. Turhan
- Laboratory
for Polymers and Biomaterials, Fondazione
Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Division
of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United
Kingdom
| | - Richard d’Arcy
- Laboratory
for Polymers and Biomaterials, Fondazione
Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Farah El Mohtadi
- Division
of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United
Kingdom
| | - Lorena Infante Teixeira
- Laboratory
for Polymers and Biomaterials, Fondazione
Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Nora Francini
- Laboratory
for Polymers and Biomaterials, Fondazione
Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Mike Geven
- Laboratory
for Polymers and Biomaterials, Fondazione
Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Valentina Castagnola
- Center
for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Aws Alshamsan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Nanobiotechnology
Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fabio Benfenati
- Center
for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Nicola Tirelli
- Laboratory
for Polymers and Biomaterials, Fondazione
Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Division
of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United
Kingdom
| |
Collapse
|
9
|
Shu J, Wang C, Tao Y, Wang S, Cheng F, Zhang Y, Shi K, Xia K, Wang R, Wang J, Yu C, Chen J, Huang X, Xu H, Zhou X, Wu H, Liang C, Chen Q, Yan S, Li F. Thermosensitive hydrogel-based GPR124 delivery strategy for rebuilding blood-spinal cord barrier. Bioeng Transl Med 2023; 8:e10561. [PMID: 37693060 PMCID: PMC10486335 DOI: 10.1002/btm2.10561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Spinal cord injury (SCI) causes blood-spinal cord barrier (BSCB) disruption, leading to secondary damage, such as hemorrhagic infiltration, inflammatory response, and neuronal cell death. It is of great significance to rebuild the BSCB at the early stage of SCI to alleviate the secondary injury for better prognosis. Yet, current research involved in the reconstruction of BSCB is insufficient. Accordingly, we provide a thermosensitive hydrogel-based G protein-coupled receptor 124 (GPR124) delivery strategy for rebuilding BSCB. Herein, we firstly found that the expression of GPR124 decreased post-SCI and demonstrated that treatment with recombinant GPR124 could partially alleviate the disruption of BSCB post-SCI by restoring tight junctions (TJs) and promoting migration and tube formation of endothelial cells. Interestingly, GPR124 could also boost the energy metabolism of endothelial cells. However, the absence of physicochemical stability restricted the wide usage of GPR124. Hence, we fabricated a thermosensitive heparin-poloxamer (HP) hydrogel that demonstrated sustained GPR124 production and maintained the bioactivity of GPR124 (HP@124) for rebuilding the BSCB and eventually enhancing functional motor recovery post-SCI. HP@124 hydrogel can encapsulate GPR124 at the lesion site by injection, providing prolonged release, preserving wounded tissues, and filling injured tissue cavities. Consequently, it induces synergistically efficient integrated regulation by blocking BSCB rupture, decreasing fibrotic scar formation, minimizing inflammatory response, boosting remyelination, and regenerating axons. Mechanistically, giving GPR124 activates energy metabolism via elevating the expression of phosphoenolpyruvate carboxykinase 2 (PCK2), and eventually restores the poor state of endothelial cells. This research demonstrated that early intervention by combining GPR124 with bioactive multifunctional hydrogel may have tremendous promise for restoring locomotor recovery in patients with central nervous system disorders, in addition to a translational approach for the medical therapy of SCI.
Collapse
Affiliation(s)
- Jiawei Shu
- International Institutes of MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwuZhejiangPeople's Republic of China
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Chenggui Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Yiqing Tao
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Shaoke Wang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Feng Cheng
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Yuang Zhang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Kesi Shi
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Kaishun Xia
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Ronghao Wang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Jingkai Wang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Chao Yu
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Jiangjie Chen
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Xianpeng Huang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Haibin Xu
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Xiaopeng Zhou
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Haobo Wu
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Chengzhen Liang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Qixin Chen
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Shigui Yan
- International Institutes of MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwuZhejiangPeople's Republic of China
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Fangcai Li
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| |
Collapse
|
10
|
Lee CY, Chooi WH, Ng S, Chew SY. Modulating neuroinflammation through molecular, cellular and biomaterial-based approaches to treat spinal cord injury. Bioeng Transl Med 2023; 8:e10389. [PMID: 36925680 PMCID: PMC10013833 DOI: 10.1002/btm2.10389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022] Open
Abstract
The neuroinflammatory response that is elicited after spinal cord injury contributes to both tissue damage and reparative processes. The complex and dynamic cellular and molecular changes within the spinal cord microenvironment result in a functional imbalance of immune cells and their modulatory factors. To facilitate wound healing and repair, it is necessary to manipulate the immunological pathways during neuroinflammation to achieve successful therapeutic interventions. In this review, recent advancements and fresh perspectives on the consequences of neuroinflammation after SCI and modulation of the inflammatory responses through the use of molecular-, cellular-, and biomaterial-based therapies to promote tissue regeneration and functional recovery will be discussed.
