1
|
Zhao L, Liu H, Gao R, Zhang K, Gong Y, Cui Y, Ke S, Wang J, Wang H. Brown Adipose Stem Cell-Loaded Resilin Elastic Hydrogel Rebuilds Cardiac Function after Myocardial Infarction via Collagen I/III Reorganisation. Gels 2024; 10:568. [PMID: 39330170 PMCID: PMC11431146 DOI: 10.3390/gels10090568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Irreversible fibrosis following myocardial infarction (MI) stiffens the infarcted myocardium, which remains challenging to restore. This study aimed to investigate whether the injectable RLP12 hydrogel, derived from recombinant resilin protein, could serve as a vehicle for stem cells to enhance the function of the infarcted myocardium. The RLP12 hydrogel was prepared and injected into the myocardium of rats with MI, and brown adipose-derived mesenchymal stem cells (BADSCs) were loaded. The survival and differentiation of BADSCs in vivo were investigated using immunofluorescence one week and four weeks after treatment, respectively. The heart function, MI area, collagen deposition, and microvessel density were further assessed four weeks after treatment through echocardiography, histology, immunohistochemistry, and immunofluorescence. The RLP12 hydrogel was prepared with a shear modulus of 10-15 kPa. Four weeks after transplantation, the RLP12 hydrogel significantly improved cardiac function by increasing microvessel density and reducing infarct area size and collagen deposition in MI rats. Furthermore, the distribution ratio of collagen III to I increased in both the centre and edge areas of the MI, indicating the improved compliance of the infarct heart. Moreover, the RLP12 hydrogel also promoted the survival and differentiation of BADSCs into cardiac troponin T- and α-smooth muscle-positive cells. The RLP12 hydrogel can be utilised as an injectable vehicle of BADSCs for treating MI and regulating collagen I and III expression profiles to improve the mechanical microenvironment of the infarct site, thereby restoring heart function. The study provides novel insights into the mechanical interactions between the hydrogel and the infarct microenvironment.
Collapse
Affiliation(s)
- Le Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Rui Gao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Department of Wound Infection and Drug, Army Medical Center of PLA (Daping Hospital), Army Medical University, Chongqing 400042, China
| | - Kaihui Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yaya Cui
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
2
|
Quan Y, Li J, Cai J, Liao Y, Zhang Y, Lu F. Transplantation of beige adipose organoids fabricated using adipose acellular matrix hydrogel improves metabolic dysfunction in high-fat diet-induced obesity and type 2 diabetes mice. J Cell Physiol 2024; 239:e31191. [PMID: 38219044 DOI: 10.1002/jcp.31191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
Transplantation of brown adipose tissue (BAT) is a promising approach for treating obesity and metabolic disorders. However, obtaining sufficient amounts of functional BAT or brown adipocytes for transplantation remains a major challenge. In this study, we developed a hydrogel that combining adipose acellular matrix (AAM) and GelMA and HAMA that can be adjusted for stiffness by modulating the duration of light-crosslinking. We used human white adipose tissue-derived microvascular fragments to create beige adipose organoids (BAO) that were encapsulated in either a soft or stiff AAM hydrogel. We found that BAOs cultivated in AAM hydrogels with high stiffness demonstrated increased metabolic activity and upregulation of thermogenesis-related genes. When transplanted into obese and type 2 diabetes mice, the HFD + BAO group showed sustained improvements in metabolic rate, resulting in significant weight loss and decreased blood glucose levels. Furthermore, the mice showed a marked reduction in nonalcoholic liver steatosis, indicating improved liver function. In contrast, transplantation of 2D-cultured beige adipocytes failed to produce these beneficial effects. Our findings demonstrate the feasibility of fabricating beige adipose organoids in vitro and administering them by injection, which may represent a promising therapeutic approach for obesity and diabetes.