Collapse
Affiliation(s)
- Cheryl Yi‐Pin Lee
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Shi‐Yan Ng
- Institute of Molecular and Cell BiologyA*STAR Research EntitiesSingaporeSingapore
| | - Sing Yian Chew
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
11
|
Xiao S, Zhong N, Yang Q, Li A, Tong W, Zhang Y, Yao G, Wang S, Liu J, Liu Z. Aucubin promoted neuron functional recovery by suppressing inflammation and neuronal apoptosis in a spinal cord injury model. Int Immunopharmacol 2022; 111:109163. [PMID: 35994851 DOI: 10.1016/j.intimp.2022.109163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) can cause severe motor impairment. Post-SCI treatment has focused primarily on secondary injury, with neuroinflammation and neuronal apoptosis as the primary therapeutic targets. Aucubin (Au), a Chinese herbal medicine, exerts anti-inflammatory and neuroprotective effects. The therapeutic effects of Aucubin in SCI have not been reported. METHODS In this study, we carried out an in vivo SCI model and a series of in vitro experiments to explore the therapeutic effect of Aucubin. Western Blotting and immunofluorescence were used to study the effect of Aucubin on microglial polarization and neuronal apoptosis and its underlying mechanism. RESULTS We found that Aucubin can promote axonal regeneration by reducing neuroinflammation and neuronal apoptosis, which is beneficial to motor recovery after spinal cord injury in rats. Our further in vitro experiments showed that Aucubin can activate the toll-like receptor 4 (TLR4)/myeloid differentiation protein-88 (MyD88)/IκBα/nuclear factor kappa B (NF-κB) signaling pathway to reduce neuroinflammation and reverse mitochondrial dysfunction to reduce neuronal apoptosis. CONCLUSIONS In summary, these results suggest that Aucubin may ameliorate secondary injury after SCI by reducing neuroinflammation and neuronal apoptosis. Therefore, Au may be a promising post-SCI therapeutic drug.
Collapse
Affiliation(s)
- Shining Xiao
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Nanshan Zhong
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Quanming Yang
- Department of Orthopedics, Ningbo First Hospital, Ningbo 315000, China
| | - Anan Li
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Weilai Tong
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Yu Zhang
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Geliang Yao
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Shijiang Wang
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Jiaming Liu
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China.
| | - Zhili Liu
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Spine and Spinal Cord, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
12
|
Effect and Safety Analysis of PRP and Yifu Combined with Ultrapulsed CO2 Lattice Laser in Patients with Sunken Acne Scar. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6803988. [PMID: 35126939 PMCID: PMC8808142 DOI: 10.1155/2022/6803988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022]
Abstract
Objective To investigate the effect and safety of PRP and Yifu combined with ultrapulsed CO2 lattice laser in patients with sunken acne scar. Methods 700 subjects were selected from the group of patients with sunken acne scar treated in our hospital from November 2010 to December 2020. They were divided into control group (n = 350) and study group (n = 350). The grouping was mainly based on the random number table method. Patients in the control group were treated with ultrapulse CO2 lattice laser, while those in the study group were treated with ultrapulse CO2 lattice laser combined with PRP and Yifu. The clinical effect, scar improvement and quality of life before and after treatment, and adverse events during treatment were compared between the two groups. The clinical effect was categorized into cure after treatment, significant effect, effective, and ineffective. The total effective rate = 1 − ineffective rate. Results After treatment, the total effective rate of the study group (81.43%) was higher than that of the control group (70.00%). After treatment, ECCA, VSS scores, daily activities, symptoms and feelings, work and study, leisure and entertainment, interpersonal relationship, treatment status, and total scores were all lower in both groups than before treatment, and the study group was lower than the control group. During the treatment, the incidence of adverse events in the study group (17.33%) was lower than that in the control group (28.57%), P < 0.05. Conclusion PRP and Yifu combined with ultrapulse CO2 lattice laser in the treatment of sunken acne scar can effectively improve the scar, reduce the incidence of adverse events, and the treatment effect is obvious, which can improve the quality of life of the patients.
Collapse
|
13
|
Ren Y, Liu W, Zhang J, Bi J, Fan M, Lv Y, Wu Z, Zhang Y, Wu R. MFG-E8 Maintains Cellular Homeostasis by Suppressing Endoplasmic Reticulum Stress in Pancreatic Exocrine Acinar Cells. Front Cell Dev Biol 2022; 9:803876. [PMID: 35096831 PMCID: PMC8795834 DOI: 10.3389/fcell.2021.803876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 01/25/2023] Open
Abstract
Excessive endoplasmic reticulum (ER) stress contributes significantly to the pathogenesis of exocrine acinar damage in acute pancreatitis. Our previous study found that milk fat globule EGF factor 8 (MFG-E8), a lipophilic glycoprotein, alleviates acinar cell damage during AP via binding to αvβ3/5 integrins. Ligand-dependent integrin-FAK activation of STAT3 was reported to be of great importance for maintaining cellular homeostasis. However, MFG-E8's role in ER stress in pancreatic exocrine acinar cells has not been evaluated. To study this, thapsigargin, brefeldin A, tunicamycin and cerulein + LPS were used to induce ER stress in rat pancreatic acinar cells in vitro. L-arginine- and cerulein + LPS-induced acute pancreatitis in mice were used to study ER stress in vivo. The results showed that MFG-E8 dose-dependently inhibited ER stress under both in vitro and in vivo conditions. MFG-E8 knockout mice suffered more severe ER stress and greater inflammatory response after L-arginine administration. Mechanistically, MFG-E8 increased phosphorylation of FAK and STAT3 in cerulein + LPS-treated pancreatic acinar cells. The presence of specific inhibitors of αvβ3/5 integrin, FAK or STAT3 abolished MFG-E8's effect on cerulein + LPS-induced ER stress in pancreatic acinar cells. In conclusion, MFG-E8 maintains cellular homeostasis by alleviating ER stress in pancreatic exocrine acinar cells.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Fan
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuanyuan Zhang
- Department of Pediatrics, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yuanyuan Zhang, ; Rongqian Wu,
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yuanyuan Zhang, ; Rongqian Wu,
| |
Collapse
|
14
|
DCI after Aneurysmal Subarachnoid Hemorrhage Is Related to the Expression of MFG-E8. BIOMED RESEARCH INTERNATIONAL 2022; 2021:6568477. [PMID: 35005020 PMCID: PMC8741362 DOI: 10.1155/2021/6568477] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Objective To explore the predictive value of milk fat globule epidermal growth factor 8 (MFG-E8) in the occurrence of delayed cerebral ischemia (DCI) after an aneurysmal subarachnoid hemorrhage (aSAH). Methods We recruited 32 patients with aSAH as the case group and 24 patients with unruptured aneurysms as the control group. Serum MFG-E8 levels were measured by western blot and enzyme-linked immunosorbent assay. We analyzed the relationship between MFG-E8 levels and the risk of DCI. Results The levels of serum MFG-E8 in the case group (mean = 11160.9 pg/mL) were significantly higher than those in the control group (mean = 3081.0 pg/mL, p < 0.001). MFG-E8 levels highly correlated with the World Federation of Neurosurgical Societies (WFNS) and modified Fisher scores (r = -0.691 and - 0.767, respectively, p < 0.001). In addition, MFG-E8 levels in patients with DCI (5882.7 ± 3162.4 pg/mL) were notably higher than those in patients without DCI (15818.2 ± 3771.6 pg/mL, p < 0.001). A receiver operating characteristic curve showed that the occurrence of DCI could effectively be predicted by MFG-E8 (area under the curve = 0.976, 95%CI = 0.850-1.000). Kaplan-Meier survival analysis showed a remarkable decrease in the incidence of DCI in case group individuals with high levels of MFG-E8 (≥11160.9 pg/mL, p < 0.001). Conclusion MFG-E8 may be a useful predictive marker for DCI after an aSAH and could be a promising surrogate end point.