Collapse
Affiliation(s)
- Yuping Quan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jian Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yuteng Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
3
|
Ning X, Liu N, Sun T, You Y, Luo Y, Kang E, Chen Z, Wang Y, Ren J. Promotion of adipose stem cell transplantation using GelMA hydrogel reinforced by PLCL/ADM short nanofibers. Biomed Mater 2023; 18:065003. [PMID: 37647920 DOI: 10.1088/1748-605x/acf551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) show poor survival after transplantation, limiting their clinical application. In this study, a series of poly(l-lactide-co-ϵ-caprolactone) (PLCL)/acellular dermal matrix (ADM) nanofiber scaffolds with different proportions were prepared by electrospinning. By studying their morphology, hydrophilicity, tensile mechanics, and biocompatibility, PLCL/ADM nanofiber scaffolds with the best composition ratio (PLCL:ADM = 7:3) were selected to prepare short nanofibers. And based on this, injectable gelatin methacryloyl (GelMA) hydrogel loaded with PLCL/ADM short nanofibers (GelMA-Fibers) was constructed as a transplantation vector of ADSCs. ADSCs and GelMA-Fibers were co-cultured, and the optimal loading concentration of PLCL/ADM nanofibers was investigated by cell proliferation assay, live/dead cell staining, and cytoskeleton stainingin vitro. In vivoinvestigations were also performed by H&E staining, Oil red O staining, and TUNEL staining, and the survival and apoptosis rates of ADSCs transplantedin vivowere analyzed. It was demonstrated that GelMA-Fibers could effectively promote the proliferation of ADSCsin vitro. Most importantly, GelMA-Fibers increased the survival rate of ADSCs transplantation and decreased their apoptosis rate within 14 d. In conclusion, the constructed GelMA-Fibers would provide new ideas and options for stem cell tissue engineering and stem cell-based clinical therapies.
Collapse
Affiliation(s)
- Xuchao Ning
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
- Department of Plastic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Na Liu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao Medical College, Qingdao University, Qingdao, People's Republic of China
| | - Tiancai Sun
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, People's Republic of China
| | - Yong You
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yanan Luo
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Enhao Kang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Zhenyu Chen
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuanfei Wang
- Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, People's Republic of China
| | - Jizhen Ren
- Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
4
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, López-Mora C, Yáñez-Sepúlveda R, Tornero-Aguilera JF. New Insights and Potential Therapeutic Interventions in Metabolic Diseases. Int J Mol Sci 2023; 24:10672. [PMID: 37445852 DOI: 10.3390/ijms241310672] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Endocrine homeostasis and metabolic diseases have been the subject of extensive research in recent years. The development of new techniques and insights has led to a deeper understanding of the mechanisms underlying these conditions and opened up new avenues for diagnosis and treatment. In this review, we discussed the rise of metabolic diseases, especially in Western countries, the genetical, psychological, and behavioral basis of metabolic diseases, the role of nutrition and physical activity in the development of metabolic diseases, the role of single-cell transcriptomics, gut microbiota, epigenetics, advanced imaging techniques, and cell-based therapies in metabolic diseases. Finally, practical applications derived from this information are made.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street s/n, 28670 Villaviciosa de Odon, Spain
| | - Clara López-Mora
- Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Valencia, Pg. de l'Albereda, 7, 46010 València, Spain
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
5
|
Karam M, Najjar H, El Sabban M, Hamade A, Najjar F. Regenerative Medicine for Polycystic Ovary Syndrome: Stem Cell-Based Therapies and Brown Adipose Tissue Activation. Stem Cell Rev Rep 2023; 19:853-865. [PMID: 36633783 DOI: 10.1007/s12015-023-10505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a pathological condition prevalent among women of reproductive age: it is associated with varied etiological factors (lifestyle, genetic, environmental…) and characterized by an increased polycystic morphology of the ovaries leading to disturbances in the menstrual cycle and its correlated infertility. Interconnections between PCOS, obesity, and insulin resistance have been recently investigated thoroughly in the scientific community; these findings directed PCOS therapies into unraveling possibilities to target insulin resistance and central adiposity as efficient treatment. On the other hand, brown adipose tissue is known to possess a thermogenic activity that increases lipolysis and directly attenuates fat deposition. Therefore, brown adipose tissue activation lands itself as a potential target for reducing obesity and its induced insulin resistance, subsequently rescuing PCOS phenotypes. In addition, regenerative medicine has proven efficacy in resolving PCOS-associated infertility and its metabolic symptoms. In particular, many stem/progenitor cells have been verified to possess the differentiation capacity into functional brown adipocytes. Thus, throughout this review, we will discuss the different brown adipose tissue activation strategies and stem-cell-based therapies applied to PCOS models and the possible combination of both therapeutic approaches to synergistically act on the activation of brown adipose tissue and attenuate PCOS-correlated infertility and retract the consequences of the metabolic syndrome on the physiological state of patients.