Collapse
|
15
|
Bellotti E, Schilling AL, Little SR, Decuzzi P. Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: A review. J Control Release 2021; 329:16-35. [PMID: 33259851 DOI: 10.1016/j.jconrel.2020.11.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
The central nervous system (CNS), consisting of the brain, spinal cord, and retina, superintends to the acquisition, integration and processing of peripheral information to properly coordinate the activities of the whole body. Neurodegenerative and neurodevelopmental disorders, trauma, stroke, and brain tumors can dramatically affect CNS functions resulting in serious and life-long disabilities. Globally, the societal and economic burden associated with CNS disorders continues to grow with the ageing of the population thus demanding for more effective and definitive treatments. Despite the variety of clinically available therapeutic molecules, medical interventions on CNS disorders are mostly limited to treat symptoms rather than halting or reversing disease progression. This is attributed to the complexity of the underlying disease mechanisms as well as to the unique biological microenvironment. Given its central importance, multiple barriers, including the blood brain barrier and the blood cerebrospinal fluid barrier, protect the CNS from external agents. This limits the access of drug molecules to the CNS thus contributing to the modest therapeutic successes. Loco-regional therapies based on the deposition of thermoresponsive hydrogels loaded with therapeutic agents and cells are receiving much attention as an alternative and potentially more effective approach to manage CNS disorders. In this work, the current understanding and challenges in the design of thermoresponsive hydrogels for CNS therapy are reviewed. First, the biological barriers that hinder mass and drug transport to the CNS are described, highlighting the distinct features of each barrier. Then, the realization, characterization and biomedical application of natural and synthetic thermoresponsive hydrogels are critically presented. Advantages and limitations of each design and application are discussed with the objective of identifying general rules that could enhance the effective translation of thermoresponsive hydrogel-based therapies for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Elena Bellotti
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| | - Andrea L Schilling
- Department of Chemical Engineering, University of Pittsburgh, 427 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15261, USA
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 427 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15261, USA; Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15216, USA; Department of Clinical and Translational Science, University of Pittsburgh, Forbes tower, Suite 7057, Pittsburgh, PA 15213, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, 15213, USA
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| |
Collapse
|
16
|
Xiao S, Wang C, Yang Q, Xu H, Lu J, Xu K. Rea regulates microglial polarization and attenuates neuronal apoptosis via inhibition of the NF-κB and MAPK signalings for spinal cord injury repair. J Cell Mol Med 2020; 25:1371-1382. [PMID: 33369103 PMCID: PMC7875927 DOI: 10.1111/jcmm.16220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/11/2020] [Accepted: 11/22/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammation and neuronal apoptosis aggravate the secondary damage after spinal cord injury (SCI). Rehmannioside A (Rea) is a bioactive herbal extract isolated from Rehmanniae radix with low toxicity and neuroprotection effects. Rea treatment inhibited the release of pro-inflammatory mediators from microglial cells, and promoted M2 polarization in vitro, which in turn protected the co-cultured neurons from apoptosis via suppression of the NF-κB and MAPK signalling pathways. Furthermore, daily intraperitoneal injections of 80 mg/kg Rea into a rat model of SCI significantly improved the behavioural and histological indices, promoted M2 microglial polarization, alleviated neuronal apoptosis, and increased motor function recovery. Therefore, Rea is a promising therapeutic option for SCI and should be clinically explored.
Collapse
Affiliation(s)
- Shining Xiao
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chenggui Wang
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Quanming Yang
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Haibin Xu
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Kan Xu
- Department of Orthopedic Surgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|