Collapse
Affiliation(s)
- Mario Karam
- Laboratoire d'Innovation Thérapeutique, "Stem Cell, Organogenesis and Regenerative Medicine" Master Program, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Hélène Najjar
- Department of Pediatrics, Faculty of Medicine, Lebanese University, Hadat, Lebanon
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Aline Hamade
- Laboratoire d'Innovation Thérapeutique, Departments of Biology, Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Fanar, Lebanon.
| | - Fadia Najjar
- Laboratoire d'Innovation Thérapeutique, Departments of Biology, Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Fanar, Lebanon.
| |
Collapse
|
6
|
Soler-Vázquez MC, Romero MDM, Todorcevic M, Delgado K, Calatayud C, Benitez-Amaro A, La Chica Lhoëst MT, Mera P, Zagmutt S, Bastías-Pérez M, Ibeas K, Casals N, Escolà-Gil JC, Llorente-Cortés V, Consiglio A, Serra D, Herrero L. Implantation of CPT1AM-expressing adipocytes reduces obesity and glucose intolerance in mice. Metab Eng 2023; 77:256-272. [PMID: 37088334 DOI: 10.1016/j.ymben.2023.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/14/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
Obesity and its associated metabolic comorbidities are a rising global health and social issue, with novel therapeutic approaches urgently needed. Adipose tissue plays a key role in the regulation of energy balance and adipose tissue-derived mesenchymal stem cells (AT-MSCs) have gained great interest in cell therapy. Carnitine palmitoyltransferase 1A (CPT1A) is the gatekeeper enzyme for mitochondrial fatty acid oxidation. Here, we aimed to generate adipocytes expressing a constitutively active CPT1A form (CPT1AM) that can improve the obese phenotype in mice after their implantation. AT-MSCs were differentiated into mature adipocytes, subjected to lentivirus-mediated expression of CPT1AM or the GFP control, and subcutaneously implanted into mice fed a high-fat diet (HFD). CPT1AM-implanted mice showed lower body weight, hepatic steatosis and serum insulin and cholesterol levels alongside improved glucose tolerance. HFD-induced increases in adipose tissue hypertrophy, fibrosis, inflammation, endoplasmic reticulum stress and apoptosis were reduced in CPT1AM-implanted mice. In addition, the expression of mitochondrial respiratory chain complexes was enhanced in the adipose tissue of CPT1AM-implanted mice. Our results demonstrate that implantation of CPT1AM-expressing AT-MSC-derived adipocytes into HFD-fed mice improves the obese metabolic phenotype, supporting the future clinical use of this ex vivo gene therapy approach.
Collapse
Affiliation(s)
- M Carmen Soler-Vázquez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - María Del Mar Romero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Marijana Todorcevic
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - Katia Delgado
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - Carles Calatayud
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital- IDIBELL, E-08908, Hospitalet de Llobregat, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Aleyda Benitez-Amaro
- Lipids and Cardiovascular Pathology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC), 08041, Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain
| | - Maria Teresa La Chica Lhoëst
- Lipids and Cardiovascular Pathology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC), 08041, Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain; Universitat Autònoma de Barcelona, Spain
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - Marianela Bastías-Pérez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - Kevin Ibeas
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Núria Casals
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain; Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), E-08195, Sant Cugat del Vallés, Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - Vicenta Llorente-Cortés
- Lipids and Cardiovascular Pathology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC), 08041, Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain; CIBER of Cardiovascular (CIBERCV), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital- IDIBELL, E-08908, Hospitalet de Llobregat, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain; Department of Molecular and Translational Medicine, University of Brescia, Piazza del Mercato, 15, 25121, Brescia, BS, Italy
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain.
| |
Collapse
|
7
|
Jiang S, Lin J, Zhang Q, Liao Y, Lu F, Cai J. The fates of different types of adipose tissue after transplantation in mice. FASEB J 2022; 36:e22510. [PMID: 36004579 DOI: 10.1096/fj.202200408r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/11/2022]
Abstract
Fat grafting is one of the most commonly applied procedure for soft-tissue repair. However, it remains unclear whether the type of adipose tissue would have any effects on fat graft survival. The present study aimed to determine fates of fat grafting of three different types of fat tissue. In this study, mice were randomly divided into three groups, white adipose tissue (WAT) group, beige adipose tissue (beige AT) group and brown adipose tissue (BAT) group. Before transplantation, donor mice were injected with rosiglitazone or phosphate-buffered saline (PBS). The WAT and BAT were obtained from PBS-treated mice while beige AT was obtained from the rosiglitazone-treated mice. Three types of fat tissue (150 mg each) were transplanted in three groups, respectively, and harvested at 2, 4 or 12 weeks. The BAT and beige AT contained smaller adipocytes and expressed higher level of uncoupling protein-1 gene. The retention rate of the transplanted fat was significantly higher for beige than for white fat, but was significantly lower for brown than for white fat. Transplanted brown fat was characterized by upregulated inflammation and high endoplasmic reticulum stress. By contrast, fat grafts in beige AT group showed the best adipogenic capacity, moderate inflammation level and superior angiongenesis. In vitro, under hypoxic condition, fewer apoptotic cells were found in beige adipocyte group than that in brown and white adipocyte group. Conditioned medium from brown adipocytes induced M1 polarization of RAW 264.7 macrophages while that from beige adipocytes effectively promoted M2 polarization. Therefore, we suggest that beige AT provides a new potential choice for fat grafting because of low inflammation and superior survival but BAT might not be ideal for fat grafting due to its poor survival.
Collapse
Affiliation(s)
- Shenglu Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China.,Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, P. R. China
| | - Jiayan Lin
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Qian Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
8
|
Cai J, Jiang S, Quan Y, Lin J, Zhu S, Wang J, Jiang W, Liao Y, Lu F. Skeletal muscle provides a pro-browning microenvironment for transplanted brown adipose tissue to maintain its effect to ameliorate obesity in ob/ob mice. FASEB J 2021; 36:e22056. [PMID: 34939223 DOI: 10.1096/fj.202101144r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Brown adipose tissue (BAT) transplantation is a promising means of increasing whole-body energy metabolism to ameliorate obesity. However, the changes in BAT following transplantation and the effects of the microenvironment of the recipient site on graft function have yet to be fully characterized. Therefore, we aimed to determine the effects of transplanting BAT from C57BL/6 mice into the dorsal subcutaneous region or deep to the quadriceps femoris muscle of leptin-deficient ob/ob mice. Subcutaneously transplanted BAT lost features of BAT and demonstrated greater inflammatory cell infiltration and more oil cysts 16 weeks following transplantation. By contrast, the sub-muscularly transplanted BAT maintained features of BAT and was more highly vascularized. Interestingly, sub-muscular BAT transplantation led to a significant increase in oxygen consumption and less inflammation in subcutaneous fat, which was associated with long-term reductions in insulin resistance and body mass gain, whereas the subcutaneous transplants failed after 16 weeks. These results demonstrate that the beneficial effects of BAT transplantation depend upon the microenvironment of the recipient site. Skeletal muscle may provide a microenvironment that maintains the inherent features of BAT grafts over a long period of time, which facilitates a reduction in obesity and improvements in glucose homeostasis.
Collapse
Affiliation(s)
- Junrong Cai
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shenglu Jiang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Plastic Surgery, Taizhou Central Hospital, Taizhou University, Taizhou, China
| | - Yuping Quan
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayan Lin
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaowei Zhu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Wang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqing Jiang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunjun Liao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Current understanding of the role of microRNAs from adipose-derived extracellular vesicles in obesity. Biochem Soc Trans 2021; 50:447-457. [PMID: 34940800 DOI: 10.1042/bst20211031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Obesity and its associated metabolic diseases, including diabetes, insulin resistance, and inflammation, are rapidly becoming a global health concern. Moreover, obese individuals are more likely to be infected with COVID-19. New research on adipose tissue is required to help us understand these metabolic diseases and their regulatory processes. Recently, extracellular vesicles (EVs) have been identified as novel intercellular vectors with a wide range of regulatory functions. The miRNAs carried by EVs participate in the regulation of white adipose tissue (WAT) browning, insulin resistance, diabetes, and inflammation. In addition, EV miRNAs demonstrate great potential for helping elucidating the mechanism of metabolic diseases, and for advancing their prevention and treatment. In this review, we focus on the mechanisms underlying the regulation of adipose differentiation and metabolic diseases by adipose-derived EV miRNAs. Understanding the role of these miRNAs should enrich our understanding of the etiology and pathogenesis of metabolic diseases caused by obesity.
Collapse
|
10
|
Deptuła M, Brzezicka A, Skoniecka A, Zieliński J, Pikuła M. Adipose-derived stromal cells for nonhealing wounds: Emerging opportunities and challenges. Med Res Rev 2021; 41:2130-2171. [PMID: 33522005 PMCID: PMC8247932 DOI: 10.1002/med.21789] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Wound healing complications affect thousands of people each year, thus constituting a profound economic and medical burden. Chronic wounds are a highly complex problem that usually affects elderly patients as well as patients with comorbidities such as diabetes, cancer (surgery, radiotherapy/chemotherapy) or autoimmune diseases. Currently available methods of their treatment are not fully effective, so new solutions are constantly being sought. Cell-based therapies seem to have great potential for use in stimulating wound healing. In recent years, much effort has been focused on characterizing of adipose-derived mesenchymal stromal cells (AD-MSCs) and evaluating their clinical use in regenerative medicine and other medical fields. These cells are easily obtained in large amounts from adipose tissue and show a high proregenerative potential, mainly through paracrine activities. In this review, the process of healing acute and nonhealing (chronic) wounds is detailed, with a special attention paid to the wounds of patients with diabetes and cancer. In addition, the methods and technical aspects of AD-MSCs isolation, culture and transplantation in chronic wounds are described, and the characteristics, genetic stability and role of AD-MSCs in wound healing are also summarized. The biological properties of AD-MSCs isolated from subcutaneous and visceral adipose tissue are compared. Additionally, methods to increase their therapeutic potential as well as factors that may affect their biological functions are summarized. Finally, their therapeutic potential in the treatment of diabetic and oncological wounds is also discussed.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| | | | - Aneta Skoniecka
- Department of Embryology, Faculty of MedicineMedical University of GdanskGdańskPoland
| | - Jacek Zieliński
- Department of Oncologic SurgeryMedical University of GdanskGdańskPoland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| |
Collapse
|
11
|
Adipose-Derived Stem Cells Secretome and Its Potential Application in "Stem Cell-Free Therapy". Biomolecules 2021; 11:biom11060878. [PMID: 34199330 PMCID: PMC8231996 DOI: 10.3390/biom11060878] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ASCs) secrete many cytokines, proteins, growth factors, and extracellular vesicles with beneficial outcomes that can be used in regenerative medicine. It has great potential, and the development of new treatment strategies using the ASCs secretome is of global interest. Besides cytokines, proteins, and growth factors, the therapeutic effect of secretome is hidden in non-coding RNAs such as miR-21, miR-24, and miR-26 carried via exosomes secreted by adequate cells. The whole secretome, including ASC-derived exosomes (ASC-exos) has been proven in many studies to have immunomodulatory, proangiogenic, neurotrophic, and epithelization activity and can potentially be used for neurodegenerative, cardiovascular, respiratory, inflammatory, and autoimmune diseases as well as wound healing treatment. Due to limitations in the use of stem cells in cell-based therapy, its secretome with emphasis on exosomes seems to be a reasonable and safer alternative with increased effectiveness and fewer side effects. Moreover, the great advantage of cell-free therapy is the possibility of biobanking the ASCs secretome. In this review, we focus on the current state of knowledge on the use of the ASCs secretome in stem cell-free therapy.
Collapse
|
12
|
Passos GR, Ghezzi AC, Antunes E, de Oliveira MG, Mónica FZ. The Role of Periprostatic Adipose Tissue on Prostate Function in Vascular-Related Disorders. Front Pharmacol 2021; 12:626155. [PMID: 33643052 PMCID: PMC7908035 DOI: 10.3389/fphar.2021.626155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
The lower urinary tract symptoms (LUTS) secondary to benign prostatic hyperplasia (BPH) are highly prevalent worldwide. Clinical and experimental data suggest that the incidence of LUTS-BPH is higher in patients with vascular-related disorders such as in pelvic ischemia, obesity and diabetes as well as in the ageing population. Obesity is an important risk factor that predisposes to glucose intolerance, insulin resistance, dyslipidemia, type 2 diabetes mellitus and cardiovascular disorders. Prospective studies showed that obese men are more likely to develop LUTS-BPH than non-obese men. Yet, men with greater waist circumferences were also at a greater risk of increased prostate volume and prostate-specific antigen than men with lower waist circumference. BPH is characterized by an enlarged prostate and increased smooth muscle tone, thus causing urinary symptoms. Data from experimental studies showed a significant increase in prostate and epididymal adipose tissue weight of obese mice when compared with lean mice. Adipose tissues that are in direct contact with specific organs have gained attention due to their potential paracrine role. The prostate gland is surrounded by periprostatic adipose tissue (PPAT), which is believed to play a paracrine role by releasing growth factors, pro-inflammatory, pro-oxidant, contractile and anti-contractile substances that interfere in prostate reactivity and growth. Therefore, this review is divided into two main parts, one focusing on the role of adipokines in the context of obesity that can lead to LUTS/BPH and the second part focusing on the mediators released from PPAT and the possible pathways that may interfere in the prostate microenvironment.
Collapse
|
13
|
Stem Cells and Hydrogels for Liver Tissue Engineering: Synergistic Cure for Liver Regeneration. Stem Cell Rev Rep 2020; 16:1092-1104. [DOI: 10.1007/s12015-020-10060-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
|